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ABSTRACT In recent years, a notable development for predicting the remaining useful life (RUL) of
components is prognostics that use data-driven approaches based on deep learning. In particular, long short-
term memory networks (LSTMNs) have been successfully applied in RUL prediction. However, to the best
of our knowledge, these deep learning-based prognostics do not take into account uncertainty, and their
prediction performance needs improvement. Bayesian model averaging (BMA) is a very useful ensemble
method because it can quantify uncertainty. In this paper we propose a deep learning ensembled prediction
approach based on BMA and LSTMNs. We constructed multiple LSTMN models with different subdatasets
derived from the degradation of training data. Then, BMA was used to integrate the LSTMN submodels
into one framework for a reliable prognostic. The main advantages of this method are that it 1) provides
uncertainty management by postprocess forecast ensembles to create predictive probability density functions
(PDFs) and generate probabilistic predictions with uncertainty intervals using BMA and 2) it improves
prediction performance by ensemble multiple deep learning submodels (trained with different subdatasets)
with corresponding weights calculated by the posterior model probability of the BMA. Finally, we introduced
an online iterated training strategy for the BMA algorithm to realize higher prediction performance than that
of an offline training strategy. In the experiments, we used lithium-ion battery data sets from the Center for
Advanced Life Cycle Engineering at the University of Maryland. The results demonstrate the effectiveness
and reliability of our proposed ensemble prognostic approach.

INDEX TERMS Deep learning, LSTMN, BMA, ensemble approach, prognostic.

I. INTRODUCTION
Lithium-ion batteries are widely used in consumer electronics
and industrial systems. Remaining useful life (RUL) predic-
tions for lithium-ion batteries allow predictive maintenance
to be performed. This is very important for the reliability of
these devices, especially for some key electronic devices such
as implantable medical devices or satellites and so on.
Various methods for RUL prediction of lithium-ion
batteries have appeared in recent years. In general,
these approaches can be categorized into 1) model-based
approaches, 2) data driven approaches, and 3) hybrid
approaches based on 1) and 2). Model-based methods are
typically implemented by constructing a physical degradation
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model that describes the internal electrochemical reactions
of a lithium-ion battery. However, for lithium-ion batter-
ies, the physical degradation model is difficult to establish
as a dynamic nonlinear system, and the parameters are
inconsistent under different working conditions and work-
loads, which makes parameter identification more difficult.
The data driven method estimates RUL based on historical
data and monitoring data. Many data-driven methods have
been applied to battery RUL estimation. Zhou et al. pre-
sented an incremental optimized relevance vector machine
(RVM) algorithm to estimate the lithium-ion battery RUL [1].
Zhang et al. proposed an improved unscented particle fil-
ter (IUPF) method for lithium-ion battery RUL predic-
tion based on Markov chain Monte Carlo (MCMC) [2].
Song et al. proposed an iterative updated approach with an
iterative updated RVM fused with the Kalman filter (KF)
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algorithm to improve the long-term prediction performance
for a battery’s RUL prediction [3]. Hu et al. presented a
hybrid method to predict the remaining useful life of lithium-
ion batteries in implantable medical devices [4]. Sun et al.
developed an integrated health indicator to predict remaining
useful life of batteries [5]. Zhang et al. developed a fusion
technique consisting of relevance vector machine and particle
filter (PF) to construct an aging model of the battery for RUL
prediction [6]. Zhang et al. also developed a RUL prediction
method based on the Box-Cox transformation (BCT) and
Monte Carlo (MC) simulation for battery RUL prediction [7].
Peng et al. proposed a prognostic method fusing the wavelet
de-noising (WD) method and the hybrid Gaussian process
function regression (HGPFR) model for predicting the RUL
of the lithium-ion battery [8]. Zhang et al. proposed a RUL
prediction method based on the exponential model and the
particle filter for lithium-ion battery [9]. Zhao et al. proposed
a prediction method based on the support vector regression
for the RUL of lithium-ion batteries [10]. However, these
methods mentioned above have shallow architectures, which
have insufficient prognostic capability and suffer from curse
of dimensionality. In recent years, one notable development
in prognostics is the data-driven approach based on deep
learning. The advances of deep learning introduce new data-
driven approaches to this problem.

Deep learning has been applied successfully in a variety
of domains. Its main focus has been in image processing,
but recently research has emerged on deep learning for RUL
prediction. Ren et al. [11] proposed a deep learning-based
prediction framework for the RUL of batteries by using a
deep autoencoder and deep neural networks. Phattara et al.
used a Deep Neural Networks (DNN) approach to predict
the RUL of the lithium-ion battery [12], and proved that
the deep learning algorithm outperformed other traditional
machine learning algorithms. Zhang et al. proposed a LSTM-
RNN method for the lithium-ion battery remaining useful life
prediction [13]. Liao et al. [14] proposed a novel restricted
Boltzmann machine for predicting the RUL of systems.
Zhang et al. [15] proposed an ensemble of deep belief
networks (DBNs) for fault diagnosis and in [16] extended
this work to estimate the RUL of a mechanical system.
Babu et al. [17] built a convolutional neural network (CNN)
to predict the RUL of a system. Zheng et al. [18] studied long
short-term memory networks (LSTMNs) for RUL estimation.
Li et al. [19] proposed a data-driven approach for prognos-
tics using deep CNNs. Zhao et al. [20] used an LSTMN
to predict RUL associated with tool wear. This work was
followed by a proposed design of an integrated architecture
using a CNN and an LSTMN [21]. Although various deep
learning approaches had been proposed for RUL prediction,
the deep learning approach for the RUL prediction of lithium-
ion batteries is still limited. To the best of our knowledge
these publications on deep learning-based prognostics do
not include the study of uncertainty. Uncertainty represen-
tation, which is dominated by probability theory, provides a
mathematically rigorous approach with statistically sufficient
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assumptions [22]. Uncertainty management can provide more
reliable results with a probability confidence interval for
condition-based maintenance and is an important subject
in the reliability community. To accommodate uncertainty,
in this paper we propose a deep learning-based approach for
RUL prediction that includes uncertainty management.

