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ABSTRACT The on-line detection of insulator pollution degree of transmission lines is important to
the prevention and control of flashover. This paper proposed a non-contact detection method of insulator
pollution degree based on hyperspectral technique. Firstly, hyperspectral images of the samples with different
pollution degrees were obtained by hyper-spectrometer. Secondly, after original hyperspectral images were
corrected by black-and-white correction and multiplicative scatter correction, hyperspectral curves from
the region of interest (ROI) of corrected images were obtained. Finally, a multiclassification model of
extreme learning machine (ELM) was built to realize the pollution degree classification of test samples.
The results show that the absorption peak, the position of reflection peak, amplitude and the change trend of
the hyperspectral curve obviously change with different kinds of pollution on the surface of silicone rubber,
whereas only the amplitude obviously changes with same kind of pollution on the surface of silicone rubber;
and the ELM-classification model can accurately and rapidly classify the pollution degree, with the pollution
degree classification accuracy of NaCl, CaSO4 and mixed NaCl-CaSO4 respectively reaching 95%, 97.5%
and 97.5%; and finally The ELMmodel based on hyperspectral curves data of the artificial pollution samples
can classify the surface of insulator umbrellas with different pollution degrees, and the classification accuracy
of CaSO4 andmixed NaCl-CaSO4 samples respectively are 87.5% and 90%. Consequently, the results of this
study prove that hyperspectral technique has considerable potential for the non-contact detection of insulator
pollution degree.

INDEX TERMS Hyperspectral technique, insulator, pollution degree, multiplicative scatter correction,
extreme learning machine.

I. INTRODUCTION
The flashover of transmission line insulator is the key prob-
lem to be solved for the safe and stable operation of elec-
trical power system. Moreover, the loss caused by pollution
flashover to the power system is nearly 10 times of the loss
caused by lightning flashover [1]. As the transmission line
insulators are exposed to the atmospheric environment for a
long time, pollution gradually accumulates on the insulators’
surface. Under meteorological conditions such as fog, dew,
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drizzle and acid rain, the electrical strength will obviously
decline, which will easily lead to surface discharge of insu-
lators, thus causing pollution flashover. Pollution flashover
has two notable characteristics: one is that in the humid
weather conditions such as fog, dew, drizzle, many insula-
tors with same creepage distance in the similar environment
may flashover simultaneously; the other is that reclosing
is hard to succeed, which can result in long-time ground
fault. Therefore, pollution flashover can easily cause the
system to lose stability leading to large-scale outages. With
the rapid development of industry and agriculture, severe
weather conditions such as fog-haze and salt-fog happen
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more frequently, so that pollution problem is more serious.
Meanwhile, with the construction of UHV transmission lines,
once pollution flashover accident occurs, it will cause greater
damage [2]–[5]. Therefore, it is of great significance to effec-
tively determine the pollution degree of insulators and make
a targeted insulator cleaning plan according to the judgment
results for the prevention and control of pollution flashover.

At present, measurement methods commonly used in insu-
lator pollution degree include equivalent salt deposit den-
sity (ESDD), leakage current (LC), surface pollution layer
conductivity (SPLC) [6]–[8]. These traditional measurement
methods have certain limitations. The ESDDmethod requires
operators to climb up the transmission towers to remove insu-
lators, and then constantly scrub the insulator surface with
absorbent cotton immersed in distilled water. The absorbent
cotton after each scrub is placed in a quantity of distilled
water until the pollution is cleaned, and the whole pro-
cess is required to avoid the loss of pollution and moisture.
So, the whole measurement process is so tedious, which
is not suitable for on-line detection. For LC measurement,
the power is generally supplied by high-voltage rectifying
equipment, and the LC is directly measured by microam-
meter, which has high requirements on the experimental
equipment, environment and the sensitivity of measuring
instrument. So, LCmeasurement will be easily affected by the
voltage polarity of power supply, ambient humidity, temper-
ature, etc., and it is difficult to establish a direct relationship
with pollution degree. The measurement of SPLC should
be carried out under the condition of saturated and damp
pollution layer, and need complex measurement equipment,
and it is difficult to control the damp condition of the insula-
tors, which is not convenient for field measurement. Spectral
analysis technology such as infrared imaging [9], [10], ultra-
violet imaging [11], [12] have been widely used in insulator
pollution flashover prevention because of the advantage of
non-contact detection, but these two methods’ spectral reso-
lution is relatively low, and spectrum is narrow (imaging in
a particular band). Infrared imaging only reflects the charac-
teristics of insulators’ heating, while ultraviolet imaging only
reflects the characteristics of insulators’ discharge, both of
them lacking the complete reflection of insulator pollution
state.

