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ABSTRACT In Multicarrier faster-than-Nyquist (MFTN) systems, one of the most important problems of
MFTN signaling is high peak-to-average power ratio (PAPR). In this paper, partial transmit sequence (PTS)
method is adopted to resolve this problem, and we focus on reducing the computational complexity of it.
First, the PTS method combined with alternative signal (AS) is introduced to overcome the overlapping
structure of MFTN signaling. Then, due to the dominant time-domain samples of MFTN signaling are used,
a new metric which can select dominant time-domain samples accurately is proposed. Based on that, two
low-complexity PTS methods are proposed. To further reduce the computational complexity, by analyzing
the position distribution of sample with peak power, part of the samples are removed from the procedure of
calculating metric for selecting dominant time-domain samples. Simulation results confirm that the proposed
low-complexity PTS methods can effectively reduce computational complexity without degrading the PAPR
reduction performance.

INDEX TERMS Multicarrier faster-than-Nyquist (MFTN), peak-to-average power ratio (PAPR), partial
transmit sequence (PTS), dominant time-domain samples.

I. INTRODUCTION
Multicarrier modulations are methods to modulate data on
multiple subcarriers in communication systems. Since the
high spectral efficiency, they have attracted wide atten-
tion in recent years. One of them is multicarrier faster-
than-Nyquist (MFTN) [1]. Compared with conventional
multicarrier Nyquist modulations, such as orthogonal fre-
quency division multiplexing (OFDM) [2], the time packing
in adjacent symbols and frequency packing in adjacent sub-
carriers allowMFTN to achieve higher spectral efficiency [3].
Therefore, it has attracted wide interests in future satellite and
optical communication systems [4]–[6].

The idea of single carrier faster-than-Nyquist (FTN) can be
dated back to 1975, when it was first proposed byMazo in [7].
In his work, he found that binary sinc pulses could be sent
faster than Nyquist’s limit for orthogonal pulse while keeping
the same asymptotic error probability. In 2003, the FTN with
root raised cosine (RRC) pulse was investigated in [8]. It was
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shown that the Mazo limit, the minimum time packing ratio
without decreasing the minimumEuclidean distance, is lower
than sinc pulse. Then, MFTN was proposed in 2005 [9] by
adopting the concept of FTN to both time and frequency
domain. Since both time interval between adjacent sym-
bols and frequency spacing between adjacent subcarriers are
reduced, the spectral efficiency can be further improved than
single carrier case.

However, one of the major drawbacks of MFTN systems
is high peak-to-average power ratio (PAPR) in the transmit-
ted signals. It is known that high power amplifier (HPA)
is widely used in practical communication systems. Duo to
the non-linear property of HPA, the in-band-distortion and
out-of-band radiation occur in the HPA output of MFTN
signaling with high PAPR, which leads to the degradation of
communication quality. An increase in back-off for HPA will
lead to a loss in power efficiency, therefore, PAPR reduction
is necessary and more efficient.

Unfortunately, since the serious intersymbol interfer-
ence (ISI) and intercarrier interference (ICI) introduced by
time packing and frequency packing in MFTN signaling,
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current researches aboutMFTNmainly focus on spectral effi-
ciency and signal detection algorithms [10]– [13]. For exam-
ple, a soft input and soft output (SISO) frequency domain
equalization detection algorithm was proposed in [10].
By utilizing the iterative turbo equalization, the ISI and ICI
can be effectively eliminated in low complexity. In [11],
a maximum signal-to-interference ratio (SIR) scheme was
proposed for MFTN systems. Recently, a partial transmit
sequence (PTS) based PAPR reduction method has been pro-
posed in [14]. In order to overcome the overlapped structure
of adjacent symbols in MFTN signaling and improve the
performance of conventional PTS, a two-stage phase rotation
was introduced. However, compared with conventional PTS,
the complexity of search for finding the optimal two-stage
rotation phase factors and the overhead of side-information
are too high. Therefore, the PAPR reduction method in [14]
is not so attractive.

On the other hand, the PAPR reduction has been
widely investigated in OFDM systems. Specifically, duo
to the high computational complexity of conventional PTS
method, various kind of low-complexity PTS methods
were proposed. In [15]–[18], the intelligence algorithms
are utilized to find the optimal phase rotation vector.
In [19]–[21], the replication computations of conventional
PTS method are removed to reduce the computational
complexity. In [22]–[24], sub-optimal searching algorithms
are adopted to reduce the search complexity. In [25], these
PTSmethods are analytically reviewed and well summarized.
Among them, one of the most attractive methods is using
dominant time-domain samples [26]–[29]. The key idea is
that using metrics to estimate the amplitude upper bounds of
samples among all candidate signal sequences for each index,
and selecting dominant time-domain samples in accordance
with upper bounds, then, only the dominant time-domain
samples are used to estimate the PAPR of each candidate
signal sequence. It is noteworthy that none of the metrics
in [26]–[29] can estimate the achievable upper bounds
accurately.

Regarding these issues, we investigate the PAPR reduction
of MFTN signaling based on PTS method in this paper. First,
we briefly describe theMFTN signaling, and refine the PAPR
ofMFTN signaling under a given time and frequency packing
ratio. Then, a conventional PTS method is introduced and
applied to MFTN signaling.

1) After that, in order to overcome the overlapped struc-
ture of MFTN signaling, PTS method combined with
alternative signal (AS) [30] is proposed.

2) And, we propose a new metric which can select domi-
nant time-domain samples accurately.