Because different models have their own strengths in cap-
turing different aspects of real-world processes, combining
the results from diverse models by weighting procedures
can yield a better performance than that of any individual
model. Hybrid or fusion models have also been proposed and
widely used in lithium-ion battery RUL estimation [23]-[25].
Bayesian model averaging (BMA), a method for averaging
results from different competing models, has been used to
make ensemble predictions because it can deal with uncer-
tainty. It has been applied in diverse fields such as load
demand [26], climate [27], seasonal time series data forecast-
ing [28], energy models [29], prediction of the semiconductor
industry cycle [30], wind speed [31], rainfall prediction [32],
photovoltaic demand forecasting [33], solar output power
forecasting [34], and aerospace [35]. These studies have
demonstrated that BMA can obtain much better results than
those of any individual model. However, those BMA appli-
cations were based on shallow architecture submodels rather
than complex deep architecture submodels. Therefore, it is
worth investigating whether BMA based on deep learning-
based models can produce more accurate results than single
deep learning architecture submodels. Furthermore, most of
the above BMA algorithms were built with offline models.
As a result, the precision of their predictions was lower
than that of online algorithms [36]. In our experiments,
we used a lithium-ion battery RUL estimation application to
demonstrate our proposed approach, but this approach can
be extended to other prognostic applications. Therefore, this
study had two main goals: First, to include uncertainty man-
agement in prognostics by postprocessing forecast ensembles
to create predictive probability density functions (PDFs) and
generate probabilistic predictions with uncertainty intervals
using BMA. The second goal was to improve prediction pre-
cision by using ensembles of multiple LSTMN submodels.
We calculated the weights of these submodels by modeling
the posterior probability of BMA, using offline and online
training strategies.

The rest of this paper is organized as follows. First,
related work on LSTMNs and BMA are briefly reviewed in
Section 2. Section 3 introduces our proposed fusion of BMA
with different LSTMN submodels using offline and online
training strategies. In Section 4, experiments using lithium-
ion battery data sets are described, and the results are given.
Conclusions are in Section 5.

Il. RELATED WORK

A. LONG SHORT-TERM MEMORY NETWORKS

LSTMNs belong to the family of (deep) RNNs and are capa-
ble of addressing the RNN vanishing gradient problem [37].
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The key to LSTMN:Ss is the cell state. The cell state is analo-
gous to a conveyor belt. It runs straight down the entire chain,
with only some minor linear interactions. Information flows
very easily along it and remains unchanged. An LSTMN can
remove or add information to the cell state using structures
called gates. Gates are a way of optionally letting informa-
tion through. An LSTMN has three of these gates (forget
gate, input gate, output gate), to protect and control the cell
state. The core idea behind LSTMNSs is that these three
kinds of gates are used to control the passing of information
along sequences that can capture long-range dependencies
more accurately. When working over longer periods of time,
the gates allow the LSTMN units to read, write, and remove
information from memory. This characteristic enables the
units to hold only relevant data while ‘‘forgetting” irrelevant
information. A single localized LSTMN cell in the first layer
of a network at time step t is shown in Fig. 1.
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FIGURE 1. Schematic of an LSTMN. c; is the cell state of time ¢t, ¢;_ is the
cell state of time t — 1, h; is the output state (also known as the hidden
state) of time ¢, h;_, is the output state of time ¢ — 1, and o is the
sigmoid activation function.

In an LSTMN, at each time step ¢, the hidden state 4; is
updated by current data at the same time step x;, the hidden
state at the previous time step /;_1, the input gate i;, the input
node g;, the forget gate f;, the output gate o;, and a memory
cell ¢;. The updating equations are

fi = o (Waxi + Wahi—1 + by)

ir = 0 (Wixs + Winhi—1 + by)

g = tanh (Weexy + Wenhy -1 + by)

Cr = gt ¥ip -1 % f;

or = 0 Woxx; + Wophi—1 + bo)

h; = tanh (¢;) * o; (1)
where W and b are the layer weights and biases respectively.

Because LSTMNs are able to capture long-range depen-

dencies and nonlinear dynamics in time series data, LSTMNs
have been successfully applied in various applications,
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particularly in speech recognition [38], natural language pro-
cessing [39], image captioning [40], and RUL prediction [41].
Capacity degradation data, which can cover thousands of
charge/discharge cycles and represent the degradation evo-
lution of batteries, can be regarded as long-term time series
data. In this study, we used an LSTMN, with its ability
to access the previous context of each specific time step,
to learn the long-term dependency of the degradation data
of capacities. We then used the trained LSTMN model as a
potential submodel for BMA to predict the RUL of lithium-
ion batteries.

B. BAYESIAN MODEL AVERAGING

BMA is a statistical way of postprocessing forecast ensem-
bles to create predictive PDFs for various applications,
as mentioned above. Suppose a linear model structure,
the parameter y denotes the dependent variable, X, is the
explanatory variables, «;, is a constant, 8, is the coefficients,
¢ is a normal IID error term with variance o2

y=a, + X3 +e &~N(©, o) 2)

The parameter X denote a matrix that includes many potential
explanatory variables, then, a problem arises: Which vari-
ables X, € {X} should be included in the model? And how
important are they? The direct approach to do inference on
a single linear model that includes all variables is ineffi-
cient or even infeasible with a limited number of observa-
tions. BMA tackles the problem by estimating models for all
possible combinations of {X} and constructing a weighted
average over all of them. If X contains K potential variables,
this means estimating 2!K} variable combinations and thus
2{K} models. The model weights for this averaging stem from
the posterior model probabilities that arise from the Bayes’
theorem,

pyIM;, Xop(M))

pOIX)
pOIM;., X)p(M).)

T2 pIM,, X)p(My)

where p(y | X) is the integrated likelihood, which is con-
stant over all models and is thus simply a multiplicative
term. Therefore, the posterior model probability p(M;, | y, X)
is proportional to the marginal likelihood of the model
p(y | My, X) (the probability of the data given the model M)
times a prior model probability p(M;,); that is, how probable
the researcher thinks model M, is before looking at the data.
Renormalization then leads to the posterior model probabil-
ity (PMP), and thus the model weighted posterior distribution
for any statistic (e.g., the coefficients):

p(Myly, X) =

3

2k
p@ly.X) = ZP(9|MA»)77 XpM —AX.y)  (4)
r=1

The model prior p(M;) must be elicited by the researcher
and should reflect prior beliefs. A popular choice is to set
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a uniform prior probability for each model p(M;) o 1 to
represent the lack of prior knowledge.

In our proposed model, the parameter y represents the true
RUL value, i.e. the label, and X represents the matrix of RUL
prediction results for all LSTMN models.