Hyperspectral technique is the new technology which
combines image and data based on imaging spectroscopy
technology, with some advantages such as multiband(up to
hundreds of wavebands), high resolution, rich information
collected by hyperspectral images and large amounts of data
description models, etc. [13], [14]. Hyperspectral technique
is mainly used in food detection, agriculture monitoring,
resource exploration, archaeological investigation and so
on [15]–[19]. S. Shrestha captured hyperspectral images of
four tomato varieties and analyzed the data by principal com-
ponent analysis (PCA) and partial least squares-discriminant
analysis (PLS-DA), and the results showed the application
prospects of using hyperspectral imaging in varietal identi-
fication studies of tomato seeds [16]. Zhang et al. presented

an automatic soil texture classification system using hyper-
spectral soil signatures and wavelet-based statistical models,
and the results showed that the methods are both reliable
and robust [18]. Daikos et al. made use of hyperspectral
imaging for in-line monitoring of thickness and conversion
of white pigmented UV-cured acrylate coatings, proving that
hyperspectral imaging has considerable potential for in-line
process and quality control [19]. The mature application of
hyperspectral technique in other fields and its great potential
in on-line detection have attracted our wide attention. In view
of the lack of non-contact on-line detectionmethod for insula-
tor pollution, the hyperspectral technique is applied to detect
insulator pollution degree for the first time.

This paper aims to study the pollution degree detec-
tion method of insulators based on hyperspectral technique.
Through obtaining hyperspectral images of artificial samples
with different pollution degrees, the full-band hyperspectral
curves of the regions of interest in label sample images are
extracted after pre-treatment to build an ELM multiclassifi-
cation model. The full-band data of label samples are taken
as training data to classify the pollution degree of artifi-
cial samples to be tested. This method is a way of non-
contact detection, which can realize undamaged and on-line
detection of the pollution degree. The results show that this
method has considerable potential for the non-contact detec-
tion of insulator pollution degree with high classification
accuracy.

II. THE PRINCIPLE OF THE POLLUTION DEGREE
DETECTION BASED ON HYPERSPECTRAL TECHNIQUE
A. THE PRINCIPLE OF HYPERSPECTRAL IMAGING
TECHNIQUE
With the wide application of hyperspectral technique in vari-
ous fields, great changes have taken place in the theory, tech-
nology and applications. The imaging spectrometer mounted
in hyperspectral sensors of different spatial platforms can
get hyperspectral data, and simultaneously image the target
in ultraviolet, visible, near-infrared and mid-infrared regions
of the electromagnetic spectrum in tens to hundreds of con-
tinuous spectral bands, as shown in Fig. 1. Hyperspectral

FIGURE 1. Schematic of hyperspectral data.
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image not only improves the richness of information, but also
analyzes and processes the spectral data more reasonably and
efficiently [13].

The spectral characteristics of substance are closely related
to its inherent physicochemical characteristics, and the
absorption and reflection of photons at different wavelengths
within the substance are selectively due to the differences in
composition and structure. Therefore, the reflectance spec-
trum of the substance has a ‘‘fingerprint’’ effect, which can
distinguish different substance information according to the
principle that different substances have different spectra and
the same substance has the same spectrum. A complete
and continuous spectral curve can better reflect the intrin-
sic microscopic differences between different substance,
which is the physical basis of hyperspectral imaging for fine
substance detection.

B. THE PRINCIPLE OF HYPERSPECTRAL DETECTION ON
POLLUTION DEGREE
Taking the soluble salt (NaCl) and the slightly soluble salt
(CaSO4) which commonly exist in the pollution of insula-
tor surface for example, the pollution of different compo-
nents shows different reflectance characteristics. According
to IEC standard 60815-1 [21], as the non-soluble deposit
density (NSDD) in this experiment is set to a fixed
value, the four degrees from top to bottom respectively
are defined as ‘‘light’’ (denoted by the symbol ‘‘I’’; rang-
ing from 0.03 mg/cm2 to 0.06 mg/cm2) and ‘‘medium’’
(II, 0.06 mg/cm2-0.10 mg/cm2), ‘‘heavy’’ (III, 0.10 mg/cm2-
0.25 mg/cm2), ‘‘very heavy’’ (IV, >0.25 mg/cm2). As shown
in Fig. 2(a), the sample NaCl forms continuous curves at
400-1000 nm. Due to the pollution amount of different pol-
lution degrees, the reflectance at 400-980 nm shows a rule
that the reflectance decreases with the increase of pollution
degree. This is because of the particularity of NaCl that crys-
tals are formed during the natural drying process. With the
increasing ESDD, the content of NaCl on the surface of the
insulation sheet increases, and the formed crystals increase
as well, so that the surface pollution increases the absorption
of light and reduces the reflection, resulting in the decline of
overall reflectance.