3) Based on that, two low-complexity PTS methods with
fixed and fluctuant threshold are proposed.

4) Then, we analyze the position distribution of sam-
ple with peak power, and remove part of samples
from the procedure of calculating the metric for
selecting dominant time-domain samples based on the
analysis.

FIGURE 1. The time-frequency grid of MFTN signaling.

It is worthy of note that 2), 3) and 4) are the main con-
tributions of this paper. The proposed low-complexity PTS
methods can achieve much lower computational complexity
without degrading the PAPR reduction performance.

The rest of this paper is organized as follows. Section II
gives the expression of MFTN signaling and refines PAPR
definition. Section III describes the conventional PTS and
PTS combined with AS (PTS-AS) in MFTN signaling.
Then, a new metric for selecting dominant time-domain sam-
ples, and two low-complexity PTS methods are proposed in
section IV. In section V, the position distribution of sample
with peak power is analyzed and part of samples are removed
from the calculation of metric to further reduce the com-
putational complexity. After that, computational complexity
of proposed methods and simulation results are given in
section VI. Section VII is the conclusion.

II. MFTN SIGNALING AND PAPR
Consider a baseband MFTN signaling adopting quadrature
phase shift keying (QPSK) with K subcarriers. The inde-
pendent and identical distributed (i.i.d) information symbol
xl,k where l is time index and k is subcarrier index, passes
through baseband shaping filter with shaping pulse g(t).
Then, by combining the shaped signal and its time-frequency
shifted versions with different pairs of (l, k), we can arrive at
the baseband MFTN signaling which is given by

s (t) =
+∞∑
l=0

K−1∑
k=0

xl,kg (t − lτT ) ej2πkυF(t−lτT ) (1)

where g(t) is baseband shaping pulse assumed to have
unit energy, that is,

∫
+∞

−∞
|g (t)|2dt = 1. Fig. 1 shows

the time-frequency grid of MFTN signaling. Gener-
ally, g(t) is T -orthogonal shaping pulse in conven-
tional multicarrier Nyquist systems, which means that∫
+∞

−∞
g (t − lT ) g (t − mT ) dt = 0, l 6= m. And F is

the minimum orthogonal frequency spacing between adja-
cent subcarriers. For example, F = 1/T for sinc pulse,
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and F = (1 + β)/T for RRC pulse with roll-off factor β.
In MFTN signaling, the packed time interval and packed
frequency spacing are τT ≤ T and υF ≤ F , respectively,
therefore, the time and frequency packing factors τ, υ ∈
(0, 1]. And, it will be the conventional multicarrier Nyquist
communication system when τ · υ = 1.
The PAPR is a convenient parameter that commonly used

in measuring the fluctuation degree of the transmitted signal
with non-constant envelope. Similar to general multicarrier
transmission systems, PAPR of MFTN signaling can be still
defined in each symbol time interval τT . We divide the
MFTN signaling into intervals with equal time duration τT ,
and arrive at the PAPR in the l-th symbol interval expressed
as

PAPRl
1
= 10 log10

max
lτT≤t<(l+1)τT

|s (t)|2

E
[
|s (t)|2

] (2)

where E [·] is the expectation operation.
Complementary cumulative distribution function (CCDF)

is adopted here to exhibit the distribution of PAPR. It is
defined as the probability that PAPR exceeds a given value
PAPR0, i.e.,

CCDF = Pr(PAPR > PAPR0). (3)

It is known that PTS method is implemented on discrete
time signals. Therefore, we need to transform (1) and (2) into
discrete forms. First, we sample the MFTN signaling with
time interval T ′c and define s

[
n′
]
= s(n′T ′c), and the discrete

time MFTN signaling can be obtained by

s
[
n′
]
=

+∞∑
l=0

K−1∑
k=0

xl,kg
[
n′ − lτN ′

]
ej2πv

k
K (n

′
−lτN ′). (4)

However, the nonlinear distortions often occur in analog
components, and we are more interested in the PAPR of
continuous time MFTN signaling. To better approximate the
true PAPR of continuous time MFTN signaling, the dis-
crete time MFTN signaling is obtained by oversampling.
Similar to conventional multicarrier Nyquist signals, the J
times oversampling can be conducted by applying (J − 1)K
zeros-padding to the l-th data block xl , i.e.,

xl = [xl,0, xl,1, · · · , xl,K−1, 0, · · · , 0︸ ︷︷ ︸
(J−1)K

]. (5)

It has been confirmed in [35] that J ≥ 4 is sufficient to
acquire the accurate PAPR, therefore, J = 4 will be adopted
in the following parts of the paper.

Then, the sample interval Tc = T ′c/J , that is s [n] = s(nTc),
and the oversampled discrete time MFTN signaling can be
expressed by

s [n] =
+∞∑
l=0

K−1∑
k=0

xl,kg [n− lτN ] ej2πv
k
JK (n−lτN ) (6)

in which g[n] is sampled shaping pulse with finite support[
−Lg/2,Lg/2

]
and N = JN ′. And the corresponding PAPR

is defined by

PAPRl
1
= 10 log10

max
lτN≤n<(l+1)τN

|s [n]|2

E
[
|s [n]|2

] . (7)

III. PAPR REDUCTION WITH PTS AND PTS-AS
A. CONVENTIONAL PTS
In conventional PTS method, the l-th input data block
xl =

[
xl,0, xl,1, . . . , xl,K−1

]
is partitioned into U disjoint

subblocks represented by
{
x(u)l , u = 0, 1, . . . ,U − 1

}
. Thus,

we have

xl =
U−1∑
u=0

x(u)l (8)

in which x(u)l =

[
x(u)l,0 , x

(u)
l,1 , . . . , x

(u)
l,K−1

]
and

x(u)l,k =

{
xl,k , k in the u-th subblock
0, otherwise

. (9)

There are various categories of subblock partitioningmeth-
ods [31]–[34]. Among them, the three most common cat-
egories are adjacent, interleaving and random partitioning
methods [25]. The adjacent method allocates K/U succes-
sive symbols to the same subblock. The interleaving method
allocates symbols with distance U to the same subblock. The
random partitioning method partitions the input data block
randomly.