The LSTMN submodels’ weights can be calculated by
the posterior model probabilities that arise from the Bayes’
theorem in Equation (3). For example, with a small number
of variables, it is straightforward to enumerate all potential
variable combinations to obtain posterior results. For a larger
number of covariates, this becomes more time intensive:
enumerating all models for 25 covariates takes about 3 hours
on a modern PC, and doing a bit more already becomes
infeasible: With 50 covariates for instance, there are more
than a quadrillion (10') potential models to consider. In such
a case, Markov Chain Monte Carlo (MCMC) samplers gather
results on the most important part of the posterior model
distribution and thus approximate it as closely as possible.
BMA mostly relies on the Metropolis-Hastings algorithm,
which ‘walks’ through the model space as follows:

At step i, the sampler stands at a certain ‘current’ model
M; with PMP p(Mj|y,X). In step i + 1 a candidate model M;
is proposed. The sampler switches from the current model to
model M; with probability p; ; :

pij = min(L, p(M;ly, X)/p(M;ly. X) &)

In case model M,; is rejected, the sampler moves to the next
step and proposes a new model My against M;. In case
model M; is accepted, it becomes the current model and has
to survive against further candidate models in the next step.
In this manner, the number of times each model is kept will
converge to the distribution of posterior model probabilities
p(M; [y ).

After getting the submodels’ posterior model probabili-
ties, we can get a list keeping all the submodels sorted by
their PMP. In our work, X includes 4 potential variables
(LSTMN1 to LSTMN4), so there are a total of 2* variable
combinations (i.e. submodels). The criteria for determining
the N of most effective submodels are based on their PMP,
some submodels will be removed if their PMP is very small,
such as below 0.01, and the rest N submodels will be selected
as the best models. Then we chose N of the most effec-
tive submodels and constructed the final ensemble models.
Suppose each submodel estimation result were f;, (n is
in 1 — N). Then, we used the PMP to divide the sum of
those results as the new submodel posterior probability. Next,
the new postprobability was named w, (n is in 1 — N): the
weight of the submodel. Fig. 2 shows the BMA algorithm
constructing LSTMN submodels with different dataset dia-
grams.

Finally, the ensemble result fF is given using

N
fr=>_ onfy (6)

n=1

More details about the BMA method can be found in [42].
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FIGURE 2. BMA algorithm constructing different LSTMN submodels.

lIl. BMA-LSTMN PREDICTION METHODS FRAMEWORK
This section is organized as follows. First, we describe the
overall framework of the proposed approach. Next, we intro-
duce the LSTMN model construction for predicting the RUL
of lithium-ion batteries. Then, we present how to ensemble
the LSTMN model with offline BMA. Finally, an online
BMA method is discussed and compared with the offline
algorithm.

A. OVERALL FRAMEWORK

Fig. 2 is an overall framework diagram of our proposed
approach. It is known that BMA must select submodels
before ensembling the final results. Here, m LSTMN models
were chosen to construct the top n best submodels of the
BMA. First, m LSTMN models were obtained by m different
subdatasets derived from the battery training dataset, and the
value of m was a hyperparameter selected based on trial-
and-error. Then those m LSTMN models were used as the
potential variables of the input vector of the BMA. The BMA
was able to estimate the top n best submodels for all possible
combinations of the m variables included in the input vector
and construct a weighted average of all of them. Details on
how to get the top n best submodels and their corresponding
weights are in Section II.

The procedure of the proposed prognostics approach is as
follows:

Step 1: Obtain m different subdatasets from the lithium-ion
battery capacity degradation training dataset, and normalize
the subdatasets to [0, 1].

Step 2: Do the training with the m different subdatasets and
get m different LSTMN models.

Step 3: Use the m LSTMN models as the m potential
variables of the BMA. To obtain the top n best submodels and
the corresponding weights w, use the BMA algorithm with the
training dataset for the battery for which the RUL needs to be
predicted.

Step 4. Calculate the ensemble RUL results for the lithium-
ion battery as in (4).

B. LSTMN MODEL CONSTRUCTION

The core components of an LSTMN model are a sequence
input layer and an LSTM layer. A sequence input layer inputs
sequence or time series data into the network. An LSTM
layer learns long-term dependencies between the time steps
of the sequence data. The architecture of an LSTMN model
for training is shown in Fig. 3.
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Sequence Input Layer

LSTM Layer
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FIGURE 3. Architecture of an LSTMN for training.

The network started with a sequence input layer followed
by an LSTM layer. The network ended with a fully connected
layer and a regression output layer. Since the deep archi-
tecture is more efficient in representation learning, stacking
the LSTM layer and the fully connected layer makes sense,
but our lithium-ion battery dataset is single-dimensional and
the number of samples is limited, and the deep network is
prone to overfitting, which will weaken the generalization
capabilities of the model. In fact, we tried to build a network
with two layers of LSTM in the experiment, which proved
that the effect is not as good as that of a network with
only one LSTM layer. Therefore, our deep neural network
is simple, requiring only one LSTM layer and two fully
connected layers, followed by two dropout layers and the
final regression output layer. Dropout was introduced during
model training [43]. Via the dropout, parts of the hidden
outputs were randomly masked so that those neurons would
not influence forward propagation during training. During the
testing phases, the dropout was turned off, and the outputs
of all hidden neurons affected model testing. In our models,
the design of dropout layer is similar to that described in [44].
Standard dropout perturbs the recurrent connections, which
makes it difficult for the LSTM to learn to store information
for long periods of time. By not using dropout on the recurrent
connections, the LSTM can benefit from dropout regulariza-
tion without sacrificing its valuable memorization ability. So,
we only dropout on the output of the layer as shown in Fig. 3,
we adopted one dropout layer between the LSTMN layer
and the first fully connected layer, and another dropout layer
between the first fully connected layer and the second fully
connected layer. Their masking probabilities were both set
to 0.5, as shown in

pred = relu(dropout(Woyushy + boyt), 1)) @)

where W,,,; and b,,,; are the weights and biases of the output.
In our tasks, the output value pred was the battery capacity.
We choose relu rather than sigmoid as the activation function
in accordance with the literature [42]. For model training,
we compared the predicted battery capacity value with the
true battery capacity value y to obtain the mean squared error
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as model loss:

1 n
MSE = — > i — pred;)* ®)

i=1

where 7 is the training sample size. We trained the LSTMN
with full back propagation through time under the stochastic
gradient descent method, as in [45].