The sample CaSO4 forms continuous curves at
400–1000 nm, and the four degrees from bottom to top
respectively are I, II, III, IV. This is because CaSO4 does
not form crystals during the natural drying process. As the
content of CaSO4 increases, the surface pollution reduces
the absorption of light and increases the reflection. The
reflectance at 400-980 nm shows a rule that the reflectance
increases with the increase of pollution degree. As shown
in Fig. 2(b), there are significant differences in the positions
of absorption and reflection peak when the pollution not com-
pletely covering and completely covering the base material.
When the pollution completely covering the base material
(curves corresponding to III, IV), the offset of absorption and
reflection peak is smaller.

FIGURE 2. Hyperspectral curves of different pollution with different
degrees. (a) sample NaCl. (b) sample CaSO4. (c) sample mixed
NaCl-CaSO4(the ratio of NaCl to CaSO4 is 1 to 2). (d) sample mixed
NaCl-CaSO4(1:1). (e) sample mixed NaCl-CaSO4(2:1).

When NaCl and CaSO4 were mixed and the ratio of
NaCl was 1/3 and 1/2 of samples in different content pro-
portion, the reflectance of these samples at 400-980 nm
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increases with the increase of pollution degree, showing the
same change trend as that of sample CaSO4. As shown in
Fig. 2(c) and Fig. 2(d), The four degrees from bottom to top
respectively are I, II, III, IV. This is because when the content
of NaCl is relatively low, fewer crystals are formed, and its
influence on the spectral curves is insufficient to make the
reflectance rule similar to that of sample NaCl. As shown
in Fig. 2(e), when the ratio of NaCl was 2/3, the reflectance of
these samples at 400-980 nm increases with the decrease of
pollution degree, gradually showing the same change trend
as that of sample NaCl. The above reflectance characteris-
tics can be used as the theoretical basis for the division of
pollution degrees.

III. EXPERIMENT METHOD
A. HYPERSPECTRAL TEST PLATFORM
The hyperspectral test platform is composed of the hyper-
spectral imaging system (hyper-spectrometer, computer,
etc.), the symmetrical double light sources, and a standard
white board with reflectance nearly about 100%. The system
can be used to obtain hyperspectral images of experimental
samples. In the experiment, the hyper-spectrometer (parame-
ters shown in Table I) wasmounted on a tripod with a distance
of 120 cm from lens to the sample and a downward angle
of 45◦. As shown in Fig. 3, the light sources were symmetri-
cally placed on both sides of the samples. The samples were
placed in the imaging area for hyperspectral acquisition, and
the data were transmitted to the computer via the USB line
of the hyper-spectrometer. The experiment was carried out

TABLE 1. Parameters of hyper-spectrometer.

FIGURE 3. Schematic of hyperspectral testing platform.

under the conditions of temperature 18–25◦ and humidity
30%–80%.

B. SAMPLE PREPARATION
The experimental samples were divided into three groups,
and samples were prepared according to the IEC standard
61245 [20] and IEC standard 60815-1 [21], and the silicone
rubber insulation sheet (5 cm × 5 cm) was used as base
material. Since the pollution of insulator often contains NaCl,
CaSO4 and other components, NaCl is generally 10% to 30%
and CaSO4 accounts for 20% to 60%. Although CaSO4 is a
slightly soluble substance, it has a significant effect on the
flashover voltage [22], [23]. Therefore, the first group selects
NaCl as the leaching solute; the second group selects CaSO4
as the leaching solute; the third group selects mixed NaCl and
CaSO4 as the leaching solute to prepare the mixed artificial
effluent of different solute and kaolin.