Then, the MFTN symbols in the data subblock x(u)l are
shaped by pulse g[n] to arrive at x(u)l,k g [n− lτN ]. After mod-
ulation with corresponding subcarriers, we can acquire

x(u)l,k g [n− lτN ] ej2πυ
k
JK (n−lτN ),

k = 0, 1, . . . ,K − 1,

−Lg/2+ lτN ≤ n ≤ Lg/2+ lτN . (10)

Next, by adding all the modulated subcarriers in one sub-
block, we can acquire the signal subsequences of the l-th
MFTN data block by

s(u)l [n]=
K−1∑
k=0

x(u)l,k g [n− lτN ] ej2πυ
k
JK (n−lτN ). (11)

In order to generate the candidate MFTN signal sequences,
these signal subsequences are multiplied by independent
phase rotation factors {bu, u = 0, 1, . . . ,U − 1}, where bu =
ejφu [14]. In practical implementation, the values of phase
rotation factors are usually fetched from a finite set defined
by bu ∈

{
ej2πw/W ,w = 0, 1, . . . ,W − 1

}
, in which W is the

number of all possible phases of phase rotation factors. The
phase rotation vectors, composed by U independent phase
rotation factors, are defined by bc =

[
bc0, b

c
1, . . . , b

c
U−1

]
, c =

0, 1, . . . ,C − 1, where C is the number of candidate sig-
nal sequences to be generated. For a given phase rotation
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vector bc, the corresponding candidate signal sequence is
generated by

scl [n]=
U−1∑
u=0

bcus
(u)
l [n]. (12)

Because the first phase rotation factors of all phase rotation
vectors can be fixed to 1, C = WU−1. The objective of
conventional PTS is to find the optimal candidate signal
sequence with lowest peak power for transmission, which is
expressed by

min
c

max
−Lg/2+lτN≤n≤Lg/2+lτN

∣∣scl [n]∣∣2. (13)

Since this paper does not focus on the subblock partition
scheme and search algorithm, and the number of phase
rotation vectors is finite, the adjacent partition scheme and
exhaustive search are adopted in conventional PTS and the
proposed methods in the rest of the paper.

B. PTS-AS
Due to the overlapped structure of adjacent symbols, the con-
ventional PTS method shows poor performance in PAPR
reduction of MFTN signaling [14]. The AS method is first
proposed in [30]. In [35], selective mapping (SLM) combined
withAS shows good performance inMFTN signaling. In con-
sideration of that fact that both PTS and SLM are based on
phase rotation, combining PTS with AS will be a good way to
improve the performance effectively. Thus, in this subsection,
we propose the PTS-AS method. The procedures of PTS-AS
method to generate the candidate signal sequences are same
as that of conventional PTSmethod. For the sake of concision,
those procedures are omitted here.

Compared with conventional PTS method, the main dif-
ference of PTS-AS method is sequential optimization. The
previous MFTN symbols are taken into account when finding
the optimal candidate signal sequence of current MFTN data
block. And the detailed description is formulated as follows.

For the zero-thMFTN data block, we use the subsequences
calculated by (11) to generate all possible candidate signal
sequences sc0 [n] , c = 0, 1, . . . ,C − 1, and choose the one
with lowest peak power by

ŝ0 [n] = argmin
c

max
−Lg/2≤n≤Lg/2

∣∣sc0 [n]∣∣2. (14)

where ŝ0 [n] is the chosen signal sequence of zero-th MFTN
data block. Then, ŝ0 [n] is utilized to find the optimal signal
sequence of the firstMFTN data block, and the corresponding
optimization problem expressed by

ŝ1 [n] = argmin
c

max
−Lg/2+τN≤n≤Lg/2+τN

∣∣ŝ0 [n]+ sc1 [n]∣∣2.
(15)

By that analogy, ŝ0 [n] and ŝ1 [n] are utilized to find the
new optimal signal sequence ŝ2 [n]. And the procedure above

is repeated in subsequentMFTN symbols. Therefore, the gen-
eral procedure of PTS-AS method can be formulated by

ŝl [n] = argmin
c

max
−Lg/2+lτN≤n≤Lg/2+lτN

∣∣∣∣∣
l−1∑
i=0

ŝi [n]+ scl [n]

∣∣∣∣∣
2

.

(16)

Since the previous MFTN symbols are taken into account,
the first phase rotation factor of phase rotation vector can
not be fixed. We can see that the number of candidate signal
sequences is C = WU in PTS-AS method, which is more
than conventional PTS method. The increase of C means that
more candidate signal sequences need to be generated, that is,
computational complexity is higher. However, conventional
PTS shows poor PAPR reduction performance in MFTN sig-
naling, and complexity reduction can not bring it the perfor-
mance improvement, which means reducing the complexity
of conventional PTS in MFTN signaling is meaningless and
an effective PAPR reduction method is necessary here. The
proposed PTS-AS in this paper is a good choice and shows
good performance in overcoming the overlapped structure in
MFTN signaling. In the following parts of the paper, we will
focus on reducing the complexity of PTS-AS method in
MFTN signaling.