C. OFFLINE BMA

In ensemble learning based on BMA, first different datasets
are chosen to construct different LSTMN submodels, and
then all these LSTMN submodels are combined using BMA.
After the LSTMN submodels are constructed, the postprob-
ability of those submodels in the BMA frame should be
computed. In addition, to provide more accurate comprehen-
sive model results, the BMA can also provide a qualitative
evaluation of the model structure uncertainty. Using the BMA
method to combine different LSTMN models can obtain the
probability distribution of the prediction results sequence.
Among them, the mean value of the distribution can be used
as a multiple model integrated result, where the variance and
confidence interval of the distribution reflect the uncertainty
caused by the LSTMN model structure. The variance of the
BMA analog variable posterior probability distribution can
be expressed as

k k k
Var(yID) = ) ox(fi = D o> + ) wxof  (9)
k=1 k=1 k=1

where af is the analog variable variance under the condition
of given observation data D and the model f;. The BMA
analog variable variance Var includes the between-model

error and the within-model error. In Eq. (7), Ef: 19k (fie —

E,{{:lwkfk)z is the between-model error, and Zlea)kakz is

the within-model error. Compared with the deterministic mul-
timodel combination method, the uncertainty can be better
described by the BMA analog variable variance.

The Monte Carlo method was used to generate BMA
probabilistic predictions with uncertainty intervals at every
moment. Details can be found in [46]. Each step was sampled
20,000 times to generate the BMA probabilistic ensemble
predictions in this study, and then the predictions were sorted
in ascending order.

The 90% uncertainty intervals were then derived within
the range of 5% and 95% quantiles. We used two indicators
(coverage and interval width) to characterize the optimality
of the BMA confidence interval. “Coverage” refers to the
ratio of the confidence interval coverage to the measured true
data; the greater the coverage value, the more accurate is
the confidence interval result. Interval width is also one of
the commonly used evaluation indicators of confidence inter-
val: for a certain confidence level, the interval width should
be as narrow as possible assuming that high coverage is
guaranteed.
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D. ONLINE ITERATED BMA

For the dynamic variable situation during a load condition,
the degradation process of a lithium-ion battery RUL trends
toward degradation, but there are obvious local energy regen-
erations. Currently, most lithium-ion battery RUL prediction
algorithms are offline approaches. However, offline modeling
uses only the currently known samples in the learning process
to estimate the model, and then uses the trained offline model
for the consequent new samples to make a multistep predic-
tion; no more modifications are made to the offline model in
the process. Thus, directly outputting estimation results with
an offline model results in lower precision and does not trace
the system variation trend. Therefore, we used some online
learning methods to build an effective model.

Basing our work on the offline BMA method, and using
the concepts in [36], we used an online iterated BMA
approach. When a new measurement sample was obtained,
the training set was reconstructed, and m LSTMN models
were rebuilt with the new dataset. Then we estimated the
lithium-ion battery RUL using the new dynamic BMA algo-
rithm ensembled with the m new LSTMN models. The
procedure is described after these definitions:

DSy, DS, ..., DSy are the original sample sets for the
m LSTMN models; NDS is the new increased dataset;
WS1, WSa, ..., WSy are the working datasets of the m
LSTMN models.

Online BMA algorithm flow:

Step 1: Choose the original training datasets DS,
WS, = DS,,...,WSym, = DS, and construct m dif-
ferent LSTMN models with the working datasets WS,
WSa, ..., WSn as initial offline BMA model parameters.

Step 2: Use the BMA model ensembled with the m LSTMN
submodels to estimate the RUL result.

Step 3: When the new sample NDS is obtained, let WS; =
WS1+NDS, WSy = WS, +NDS, ..., WSy = WSyn+NDS.
Then reconstruct the m new LSTMN models with the updated
WS, WS, ..., WSn.

Step 4: Update the new dynamical BMA model ensembled
with the m new LSTMN models.

Step 5: Repeat steps 2 to 4 until the end of prediction.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. EXPERIMENT DATA SETS

The experiment data sets were lithium-ion battery data sets
derived from the Center for Advanced Life Cycle Engineer-
ing (CALCE) at the University of Maryland [47]. In this
experiment, the batteries were tested to find their capacity
degradation. The test was done using the Arbin BT2000
battery testing system (Arbin Instruments, USA) at room
temperature. We used experiment datasets with 1.1-Ah rated
capacity. Figure 4 shows the capacity degradation curves
of No. 35, No. 36, No. 37, and No. 38 lithium-ion bat-
teries. In this experiment, the capacity was selected as the
health indicator of the degradation of the lithium-ion battery.
When the lithium-ion battery reached its end of life (EOL),
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FIGURE 4. Capacity degradation curves of No. 35, No. 36, No. 37 and
No. 38 batteries.

the charging capacity reached approximately 70% of the rated
capacity. The experiment was then stopped.

B. EXPERIMENT SETTINGS AND EVALUATION CRITERION
For computing hardware, we used two cores of an Intel Xeon
CPU at 3.00 GHz and an NVIDIA Quadro M2200 GPU.
Because the LSTMN models were built using MATLAB,
we did experiments using MATLAB 9.4 release 2018a mixed
with R version 3.1.2, but for the BMA model, we used an
R package. The data in our experiments is battery capacity,
they are time series data with no missing values and outliers.
Therefore, the only thing we need to do for data preprocessing
is normalization. The data is normalized to [0, 1]. For training
an LSTMN, the batch size was set to 50 for the stochastic
gradient dissent method using a learning rate of 0.1 and a
momentum of 0.9. The stopping criterion was that the mean
squared error given by Eq. (6) be below 0.0001, or the number
of iterations reached the maximum value. Our LSTMN model
has seven layers, the first layer is the sequence input layer,
the input size is 1, the second layer is the LSTM layer,
there are 39 hidden neurons, the third layer is the dropout
layer, and the dropout probability is 0.5, the fourth layer is a
fully connected layer with a layer size of 20, the fifth layer
is another dropout layer with a dropout probability of 0.5,
the sixth layer is also a fully connected layer with an output
size of 1, and the last layer is a regression layer with a layer
size of 1 to calculate the MSE loss. The common parameters
of each LSTMN model used are shown in Table 1. Note that
these parameters were selected based on trial-and-error.

The battery capacity degradation data can be seen as a time
series with one feature (input size = 1). A flow of length 39
(time step = 39) time series was passed once through the
LSTM layer. This means that a time series sample consisting
of {x;, xi+1, - - - , Xi+39} was used as the sequence input layer
of the LSTMN, and the output x; 149 of the LSTMN was the
prediction value of the capacity in the next moment of the
time series, where x; is the actual battery capacity value of
the ith cycle.

We did a series of experiments with several battery
data sets. Here, only the RUL estimation results of the
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TABLE 1. Parameters used in each LSTMN model.