According to the solid layer method recommended in the
standard [20], samples of four pollution degrees were pre-
pared for each group. As shown in Fig. 4(a), the first group
of sample R was labelled as tag sample R1, R2, R3, R4, and
test sample R5, R6, R7, R8. Solutions of different volume
conductivity are prepared to uniformly make the mixture
adhere to the silicone rubber insulation sheet. The ESDD
corresponding to the samples with different pollution degrees
respectively were 0.04 mg/cm2, 0.08 mg/cm2, 0.15 mg/cm2

and 0.30mg/cm2, and theNSDDwas 0.10mg/cm2. As shown
in Fig. 4(b), the second group of sample T was labelled as tag
sample T1, T2, T3, T4, and test sample T5, T6, T7, T8. The
ESDD corresponding to the samples with different pollution
degrees were 0.05 mg/cm2, 0.10 mg/cm2, 0.18 mg/cm2 and
0.30 mg/cm2, and the NSDD was 0.10 mg/cm2. As shown in
Fig. 4(c), the third group of sample O, P and Q were labelled
as tag sample O (P or Q) 1-4, and test sample O (P or Q) 5-8.
Where, the ratio of NaCl to CaSO4 for O is 1:2; that for P
is 1:1, and that for Q is 2:1. The ESDD corresponding to the
samples with different pollution degrees were 0.06 mg/cm2,
0.10mg/cm2, 0.20mg/cm2, 0.35mg/cm2, and the NSDDwas
0.10 mg/cm2. Three groups of samples were naturally dried
for 24 hours.

IV. RESULTS AND ANALYSIS
A. SAMPLE SPECTRUM ACQUISITION
Images of each group of samples were collected separately in
the laboratory via the GaiaField-F-V10 hyper-spectrometer.
The pixel reflectance of samples with different pollution
degrees was extracted from the hyperspectral image of artifi-
cial pollution samples, and the wavelength was taken as the
abscissa and the reflectance was taken as the ordinate. Among
them, 10 sets of data were extracted from each tag sample of
three groups of samples as training data, and same process
for test data from test samples. Therefore, in the spectrum
acquisition of NaCl or CaSO4, there were 40 sets of training
data and 40 sets of test data, each accounting for 50%. In the
spectrum acquisition of mixed NaCl-CaSO4, there were a
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FIGURE 4. Artificial pollution samples made by solid layer method.(a)
sample NaCl. (b) sample CaSO4. (c) sample mixed NaCl-CaSO4.

total of 120 sets of training data and 120 sets of test data,
each accounting for 50%. This is because three different
proportions of sample mixed NaCl-CaSO4 were prepared.
The hyperspectral image reflectance obtained by the hyper-

spectrometer forms a continuous spectral curve in the wave-
length range of 400–1000 nm, and the samples with different
pollution degrees correspond one-to-one with the spectral
curves. The curves can be further analysed by algorithms.

B. HYPERSPECTRAL PRETREATMENT
Since the light distribution may be uneven and image noise
and dark current may exist in the band with weak light
distribution in the process of collecting hyperspectral images,

it is often necessary to preprocess the original image for
subsequent analysis of hyperspectral data.

1) BLACK-AND-WHITE CORRECTION
In order to overcome the influence of image noise and dark
current in the band with weak light distribution, when collect-
ing the sample hyperspectral image, the standard white board
was scanned at the same time to collect the white calibration
image with reflectance nearly about 100%, and then the black
calibration image with the reflectance of 0 was collected
under the lens cover. The hyperspectral data correction can
be realized by using black-and-white correction. Correction
algorithm is as follows:

Rci =
Sampleci − darkci
Whiteci − darkci

(1)

where Sampleci is original spectral image data; Darkci is
black calibrated image data; Whiteci is white calibration
image data; Rci is black-and-white corrected image data.
As shown in Fig. 5, the burr of spectral curves relatively
decreased, and the curves were smoother after black-and-
white correction.

FIGURE 5. Hyperspectral curves after black-and-white correction.

2) MULTIPLICATIVE SCATTER CORRECTION
Multiple scattering correction is a commonly used data pro-
cessing method of multiple wavelength calibration modelling
at the present, after the correction of spectral data can effec-
tively eliminate the scattering effects, and enhance the rela-
tionship between spectral data and the spectral absorption
information of component and content [24]. In this paper,
multiplicative scatter correction is used to correct the original
hyperspectral image data.