IV. LOW-COMPLEXITY PTS METHODS USING
DOMINANT TIME-DOMAIN SAMPLES
It is known that main drawback of conventional PTS method
is high computational complexity, and the vast majority of it
comes from the generation of all possible candidate MFTN
signal sequences [19], [36], [37]. Moreover, the C is larger in
PTS-AS method, which results in increase of computational
complexity. Thus, reducing the complexity of generating
candidate signal sequences is meaningful. One of the good
choices is using dominant time-domain samples. The main
idea of it is that only a few dominant time-domain samples
for each candidate MFTN signal sequence are generated and
used to find the optimal phase rotation vector instead of all
the time-domain samples. In [26]–[29], several metrics have
been proposed to select the dominant time-domain samples.
However, none of them can estimate the achievable ampli-
tude upper bounds of samples among all candidate signal
sequences accurately.

In this section, we propose a newmetric which can estimate
the amplitude upper bounds accurately, and give an efficient
calculation of the metric by removing the replication com-
putations. After that, two low-complexity PTS methods are
proposed by utilizing the new metric. For the convenience
of description, LC-PTS1 and LC-PTS2 are used to represent
these two PTS methods.

A. THE NEW METRIC
In PTS-AS method, the achievable amplitude upper bound of
samples among all candidate MFTN signal sequences for a
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∣∣∣∣∣max ang

{
l−1∑
i=0

ŝi [n], bc0s
(0)
l [n] , . . . , bcU−1s

(U−1)
l [n]

}
−min ang

{
l−1∑
i=0

ŝi [n], bc0s
(0)
l [n] , . . . , bcU−1s

(U−1)
l [n]

}∣∣∣∣∣ ≤ 2π
W

(19)

given index n can be calculated by

Ml,n = max
0≤c≤C−1

∣∣∣∣∣
l−1∑
i=0

ŝi [n]+ scl [n]

∣∣∣∣∣ ,
−Lg/2+ lτN ≤ n ≤ Lg/2+ lτN (17)

whereMl,n represents the achievable amplitude upper bound,
and l is the index of current MFTN data block. The greater
Ml,n implies higher probability that the peak power of can-
didate signal sequences occurs at sample with index n for
the l-th MFTN data block. Thus, Ml,n is a proper metric to
select the dominant time-domain samples. However, it can
not be directly used. The calculation in (17) needs to traverse
c from 0 to C − 1, which means that all candidate signal
sequences need to be generated. That is, the adoption of
Ml,n is unable to reduce the computational complexity of
generation of candidate signal sequences.

Here, we propose a new metric to estimate Ml,n. First,
we note that the calculation in (17) is actually the addition
of U + 1 complex numbers, i.e.,

l−1∑
i=0

ŝi [n], s
(0)
l [n] , s(1)l [n] , . . . , s(U−1)l [n] , (18)

and the phases of U complex numbers can be rotated. When
Ml,n is reached, the corresponding complex plane vectors of
these U + 1 numbers will lay in a sector whose angle is
not greater than 2π/W . It can be expressed in formulation
by (19), as shown at the top of this page in which ang[·]
represents the extraction of the phases. According to the
analysis, we can rotate all the U + 1 complex numbers in
(18) by rotation factors and make them lay in a sector on the
complex plane of which the angle range from 0 to 2π/W .
Then, these rotated complex numbers are ranked in ascending
order of phases, and the set {au, u = 0, 1, · · ·U} is employed
to represent them for the sake of convenience. After that,
we multiply 2π/W with each element in the set in turn and
obtain U + 1 sets defined by

{a0, a1, · · · , aU−2, aU−1, aU }{
2π
W
a0, a1, · · · , aU−2, aU−1, aU

}
{
2π
W
a0,

2π
W
a1, · · · , aU−2, aU−1, aU

}
...{

2π
W
a0,

2π
W
a1, · · · ,

2π
W
aU−2, aU−1, aU

}
{
2π
W
a0,

2π
W
a1, · · · ,

2π
W
aU−2,

2π
W
aU−1, aU

}
. (20)

By summing all elements in each set above, for example,
A0 = a0 + a1 + · · · + aU , we can acquire U + 1 complex
numbers represented by {Ai, i = 0, 1, . . . ,U}. Finally,
the new metric Ql,n can be estimated by

Ql,n = max
0≤i≤U

|Ai| . (21)

In addition, there are some replication computations in
calculation of {Ai, i = 0, 1, . . . ,U} which can be removed to
reduce the computational complexity. For example, both A0
and A1 need U complex additions expressed by

a0 + a1 + · · · + aU
2π
W
a0 + a1 + · · · + aU︸ ︷︷ ︸

replication additions

(22)

of which all the additions are superfluous except the first one.
Based on the analysis above and the feature of sets in (20),
we can acquire the more efficient calculation by

Ai = Ai−1 − ai−1 +
2π
W
ai−1, i = 1, 2, . . . ,U . (23)

Except for A0, only one multiplication and two additions are
required in the calculation of each Ai. Compared with directly
adding all elements, utilizing (23) is more efficient especially
for large U .
For easy understanding of the newmetric, an example with

U = 4 andW = 4 is exhibited here. First, we acquire 5 com-
plex numbers according to (18), which is shown in Fig. 2(a).
Then, all of them are rotated to the first quadrant by rotation
factors and ranked in ascending order of phases. Thus, we can
acquire {au, u = 0, 1, . . . , 4} as shown in Fig. 2(b). Next,
we rotate the first 4 of them one by one and Fig. 2(c)-(f)
are obtained. Add all the complex numbers in the same sub-
figure, i.e., Fig. 2(b)-(f), we can obtain {Ai, i = 0, 1, . . . , 4}.
Finally, we can arrive at the new metric by substituting
{Ai, i = 0, 1, . . . , 4} into (21).