Parameters Settings
Input size 1

Time steps 39
Batch size 50
Dropout 0.5

The first fully connected layer size 20

The second fully connected layer size 1
Regression layer size 1
Learning rate 0.1
Momentum 0.9

TABLE 2. Teaining data sets in each LSTMN model and BMA-LSTMN.

model training data set

LSTMN model 1
LSTMN model 2
LSTMN model 3
LSTMN model 4

battery No. 35 and No. 36
battery No. 35 and No. 38
battery No. 36 and No. 38

battery No. 35, No. 36 and No. 38

the prediction results by LSTMN model 1 to

BMA-LSTMN LSTMN model 4 on battery No. 37

No. 37 battery is provided to briefly explain the experi-
mental process. The No. 35, No. 36, and No. 38 battery
datasets were used as training datasets. We chose four dif-
ferent subdatasets as the training samples for four LSTMN
models by reconstructing the No. 35, No. 36 and No. 38 bat-
tery datasets. Taking the LSTMN model 1 as an example,
the training sample was a combination of the No. 35 battery
and No. 36 battery datasets. The combination method was
simply to link those two datasets head-to-tail. The training
sample of LSTMN model 2 was the combination of the
No. 35 battery and No. 38 battery datasets. The training sam-
ple of LSTMN model 3 was a combination of the No. 36 bat-
tery and No. 38 battery datasets. The training sample of
LSTMN model 4 was the combination of the No. 35, No. 36,
and No. 38 battery datasets. The training data set of BMA-
LSTMN is the prediction results from LSTMN model 1
to LSTMN model 4 on battery No. 37. The differences of
the training data sets between the LSTMN models and the
BMA-LSTMN are shown in Table 2.

The training errors of the four LSTMN models are shown
in Fig. 5.

After the LSTMN models were trained, we could predict
the RUL of the No. 37 battery using each LSTMN model indi-
vidually. There were a total of 800 charge/discharge cycles in
the No. 37 battery datasets. If the forecast starting point (SP)
were set to 700, the prediction process would be

{x662, X663, - - » X699, X700} —> X701
{X663, X664> - -+ » X700, X701} — X702
{x664, X665, - - -, X701, X702} —> X703 (10)
{*761, X762, - -+ , X798, X799} — X800
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FIGURE 5. Four LSTMN model training processes of No. 35, No. 36,
No. 37 and No. 38 batteries. (a) Model1. (b) Model2. (c) Model3.
(d) Modela.
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while the evaluation criterion of RUL prediction is the RUL
predicted error, which is used to measure the performance of
the proposed method as follows:

RUL,or: RUL predicted errors:

RULeryor = |RULpred — RULuyue (1)

where RULp,eq is the predicted RUL value using the predic-
tion method. To get RULp.q, we need to get the ending point
of prediction (EOP) and the SP of prediction. The EOP is
the intersection point of two lines (the failure threshold line
and the predicted curve); then, RULy,,q = EOP — SP. The
actual RUL value is RULyyye. Similar to getting the RULpyeq,
to get the RULy,, we need to get the EOL and the SP. The
EOL is at the intersection of two lines (the failure threshold
line and the true battery capacity degradation curve), then
RUL;, = EOL — SP. The RUL computing process is shown
in Fig. 6.

C. RUL ESTIMATION BY COMPARING BMA-LSTMN

WITH THE SINGLE LSTMIN MODELS

1) EXPERIMENT METHOD

Here, the RUL estimation results of the No. 37 battery is
provided to briefly explain the results of our experiments

VOLUME 7, 2019



Y. Liu et al.: Deep Learning Prognostics for Lithium-lon Battery Based on Ensembled LSTMNs

IEEE Access

24 RUL computing process

L~
T

< RULtrue >

-
L=}
T

RULpred

-
o
T

<
€

L.
>

=y
~
T

RUlerror

Capacity/Ahr

- -
(%] (=2}
T T

-
.
T

Failure threshold

13f ~
predicijon curve
~

s
L 1 L

1 .2 L L 1 L L
0 100 200 300 400 500 600 700 800
cycle

FIGURE 6. RUL computing process.

based on our proposed BMA-LSTMN approach and the
single LSTMN models with different datasets. Eight hundred
data samples were divided into two data sets: training data
samples and testing data samples. The length of the two data
sets varied according to the different forecasting SPs. For
example, a forecasting SP of 200 denotes that the first 1 to
200 data samples were training data samples, and the remain-
ing 600 data samples were used as testing data samples. In this
section, we use an SP of 290 as the first forecasting starting
point of the BMA-LSTMN.

As mentioned above, four LSTMN models were trained by
four different datasets, and are used here as the input variables
for the BMA model. After the BMA model was trained by
the No. 37 battery training data sample, a few of the “best”
submodels could be gotten. Then the sum of the PMP of
these submodels was calculated, and each submodel PMP
was divided by the sum to get the weight of the submodel.
Finally, the ensemble result was obtained by (4).

2) PREDICTION VALUES OF BMA-LSTMN COMPARED WITH
THOSE OF THE SINGLE LSTMN MODELS

The BMA-LSTMN RUL prediction results for the lithium-
ion No. 37 battery compared with those of the single LSTMN
models at SP = 300, SP = 400, and SP = 500 are shown
in Figs. 7, 8, and 9 and Table 3. In Fig. 7, for example, there
are five battery capacity degradation curves as compared
with the ground truth predicted by LSTMNI, LSTMN?2,
LSTMN3, LSTMN4, and our proposed BMA-LSTMN
model at SP = 300. Clearly, the curve predicted by BMA—
LSTMN fits better with the real curve, and the real curve
falls in the confidence interval between the upper and lower
limit curves, as shown in Figs. 8 and 9. In Table 3, SP is the
starting point, RULyeq is the RUL prediction value, CI is the
confidence interval, and RUL,,, is the evaluation criterion
mentioned previously. Comparing the BMA-LSTMN esti-
mation results with those of the single LSTMN models shows
that the fusion estimation values by BMA-LSTMN are much
more accurate than those of any of the single LSTMN models.
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FIGURE 7. BMA-LSTMN RUL prediction results of lithium-ion No. 37
battery compared with those of the single LSTMN models at SP = 300.

The above comparison of prediction accuracy was made
only at the 300th, 400th, and 500th cycles. To illustrate the
improvement of prediction accuracy over the entire life of the
battery, we did a comparison of prediction accuracy in terms
of @ — A metrics [22], which are defined as

[—al -y <y'@) <[l +al-yl@)  (12)

where y/ is the predicted RUL at the /th time instant, y; is the
ground truth RUL, and « is the accuracy modifier [22].