Firstly, the average spectrum of samples was calculated,
which was used as the standard spectrum. The hyperspectral
images of each group of samples and the standard spectrum
were performed with unary linear regression, and the linear
translation (regression constant) and the gradient (regression
coefficient) of each spectrum related to the standard spec-
trum were obtained. Subtract the linear translation from the
original spectrum data of each sample and then the data is
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divided by the regression coefficient to correct the relative
inclination of the baseline, so that the translation and offset of
baseline of each spectrum were corrected with the reference
of standard spectrum. The spectral absorption information
corresponding to component and content of samples did not
have any influence on the whole process of data processing,
so the signal-to-noise ratio of spectrum was improved. The
following is the specific algorithm process:

Calculation of average spectrum:

Ai,j =

n∑
i=1

Ai,j

n
(2)

Unary linear regression:

Ai = miA+ bi (3)

Multiplicative scatter correction:

Ai(MSC) =
(Ai − bi)

mi
(4)

where A is a spectral data matrix of n × p; n is the number
of selected samples; p is the number of wavelengths of spec-
trum; i is the ith sample; j is the jth band; A is the average
spectral vector obtained by averaging the original spectrum at
each band of all samples; Ai is a matrix of 1×p, representing
a single spectrum vector; mi and bi respectively are relative
migration coefficient and translation amount obtained by the
unary linear regression between Ai and Ai(MSC) is the hyper-
spectral curve after MSC correction.

As shown in Fig. 6, the dispersion of samples’ spectral
curves decreased and appeared to converge after multiplica-
tive scatter correction. It was proved to be convenient for
subsequent classification of pollution degrees.

FIGURE 6. Hyperspectral curves after multiplicative scatter correction.

C. CLASSIFICATION OF POLLUTION DEGREES BASED
ON THE ELM MODEL
ELM is a kind of machine learning algorithm based on
feed-forward neuron network. Its main characteristic is that
parameters of hidden layer nodes can be randomly or arti-
ficially given without adjustment, and the learning process

only needs to calculate the output weight. Therefore, ELM
has the advantages of high learning efficiency and strong
generalization ability [25], [26]. Samat et al. introduced ELM
for hyperspectral image classification and the results showed
that the proposed ensemble algorithms produced excellent
classification performance in different scenarios with respect
to spectral and spectral-spatial feature sets [27]. Zhou et al.
proposed two spatial-spectral composite kernel (CK) ELM
classification methods, which worked fine for hyperspectral
image classification [28]. Due to the high efficiency and
accuracy of the classification of extreme learning machine,
the ELM theory [29], [30] was adopted into the prob-
lem of insulator pollution degree classification. Considering
that this is a multi-classification problem, an ELM multi-
classification model was designed. Since the classification
speed of extreme learning machine is very fast, only the
output weight β needs to be calculated. The time complexity
is O(min(L3, N3)), where L is the number of hidden neurons
(set as 20 in this paper) and N is the number of training
samples. We use the method of randomly generating hidden
layer nodes and then obtain the solution of β in formula (5)
according to the label samples data to complete the establish-
ment of the entire neural network.

T = H • β (5)

where T is the pollution degree labels;H is the output matrix
of hidden layer of the neural network; and β is the weight of
each node of hidden layer with the output node.

In this paper, the classification objectives were four pol-
lution degrees. As the spectral curves had obvious charac-
teristics in the entire band reflectance, the reflectance values
of 256 bands were taken as the input, and the output was the
classification result of test sample data, as shown in Fig. 7.

In Fig. 7, the ordinate represents the pollution degree I,
II, III and IV, and the abscissa represents the number of test
sample data. In Fig. 7(a) and (b), the true pollution degree
of sample 1–10 are I; sample 11–20 are II; sample 21–30
are III, and sample 31–40 are IV. In Fig. 7(c), the true
pollution degree of sample 1-30 are I; sample 31-60 are II;
sample 61–90 are III, and sample 91–120 are IV. Fig. 7(a)
shows that there are errors in the classification of sample 6
and 23, so that the accuracy is 95%. Fig. 7(b) shows that
there is an error in the classification of sample 15, so that
the accuracy is 97.5%. And Fig. 7(c) shows that there are
errors in the classification of sample 99, 115 and 116, so that
the accuracy is 97.5%. Therefore, it is proved that the ELM
classification model can accurately classify substances with
different pollution degrees.