B. LC-PTS1 METHOD
In the LC-PTS1 method, the metric Ql,n is adopted. Before
finding the optimal signal sequence ŝl[n] for the l-th data
block, Ql,n should be calculated for all −Lg/2 + lτN ≤
n ≤ Lg/2 + lτN . Then, the samples of which Ql,n is not
less than ThQ are selected as dominant time-domain samples,
and ThQ is a threshold determined by considering the PAPR
reduction performance and computational complexity. Let
SQl represent the index set of dominant time-domain samples
for the l-th data block which is defined by

SQl =
{
n|Ql,n ≥ ThQ,−Lg/2+ lτN ≤ n≤Lg/2+ lτN

}
.

(24)
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FIGURE 2. The example of new metric.

Next, only the samples scl [n] with n ∈ SQl are generated
and used to find the optimal signal sequence. The general
procedure of LC-PTS1 method can be formulated by

ĉ = argmin
c

max
n∈SQl

∣∣∣∣∣
l−1∑
i=0

ŝi [n]+ scl [n]

∣∣∣∣∣
2

(25)

in which ĉ is the index of optimal phase rotation vector. And
the integrated optimal signal sequence can be constructed by

ŝl [n]=
U−1∑
u=0

bĉus
(u)
l [n],−Lg/2+ lτN ≤ n ≤ Lg/2+ lτN .

(26)

Therefore, the LC-PTS1 method can reduce the computa-
tional complexity since only a subset time-domain samples
in the candidate signal sequences are generated.

C. LC-PTS2 METHOD
In the LC-PTS1 method, the threshold ThQ is utilized to
select the dominant time-domain samples. Note that a trade-
off controlled by ThQ exists between the PAPR reduction
performance and the reduction of computational complexity.

In order to achieve a low computational complexity, ThQ will
be relatively high. Thus, there may exist some data blocks of
which SQl are empty. For these data blocks, the original signal
sequences without phase rotation are chosen for transmission,
i.e.,

ŝl [n]=
U−1∑
u=0

s(u)l [n] . (27)

Although the emptying of SQl ensures that the original sig-
nal sequence has no high power sample, the phase rota-
tion can still reduce peak power of signal sequence in most
cases. In consideration of the interference that current signal
sequence brings to next signal sequence, a lower PAPR sig-
nal sequence can be helpful to the next signal sequence in
achieving lower PAPR.

On the other hand, there also exist some data blocks of
which size of SQl are large. For these data blocks, using over-
much dominant time-domain samples is not cost-effective in
terms of the PAPR reduction improvement. Thus, reducing
the number of dominant time-domain samples and diverting
them to the data blocks of which the size of SQl are small
or even empty is a good way to improve the PAPR reduction
performance.

According to the analysis above, we propose the LC-PTS2
method. Same as the LC-PTS1 method, in the l-th data block,
we first calculateQl,n for all−Lg/2+lτN ≤ n ≤ Lg/2+lτN .
After that, allQl,n in l-th data block are ranked in descending
order and the samples corresponding to the first p Ql,n are
chosen as dominant time-domain samples. Let PQl represent
the p-th largest Ql,n. The index set of dominant time-domain
samples for the l-th data block can be defined by

PQl =
{
n|Ql,n ≥ PQl ,−Lg/2+ lτN ≤ n ≤ Lg/2+ lτN

}
.

(28)

Compared with a fixed threshold ThQ in LC-PTS1 method,
in LC-PTS2 method, the threshold is changed and the size of
index set is constant p for different l.

Then, the samples scl [n] with n ∈ PQl are generated and
used in finding the optimal signal sequence. Finally, the gen-
eral procedure of LC-PTS2 method can be formulated by

ĉ = argmin
c

max
n∈PQl

∣∣∣∣∣
l−1∑
i=0

ŝi [n]+ scl [n]

∣∣∣∣∣
2

, (29)

and the integrated optimal signal sequence can also be con-
structed by (26).

V. PEAK DISTRIBUTION AND SAMPLE REMOVING
It has been mentioned in section II that a T -orthogonal shap-
ing pulse is employed in MFTN signaling. Without loss of
generality, RRC pulse is adopted in the following analysis.
For a sampled RRC pulse g[n], the amplitude is not constant
with different index n, which will influence the position
distribution of the sample with peak power.

As an example, Fig. 3 exhibits the power of MFTN signal
sequence under different time index n, in which the number
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FIGURE 3. An example of MFTN signal sequence.

of subcarriers is K = 64, shaping pulse is RRC pulse with
β = 0.3 and frequency packing factor is υ = 0.5. Obviously,
the samples with high power are comparatively concentrated
on the middle part of signal sequence corresponding to the
part of RRC pulse g[n] with high amplitude. It is reasonable
for us to conjecture that there is a higher probability for
sample with peak power to be located in the middle part of
the signal sequence.