Fig. 10 shows the « — A metrics with « = 0.3 for the
prognostic results, and that the predicted RULs are inside the
accuracy zone. Compared with the single LSTMN models,
the proposed BMA-LSTMN method can obtain much more
accurate RUL results. Note that the first SPs of the four
LSTMN models were at the 90th cycle, whereas the first
SP of the BMA-LSTMN was at the 290th cycle. This is
because the BMA model needed to be trained by the four
LSTMN submodels’ prediction results before being used for
final prediction. Here, we set the first training length of the
BMA at 200, so the first SP of the BMA-LSTMN can be
calculated as 90 + 200 = 290.

D. RUL ESTIMATION BASED ON ONLINE BMA
COMPARED WITH OFFLINE BMA

Offline BMA methods had prediction performance better
than other methods mentioned above. However, Table 3
shows that the prediction precision of offline BMA was not
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FIGURE 8. RUL computing process BMA-LSTMN RUL prediction results of
lithium-ion No. 37 battery compared with those of the single LSTMN
models at SP = 400.

so high. This was due to the offline modeling, which used
the currently available sample to train the model only once,
then used the offline model to predict the multistep for the
consequent samples without modifications. Therefore, this
section compares the results of the online learning approach
with those of the offline model.

The final ensemble online BMA RUL prediction results
compared with the offline BMA for the lithium-ion
No. 37 battery at SP = 300, SP = 400, and SP = 500 are
shown in Figs. 11-13 and Table 4. To illustrate the improve-
ment of prediction accuracy over the entire life of the battery,
a comparison of prediction accuracy done in terms of ¢ — A
metrics is shown in Fig. 14. The experiment results show
that the online BMA approach can achieve higher precision.
The interval widths of 90% CI at three SPs are all narrower
than those achieved by offline BMA. This is due to the new
samples and the iterated online model training with these
new samples. However, it cannot be ignored that the online
algorithm is more time consuming because of the iterated
online model training in each loop, especially when the model
is as complex as our proposed BMA-LSTMN.

E. UNCERTAINTY ANALYSIS OF BMA-LSTMN

Tables 3 and 4 show the 90% ClIs of the offline and online
BMA-LSTMNs respectively. We can calculate that all the
true values at three different SPs are included in their corre-
sponding 90% CI. For example, in Table 3, the true RUL value
forecast for an SP of 300 was 447 cycles. The EOL of the
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FIGURE 9. BMA-LSTMN RUL prediction results of lithium-ion No. 37
battery compared with those of the single LSTMN models at SP = 500.
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FIGURE 10. BMA-LSTMN RUL prediction accuracy compared with that of
the single LSTMN RULSs in terms of « — 1 metrics.

No. 37 battery was the 747th cycle, so the true RUL value at
an SP of 300 could be calculated as 747 — 300 = 447. This fell
within its prediction confidence interval, which was 401,523,
and the RUL true value of 347 cycles at an SP of 400 fell
within its prediction confidence interval of 302,366. The RUL
true value of 247 cycles at an SP of 500 also fell within its
prediction confidence interval of 238,280, the same as the
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TABLE 3. Quantitative results comparison.

Quantitative results®

Algorithm SP  RULy. 90%Cl  RUL.y,
LSTMNI 387 - 60
LSTMN2 358 - 89
LSTMN3 300 335 - 112
LSTMN4 373 - 74
BMA-LSTMN 462  (401,523) 15
LSTMNI1 333 - 14
LSTMN2 264 - 83
LSTMN3 400 243 -~ 104
LSTMN4 288 - 59
BMA-LSTMN 334 (302,366) 13
LSTMNI 280 - 33
LSTMN2 200 - 47
LSTMN3 500 151 - 96
LSTMN4 216 - 31
BMA-LSTMN 259  (238,280) 12

*Quantitative results for lithium-ion No. 37 battery (at different
forecasting starting points) based on BMA-LSTMN and single LSTMN
algorithms

offline BMA-LSTM RUL
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: R
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FIGURE 11. Offline BMA-LSTMN RUL prediction result for a lithium-ion
No. 37 battery compared with online BMA-LSTMN models at SP=300.

result in Table 4. From the 90% CI of battery capacity pre-
diction values in Figs. 11 to 13 at three different SPs, we can
also see that the coverage of the 90% confidence interval is
very high—almost 100% coverage—and the interval width
was reduced when the SP became larger in both offline and
online BMA-LSTMN methods. However, compared with the
offline BMA-LSTMN approach, the interval width of the
online BMA-LSTMN method was obviously narrower under
the condition of a certain confidence level at the same SP. This
was due to the new samples and the iterated online model
training with those new samples.

VOLUME 7, 2019

offline BEMA-LSTM RUL

capacity
o
wm

o 100 200 300 400 500 &00 700 800
cycles
online BMA-LSTM RUL

capacity
o
w

] 100 200 300 400 500 600 700 800
cycles

FIGURE 12. Offline BMA-LSTMN RUL prediction result for a lithium-ion
No. 37 battery compared with online BMA-LSTMN models at SP=400.
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FIGURE 13. Offline BMA-LSTMN RUL prediction result for a lithium-ion
No. 37 battery compared with online BMA-LSTMN models at SP=500.

TABLE 4. Quantitative results comparison.

Quantitative results

Algorithm

SP RUL,ed 90% CI RUL 10y
Offline BMA-LSTMN 462 (401,523) 15
Online BMA-LSTMN 30 433 (411,455) 14
Offline BMA-LSTMN .y 334 (302,366) 13
Online BMA-LSTMN o 337 (322,352) 10
Offline BMA-LSTMN 259 (238,280) 12
Online BMA-LSTMN 20 238 (223,253) 9

Figs. 15 to 17 show the probability density function dis-
tribution of the estimated battery capacity when reaching the
failure threshold (0.3) at SP = 300, SP = 400, and SP = 500.
The estimated values clearly are concentrated around the
failure threshold.

The best n submodels included in BMA at the above three
SPs are also charted in Figs. 18 to 20. In those figures, the blue
areas correspond to a positive coefficient, red to a negative
coefficient, and white to noninclusion (a zero coefficient).
The x-axis shows the best models, scaled by their PMPs.
In Fig. 18 for example, two best submodels are included in the
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FIGURE 14. Offline BMA-LSTMN RUL prediction result of a lithium-ion
No. 37 battery compared with online BMA-LSTMN models in terms of
o — X metrics.
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FIGURE 15. Probability density function distribution of the estimated
battery capacity when reaching the failure threshold (0.3) at SP = 300.
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FIGURE 16. Probability density function distribution of the estimated
battery capacity when reaching the failure threshold (0.3) at SP = 400.