D. MODEL VERIFICATION
In this paper, insulator FQJG2-30/16-400-M was used as
an example to verify the model. Through artificial pollution
test [20], pollution was deposited on composite insulator
umbrella, as shown in Fig. 8. In Fig. 8(a), pollution on
insulator was CaSO4 and kaolin; In Fig. 8(b), pollution on
insulator was NaCl, CaSO4 and kaolin. Because the size
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FIGURE 7. The degree classification results of different pollution.
(a) sample NaCl. (b) sample CaSO4. (c) sample mixed NaCl-CaSO4.

of insulator’s umbrella was different from that of silicone
rubber insulation sheet, only cleaned the fan-shaped area of
insulator’s umbrella which had same size with silicone rubber
insulation sheet (5 cm×5 cm) with distilled water. According
to the measurement method of ESDD and NSDD introduced
in the annex C of IEC standard 60815-1 [21], the ESDD and
NSDD of the polluted insulator is measured. The absorbent
cotton immersed in distilled water is used to continuously
scrub the insulator surface, and the pollution of each area is
dissolved in the same amount of distilled water respectively.
After fully dissolved, the conductivity and temperature of

each solution are measured, and then the ESDD of each area
is obtained through formula conversion. After that, the above
pollution solution was filtered, dried and weighed, and the
NSDD was calculated. The measurement results were as
follows. In Fig. 8(a), the ESDD of insulator umbrella 1 was
0.05 mg/cm2, and the NSDD was 0.10 mg/cm2, correspond-
ing to pollution degree I. The ESDD of umbrella 2 was
0.09mg/cm2 and theNSDDwas 0.08mg/cm2, corresponding
to pollution degree II. The ESDD of insulator umbrella 3
was 0.18 mg/cm2, and the NSDD was 0.15 mg/cm2, corre-
sponding to pollution degree III. The ESDD of umbrella 4
was 0.33 mg/cm2 and the NSDD was 0.17 mg/cm2, cor-
responding to pollution degree IV. In Fig. 8(b), the ESDD
of insulator umbrella 1 was 0.05 mg/cm2, and the NSDD
was 0.09 mg/cm2, corresponding to pollution degree I. The
ESDD of umbrella 2 was 0.07 mg/cm2 and the NSDD
was 0.15 mg/cm2, corresponding to pollution degree II.
The ESDD of insulator umbrella 3 was 0.21 mg/cm2, and
the NSDD was 0.13 mg/cm2, corresponding to pollution
degree III. The ESDD of umbrella 4 was 0.35 mg/cm2 and
the NSDD was 0.18 mg/cm2, corresponding to pollution
degree IV.

FIGURE 8. Pollution distribution of artificially polluted composite
insulator. (a) insulator polluted by CaSO4. (b) insulator polluted by mixed
NaCl-CaSO4.

After pollution accumulated on the insulator, its
hyperspectral image was collected, and then black-and-white
correction and multiplicative scatter correction were applied
to get hyperspectral curves of umbrella 1–4. each group had
10 spectral curves data as the test data of the ELM classifi-
cation model established in section 4.2, classification results
as shown in Fig. 9. Among them, sample 1–10 were taken
from umbrella 1 with true pollution degree I. Sample 11–20
were taken from umbrella 2 with true pollution degree II.
Sample 21–30 were taken from umbrella 3 with true pollution
degree III. Sample 31–40 were taken from umbrella 4 with
true pollution degree IV. The classification results in Fig. 9(a)
indicated that the classification of sample 11, 12, 17, 24
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FIGURE 9. The degree classification results of artificially polluted
composite insulator. (a) insulator polluted by CaSO4. (b) insulator
polluted by mixed NaCl-CaSO4.

and 25 is wrong, with an accuracy rate of 87.5%. Fig. 9(b)
indicated that the classification of sample 13, 15, 23 and
26 is wrong, with an accuracy rate of 90%. Compared with
section 4.2, the accuracy is decreased, as shown in Fig. 8. This
is because the pollution distribution of artificially polluted
insulator was uneven. Hyperspectral data was taken from
local area, reflecting the pollution degree of local area, but
the pollution degree measured of the fan-shaped area was
the average for the area. Therefore, the pollution degree
measured might be a little different with that expressed
by hyperspectral data, resulting deviations in part of the
predicted results.

V. CONCLUSION
This paper studied the detection method of insulator pollution
degrees based on hyperspectral technique. The following
conclusions can be drawn.

Firstly, the absorption peak, the position of reflection peak,
amplitude and the change trend of the hyperspectral curve
have differences with different kinds, proportions and degrees
of pollution. Secondly, The ELM-classification model based

on the artificial pollution samples can accurately and rapidly
classify the pollution degrees of a mixture of different salts
and the surface of insulator umbrellas (the pollution dis-
tribution is uneven), which provides a technical reference
for on-line measurement of insulator pollution degrees. Fur-
thermore, in order to make hyperspectral technique better
applied to the on-the-spot detection of insulator pollution,
the identification of principal components and the classifi-
cation of pollution degrees of natural pollution based on the
hyperspectral features should be further studied.
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