In order to confirm our conjecture, some additional com-
puter simulations are employed here to acquire the statisti-
cal position distribution of peak power sample in the signal
sequence. In consideration of the fact that the methods pro-
posed in this paper take the previous symbols into account
and the utilization of position distribution in these meth-
ods, the influences of previous MFTN symbols are con-
sidered when acquiring the statistical position distribution.
Concretely, we acquire the position distribution of peak
power sample in the sequence expressed by

l−1∑
i=0

ŝi [n]+ sl [n],−Lg/2+ lτN ≤ n ≤ Lg/2+ lτN (30)

in which ŝi [n] is previous MFTN signal sequences processed
by PTS-AS method and sl [n] is the randomly generated
original signal sequence.

In the additional simulations, the number of subcarriers is
K = 64, RRC pulse with β = 0.3 and Lg = 6N is employed,
and W = 4 and U = 4 are employed in the PTS-AS
method.We segment the sequence in (30) into 10 equal length
intervals, and gather the statistical probability of peak power
sample being located in each interval. Fig. 4(a) shows the
position distribution of peak power sample in MFTN signal
sequence with τ = 0.5 and υ = 0.5. Obviously, the sample
with peak power tends to be located in the middle part of
the signal sequence. Moreover, the position distribution in
MFTN signal sequence with τ = 0.8 and υ = 0.8 is shown
in Fig. 4(b). We can see that the characteristic of position
distribution still holds.

Since that the sample with peak power tends to be located
in the middle part of the signal sequence, there are some

FIGURE 4. Position distribution of sample with peak power.

intervals which have almost no possibility for the appearance
of sample with peak power. We can remove the samples in
these intervals from the calculation of new metric by directly
setting Ql,n = 0 without degrading the PAPR reduction
performance. And it can effectively reduce the computational
complexity in the calculation of new metric. Although the
analysis and the simulations above are based on RRC pulse,
they can be easily extended to other pulses which means that
the sample removing is widely applicable. Moreover, we can
segment the sequence into more intervals to make the sample
removing more precise.

VI. PERFORMANCE ANALYSIS
In this section, we analyze the performance of proposed
methods in this paper, i.e., PTS-AS, LC-PTS1, LC-PTS2.
The computational complexity of the proposed PTS schemes
are listed and compared. In addition, the computational com-
plexity of LC-PTS2 method combined with sample removing
is evaluated and compared. After that, the PAPR reduction
performance of these methods are evaluated by computer
simulations.

A. COMPUTATIONAL COMPLEXITY
In order to compare the computational complexity of the
PTS-AS, LC-PTS1, LC-PTS2, and LC-PTS2 combined with
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sample removing, there are three ratio needed to be defined
first. For the LC-PTS1 method, the ratio η1 is defined as the
ratio between the expectation number of selected dominant
time-domain samples and the number of total signal sequence
samples, i.e.,

η1 =
E[card(SQl )]

Lg + 1
(31)

in which card(·) is the extraction of the cardinal number, and
E[·] is the expectation operation. For the LC-PTS2 method,
the ratio η2 is defined as the ratio between the number of
selected dominant time-domain samples and the number of
total signal sequence samples, that is,

η2 =
p

Lg + 1
. (32)

Moreover, the ratio ηs is defined as the ratio between number
of samples not removed from the calculation of new metric
and the number of total signal sequence samples.

Note that the generation of signal subsequence is same
for all methods in this paper, the computational complexity
analysis in this subsection only focuses on the computational
complexity after the generation of subsequences.

For PTS-ASmethod, there areU (Lg+1) complex additions
and U (Lg + 1) complex multiplications in the generation
of a candidate signal sequence according to (12). Note that
there are C candidate signal sequences, the total numbers
of complex additions and complex multiplications are both
CU (Lg + 1). For LC-PTS1 and LC-PTS2 method, both
3U (Lg+1) complex additions and (2U+1)(Lg+1) complex
multiplications are performed in the calculation of newmetric
Ql,n according to (20), (21) and (23). Then, since only the
selected samples of candidate signal sequences are generated
for finding the optimal signal sequence by (25) and (29),
different from PTS-ASmethod, both the numbers of complex
additions and complex multiplications are CUη1(Lg + 1) or
CUη2(Lg + 1) for LC-PTS1 or LC-PTS2. After finding the
optimal sequence sequence, U (Lg + 1) complex additions
and U (Lg + 1) complex multiplications are needed for con-
structing the integrated optimal signal sequence by (26) in
LC-PTS1 or LC-PTS2 method. For LC-PTS2 method with
sample removing, the Ql,n are calculated for part of the
samples. Thus, only 3Uηs(Lg + 1) complex additions and
(2U + 1)ηs(Lg + 1) complex multiplications are performed
for calculating the new metric.

By summarizing the analysis above, we can give the
Table 1 which compares the computational complexity of the
PTS-AS, LC-PTS1, LC-PTS2, and LC-PTS2 combined with
sample removing.

B. SIMULATION RESULTS
In this subsection, we evaluate the accuracy performance of
the new metric and PAPR reduction performance of PTS-AS,
LC-PTS1, LC-PTS2 and LC-PTS2 with sample removing in
MFTN signaling through computer simulation. The subcar-
riers number K = 64 is employed. The oversampling factor

TABLE 1. Computational complexity after generation of signal
subsequences.