BMA. The first best submodel includes all four LSTMN mod-
els with three positive coefficients for LSTMNI1, LSTMN3,
LSTMN4, and a negative coefficient for LSTMN?2.
In the second-best submodel, LSTMN3 is not included.
Clearly, the weights of these two best submodels are very
different; one is 0.94, and another is 1 — 0.94 = 0.06.
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FIGURE 17. Probability density function distribution of the estimated
battery capacity when reaching the failure threshold (0.3) at SP = 500.
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FIGURE 18. Best n models included in BMA at SP = 300.
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FIGURE 19. Best n models included in BMA at SP = 400.

F. RESULTS COMPARED WITH EXISTING WORKS UNDER
THE SAME CONDITIONS

For a valid comparison, we compared the method proposed in
[48], [49] using the same experimental data set (No. 37 bat-
tery datasets in CALCE) with the BMA-LSTMN method
in our study. To simplify the representation, the methods
in [48] and [49] were defined as M2 and M3 respectively.
The method we named BMA-LSTMN used for comparison
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FIGURE 20. Best n models included in BMA at SP = 500.

here was the offline BMA-LSTMN. The evaluation criteria
adopted by different documents are different; however, for
convenience we used the RUL,., defined in Eq. (9) as
the evaluation metric for comparison between M2 and our
method, and used relative accuracy (RA) defined in Eq. (11)
according to [49] as the evaluation metric for comparison
between M3 and our method.

|RULtrue - RULpred |
RULyye

RA is the measure of the normalized error values between
predicted and true RUL. The experimental comparison results
of M2 and BMA-LSTMN are shown in Table 5, and results
of M3 and BMA-LSTMN are shown in Table 6.

RA=1-

(13)

TABLE 5. Quantitative results comparison.

Quantitative results

Algorithm SP RUL,eq 90% CI RUL,,,,,
M2 60 x5 27% 5 - 55 x5
BMA-LSTMN 300 462 (401,523) 15
M2 80 x5 37 x5 - 25 x5
BMA-LSTMN 400 334 (302,366) 13
M2 100x5 45x%5 - 3x5
BMA-LSTMN 500 259 (238,280) 12
TABLE 6. Quantitative results comparison.
Quantitative results
Algorithm SP RA
M3 120 0.929
BMA-LSTMN 120 0.966
M3 240 0.951
BMA-LSTMN 240 0.962
M3 360 0.820
BMA-LSTMN 360 0.923

Note that a subtraction preprocessing was done on the data
in the algorithm of M2, and one new sample was sampled
at intervals of 5 points in the original data sample, so the
preprocessed data had to be multiplied by 5 to express the real
data in Table 5. One can see that the proposed BMA-LSTMN
algorithm outperformed the algorithm of M2 and M3.
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V. CONCLUSION

In this paper, we propose a deep learning approach with
uncertainty management for RUL estimation of lithium-ion
batteries. The proposed BMA-LSTMN method ensembled
several LSTMN submodels trained by different subdatasets
to increase estimation accuracy and provide uncertainty rep-
resentation results by BMA. The experiments were done
on CALCE datasets from the University of Maryland. The
results show that the proposed BMA-LSTMN method can
provide better RUL estimates than those of the separate
individual LSTMN model. It also achieved better results
compared with existing methods under the same experiment
conditions using the same datasets. Furthermore, the pro-
posed BMA-LSTMN method is capable of uncertainty man-
agement. Compared with offline BMA, online BMA had
greater RUL prediction precision and less uncertainty for the
predicted RUL. In future work, we will ensemble more deep
learning approaches to improve prediction performance.

REFERENCES

[1] D. Liu, J. Zhou, D. Pan, Y. Peng, and X. Peng, ‘“Lithium-ion bat-
tery remaining useful life estimation with an optimized relevance vector
machine algorithm with incremental learning,” Measurement, vol. 63,
pp. 143-151, Mar. 2015.

X. Zhang, Q. Miao, and Z. Liu, “Remaining useful life prediction of

lithium-ion battery using an improved UPF method based on MCMC,”
Microelectron. Rel., vol. 75, pp. 288-295, Aug. 2017.
[3] Y. Song, D. Liu, Y. Hou, J. Yu, and Y. Peng, ““Satellite lithium-ion battery
remaining useful life estimation with an iterative updated RVM fused with
the KF algorithm,” Chin. J. Aeronaut., vol. 31, no. 1, pp. 31-40, Jan. 2018.

[4] C.Hu, H. Ye, G. Jain, and C. Schmidt, “Remaining useful life assessment
of lithium-ion batteries in implantable medical devices,” J. Power Sources,
vol. 375, pp. 118-130, Jan. 2018.

[5] Y. Sun, X. Hao, M. Pecht, and Y. Zhou, ‘“‘Remaining useful life prediction

for lithium-ion batteries based on an integrated health indicator,” Micro-

electron. Rel., vols. 88-90, pp. 1189-1194, Sep. 2018.

Y. Zhang, R. Xiong, H. He, and M. Pecht, “Validation and verification

of a hybrid method for remaining useful life prediction of lithium-ion

batteries,” J. Cleaner Prod., vol. 212, pp. 240-249, Mar. 2019.

Y. Zhang, R. Xiong, H. He, and M. G. Pecht, “‘Lithium-ion battery remain-

ing useful life prediction with Box—Cox transformation and Monte Carlo

simulation,” IEEE Trans. Ind. Electron., vol. 66, no. 2, pp. 1585-1597,

Feb. 2019.

[8] P.Yu,Y.Hou, Y. Song, J. Pang, and D. Liu, “Lithium-ion battery prognos-

tics with hybrid Gaussian process function regression,” Energies, vol. 11,

no. 6, p. 1420, 2018.

L. Zhang, Z. Mu, and C. Sun, “Remaining useful life prediction for

lithium-ion batteries based on exponential model and particle filter,” IEEE

Access, vol. 6, pp. 17729-17740, 2018.

[10] Q.Zhao, X. Qin, H. Zhao, and W. Feng, ““A novel prediction method based
on the support vector regression for the remaining useful life of lithium-ion
batteries,” Microelectron. Reliab., vol. 85, pp. 99-108, Jun. 2018.

[11] L. Ren, L. Zhao, S. Hong, S. Zhao, H. Wang, and L. Zhang, “Remaining
useful life prediction for lithium-ion battery: A deep learning approach,”
IEEE Access, vol. 6, pp. 50587-50598, 2018.

[12] P. Khumprom and N. Yodo, “A data-driven predictive prognostic model
for lithium-ion batteries based on a deep learning algorithm,” Energies,
vol. 12, no. 4, p. 660, Jan. 2019.