TABLE 2. Accuracy Performance of Ql,n for Estimation of Ml,n.

is J = 4. And the shaping pulse is RRC pulse of which the
roll-off factor is β = 0.3 and the pulse length is Lg = 6N .

Table 2 shows how accurately Ql,n can estimate the value
of Ml,n where MFTN signaling with U = 4, 8, W = 2, 4,
τ = 0.5, 0.8 and υ = 0.5, 0.8 are considered. In the
table, the estimation error rate is defined as the ratio between
the number of samples with an estimation error of Ml,n
and the total number of samples. Obviously, the new metric
Ql,n can achieve the entirely accurate estimation of Ml,n.
Fig. 5 exhibits the influence of packing factors on the accu-
racy performance of Ql,n. In Fig. 5,W is fixed to 4, and both
time and frequency packing factor are started at 0.5 and ended
at 0.8 with step 0.1. Even the packing factors vary, Ql,n can
keep the accurate estimation ofMl,n which indicates thatQl,n
has good robustness to the variation of packing factors.

Fig. 6 and Fig. 7 exhibit the PAPR reduction performance
of PTS-AS, LC-PTS1 and LC-PTS2 in MFTN signaling with
QPSK. The PAPR distribution of original MFTN signaling
and conventional PTSmethod are also shown for comparison.
The number of subblocks U = 4 and the number of rotation
phases W = 4 are adopted in all the methods. In these
figures, both original MFTN signaling and conventional PTS
method have high PAPR which illustrates the poor PAPR
reduction performance of conventional PTS method. By tak-
ing the previous MFTN symbols into account, the PTS-AS
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FIGURE 5. The accuracy performance of Ql,n.

FIGURE 6. PAPR reduction performance in MFTN signaling with QPSK.
In this figure, time and frequency packing factors are fixed to τ = 0.5,
υ = 0.5.

method can overcome the overlapped structure effectively
and achieve much better performance than conventional PTS
method. In Fig. 6, LC-PTS2 method always shows better
performance than LC-PTS1 method when η1 = η2 = 0.02,
η1 = η2 = 0.05 and η1 = η2 = 0.1. In Fig. 7,
the performance improvement of LC-PTS2 method is not as
conspicuous as that in Fig. 6. This confirms the analysis in
section IV that a lower PAPR signal sequence can be helpful
to the next signal sequence in achieving lower PAPR espe-
cially when the interference is serious. According to Table 1,
we can quantify the computational complexity and arrive at
Table 3(a). When η1 = 0.1 and η2 = 0.1, both LC-PTS1 and
LC-PTS2 only require 11.58% number of complex additions

FIGURE 7. PAPR reduction performance in MFTN signaling with QPSK.
In this figure, time and frequency packing factors are fixed to τ = 0.8,
υ = 0.8.

TABLE 3. Numerical computational complexity based on simulation
parameters.

and 11.29% number of complex multiplications of PTS-AS
method. When η1 = 0.05 and η2 = 0.05, the computational
complexity can be still reduced, but in cost of performance
deterioration, and both LC-PTS1 and LC-PTS2 only require
6.57% number of complex additions and 6.28% number of
complex multiplications of PTS-AS method. When η1 =
0.02 and η2 = 0.02, these two ratios will be reduced to 3.58%
and 3.29%. Moreover, the performance of LC-PTS2 method
with η2 = 0.1 is same as PTS-ASmethod, whichmeans using
dominant time-domain samples can effectively reduce com-
putational complexity without degrading the PAPR reduction
performance.

In Fig. 8 and Fig. 9, the performance of LC-PTS2 method
and LC-PTS2 combined with sample removing are com-
pared. The signal sequence is segmented into 10 intervals
and the analysis in section V is utilized in the simulations.
In Fig. 8, the samples in the first two intervals and the last four

121560 VOLUME 7, 2019



B. Cai et al.: Low-Complexity Partial Transmit Sequence Methods Using Dominant Time-Domain Samples

FIGURE 8. PAPR reduction performance of LC-PTS2 method in MFTN
signaling with QPSK. In this figure, time and frequency packing factors
are fixed to τ = 0.5, υ = 0.5.

FIGURE 9. PAPR reduction performance of LC-PTS2 method in MFTN
signaling with QPSK. In this figure, time and frequency packing factors
are fixed to τ = 0.8, υ = 0.8.

intervals are removed from the calculation of Ql,n in the LC-
PTS2method with sample removing. In Fig. 9, the samples in
the first interval and the last four intervals are removed. For
LC-PTS2 method with sample removing, the ηs in Fig. 8 and
Fig. 9 are 0.4 and 0.5, respectively. In Fig. 8, only 40% com-
plex additions and complexmultiplications for calculating the
Ql,n in LC-PTS2 method are required in LC-PTS2 method
with sample removing. And in Fig. 9, this ratio is 50%. The
comparison of numerical complexity in calculating the metric
is shown in Table 3(b). Even many samples are removed from
the calculation of the metric, LC-PTS2with sample removing
always achieves the same performance as LC-PTS2 method
which means that sample removing can further reduce the
computation complexity.

In recent years, the cubic metric (CM) has been adopted by
3GPP in predicting the amplifier power de-rating [38]. Since
the third order intermodulation is the main reason that results
in the deterioration of adjacent channel leakage ratio, CM is
more accurate in predicting the power de-rating and more

FIGURE 10. CCDF of CM in MFTN signaling with QPSK. In this figure, time
and frequency packing factors are fixed to τ = 0.5, υ = 0.5.

FIGURE 11. CCDF of CM for LC-PTS2 method in MFTN signaling with
QPSK. In this figure, time and frequency packing factors are fixed to
τ = 0.5, υ = 0.5.

related to the amount of distortion induced by nonlinear HPA
than PAPR. The CM in the l-th symbol interval is defined as

CM l =

20log10


√√√√ (l+1)τN∑

n=lτN
[s[n]]6

τNPav3

− 1.52

1.56
(33)

in which Pav =

(l+1)τN∑
n=lτN

[s[n]]2

τN . And the corresponding CCDF
is expressed as

CCDF = Pr(CM > CM0). (34)

Fig. 10 shows the CCDF of CM in MFTN signaling with
QPSK, and Fig. 11 exhibits the CCDF of CM for LC-PTS2
method in MFTN signaling. The results are similar to
Fig. 6 and Fig. 8, which proves effectiveness of the proposed
methods once again.
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FIGURE 12. PAPR reduction performance in MFTN signaling with QPSK
and K = 256. In this figure, time and frequency packing factors are fixed
to τ = 0.5, υ = 0.5.

FIGURE 13. PAPR reduction performance in MFTN signaling with QPSK
and β = 0.5. In this figure, time and frequency packing factors are fixed
to τ = 0.5, υ = 0.5.

In order to testify that the proposed methods in the paper
are generally applicable in MFTN signaling, we also give the
performance of them in MFTN signaling with K = 256 and
β = 0.5. In Fig. 12, the subcarriers number is K = 256.
The LC-PTS2 method always shows better performance than
LC-PTS1 method when η1 and η2 are the same. Moreover,
both LC-PTS2 method with η2 = 0.1 and η2 = 0.05 can
achieve the same performance as PTS-AS method and show
better performance than LC-PTS1 with η1 = 0.1. It means
that LC-PTS2 are more superior than LC-PTS1 when K is
large. In Fig. 13, the roll-off factor β is fixed to 0.5. Since
the ISI is inevitable in MFTN signaling even the β is larger,
the simulation result is similar to Fig. 6.

In section II, MFTN signaling with QPSK is utilized as
an example to acquire the expression of MFTN signaling
and corresponding PAPR. However, there is no limit in the
derivation and analysis in section III, IV andV on themodula-
tion order adopted in MFTN signaling. Thus, all the methods
proposed in this paper can be easily extended to other high
order modulations, e.g, 16QAM. Fig. 14 exhibits the PAPR

FIGURE 14. PAPR reduction performance in MFTN signaling with 16QAM.
In this figure, time and frequency packing factors are fixed to τ = 0.5,
υ = 0.5.

FIGURE 15. Position distribution of sample with peak power in MFTN
signaling with 16QAM, τ = 0.5, υ = 0.5.

reduction performance of PTS-AS, LC-PTS1 and LC-PTS2
inMFTN signalingwith 16QAM.BothU = 4 andW = 4 are
adopted in all methods. The simulation results in Fig. 14 are
similar to that of Fig. 6 and 7, which means the proposed
methods are applicable to high order modulations.

In order to acquire the performance of LC-PTS2 with sam-
ple removing in MFTN signaling with 16QAM, the position
distribution of peak power sample is obtained by computer
simulation, which is shown in Fig. 15. Then, by removing
the samples in the first two intervals and the last four inter-
vals from the calculation of Ql,n, the performance shown
in Fig. 16 is acquired. The performance of LC-PTS2 method
is also shown for comparison. And the LC-PTS2 with sample
removing can achieve the same performance to LC-PTS2
method.

In Fig. 17, the bit error rate (BER) performance of MFTN
signaling with QPSK is exhibited. The detection algorithm
in [1] is employed here, in which the successive interference
cancelation (SIC) is adopted to eliminate the ICI and the
BCJR algorithm is adopted to eliminate the ISI. The (7,5)
convolutional code is employed as outer code. The iterations
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FIGURE 16. PAPR reduction performance of LC-PTS2 method in MFTN
signaling with 16QAM. In this figure, time and frequency packing factors
are fixed to τ = 0.5, υ = 0.5.

FIGURE 17. BER performance in MFTN signaling with QPSK. In this figure,
time and frequency packing factors are fixed to τ = 0.8, υ = 0.8.

number of detection algorithm is 7. And we assume that
all the side information is received correctly. From Fig. 17,
we can see that BER performance of MFTN signaling with
PTS-AS, LC-PTS2, LC-PTS2 with sample removing are the
same. In fact, these PAPR reduction methods proposed in this
paper are only different in the generation of candidate signal
sequences and the selection of optimal signal sequence. Once
the optimal sequence is found, the integrated optimal signal
sequence will be constructed for transmission. In other word,
all the proposed PAPR reduction methods are distortionless.
Therefore, the simulations results in Fig. 17 are reasonable.

VII. CONCLUSION
The PAPR reduction is an important issue in MFTN signal-
ing. In this paper, we give the expression of MFTN signaling
and refine the definition of PAPR. Then, we analyze the
poor performance of conventional PTS method and propose
PTS-AS method to overcome the overlapped structure in
MFTN signaling. After that, a new metric is proposed and
shows good accuracy performance. And two low-complexity

PTS methods are proposed by using the metric to select
dominant time-domain samples. Moreover, by analyzing the
position distribution of sample with peak power, some sam-
ples are removed in the calculation of metric to further reduce
the computational complexity without degrading the PAPR
reduction performance.
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