[13] Y. Zhang, R. Xiong, H. He, and Z. Liu, “A LSTM-RNN method for the
lithuim-ion battery remaining useful life prediction,” in Proc. Prognostics
Syst. Health Manage. Conf. (PHM-Harbin), Jul. 2017, pp. 1059-1062.

[14] L. Liao, W. Jin, and R. Pavel, ‘“Enhanced restricted boltzmann machine
with prognosability regularization for prognostics and health assessment,”
IEEE Trans. Ind. Electron., vol. 63, no. 11, pp. 7076-7083, Nov. 2016.

[15] C. Zhang, J. H. Sun, and K. C. Tan, “Deep belief networks ensemble
with multi-objective optimization for failure diagnosis,” in Proc. IEEE Int.
Conf. Syst., Man, Cybern., Oct. 2016, pp. 32-37.

2

—

[6

—

[7

—

9

—

155141



IEEE Access

Y. Liu et al.: Deep Learning Prognostics for Lithium-lon Battery Based on Ensembled LSTMNs

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

C. Zhang, P. Lim, A. K. Qin, and K. C. Tan, “Multiobjective deep belief
networks ensemble for remaining useful life estimation in prognostics,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 10, pp. 2306-2318,
Oct. 2017.

G. S. Babu, P. Zhao, and X.-L. Li, “Deep convolutional neural network
based regression approach for estimation of remaining useful life,” in
Proc. Int. Conf. Database Syst. Adv. Appl., Dallas, TX, USA, vol. 9642,
Apr. 2016, pp. 214-228.

S. Zheng, K. Ristovski, A. Farahat, and C. Gupta, “Long short-term
memory network for remaining useful life estimation,” in Proc. IEEE Int.
Conf. Prognostics Health Manage. (ICPHM), Jun. 2017, pp. 88-95.

X. Li, Q. Ding, and J.-Q. Sun, “Remaining useful life estimation in
prognostics using deep convolution neural networks,” Rel. Eng. Syst. Saf.,
vol. 172, pp. 1-11, Apr. 2018.

R. Zhao, J. Wang, R. Yan, and K. Mao, “Machine health monitoring
with LSTM networks,” in Proc. 10th Int. Conf. Sens. Technol. (ICST),
Nov. 2016, pp. 1-6.

R. Zhao, R. Yan, J. Wang, and K. Mao, “Learning to monitor machine
health with convolutional Bi-directional LSTM networks,” Sensors,
vol. 17, no. 2, p. E273, Jan. 2017.

W. Yan, B. Zhang, G. Zhao, J. Weddington, and G. Niu, “Uncertainty man-
agement in Lebesgue-sampling-based diagnosis and prognosis for lithium-
ion battery,” IEEE Trans. Ind. Electron., vol. 64, no. 10, pp. 8158-8166,
Oct. 2017.

D. Liu, Y. Luo, J. Liu, Y. Peng, L. Guo, and M. Pecht, “Lithium-ion
battery remaining useful life estimation based on fusion nonlinear degra-
dation AR model and RPF algorithm,” Neural Comput. Appl., vol. 25,
nos. 3—4, pp. 557-572, Sep. 2014.

Y. Zhou and M. Huang, “Lithium-ion batteries remaining useful life pre-
diction based on a mixture of empirical mode decomposition and ARIMA
model,” Microelectron. Rel., vol. 65, pp. 265-273, Oct. 2016.

Y. Chang, H. Fang, and Y. Zhang, “A new hybrid method for the predic-
tion of the remaining useful life of a lithium-ion battery,” Appl. Energy,
vol. 206, pp. 1564-1578, Nov. 2017.

S. Hassan, A. Khosravi, and J. Jaafar, “Bayesian model averaging of load
demand forecasts from neural network models,” in Proc. IEEE Int. Conf.
Syst., Man, Cybern., Oct. 2013, pp. 3192-3197.

J. Yang, G. Fang, Y. Chen, and P. De-Maeyer, “Climate change in the Tian-
shan and northern Kunlun Mountains based on GCM simulation ensemble
with Bayesian model averaging,” J. Arid Land, vol. 9, no. 4, pp. 622-634,
Aug. 2017.

A. Vosseler and E. Weber, ‘““Forecasting seasonal time series data: A
Bayesian model averaging approach,” Comput. Statist., vol. 33, no. 4,
pp. 1733-1765, Dec. 2018.

M. Culka, “Uncertainty analysis using Bayesian model averaging: A case
study of input variables to energy models and inference to associated
uncertainties of energy scenarios,” Energy, Sustainability Soc., vol. 6,
no. 1, p. 7, Dec. 2016.

W.-H. Liu and S.-S. Weng, “On predicting the semiconductor industry
cycle: A Bayesian model averaging approach,” Empirical Econ., vol. 54,
no. 2, pp. 673-703, Mar. 2018.

S.S. Eide, J. B. Bremnes, and I. Steinsland, ‘“Bayesian model averaging for
wind speed ensemble forecasts using wind speed and direction,” Weather
Forecast., vol. 32, no. 6, pp. 2217-2227, 2017.

P. Vogel, P. Knippertz, A. H. Fink, A. Schlueter, and T. Gneiting, ““Skill
of global raw and postprocessed ensemble predictions of rainfall over
northern tropical Africa,” Weather Forecast., vol. 33, no. 2, pp. 369-388,
2017.

M. Q. Raza, M. Nadarajah, and C. Ekanayake, “Demand forecast of
PV integrated bioclimatic buildings using ensemble framework,” Appl.
Energy, vol. 208, pp. 1626-1638, Dec. 2017.

M. Q. Raza, N. Mithulananthan, and A. Summerfield, ““Solar output power
forecast using an ensemble framework with neural predictors and Bayesian
adaptive combination,” Sol. Energy, vol. 166, pp. 226-241, May 2018.
H.-W. Wang, J. Gao, and H.-Q. Wu, “Reliability analysis on aero-engine
using Bayesian model averaging,” J. Aerosp. Power, vol. 29, no. 2,
pp. 305-313, Feb. 2014.

J. Zhou, D. Liu, Y. Peng, and X. Peng, “An optimized relevance vector
machine with incremental learning strategy for lithium-ion battery remain-
ing useful life estimation,” in Proc. IEEE Int. Instrum. Meas. Technol.
Conf. (I2ZMTC), vol. 63, May 2013, pp. 561-565.

J. F. Kolen and S. C. Kremer, “Gradient flow in recurrent nets: The diffi-
culty of learning longterm dependencies,” in A Field Guide to Dynamical
Recurrent Networks. 2009.

155142

(38]

(39]

(40]

(41]

(42]

(43]

[44]

[45]

(46]

(47]

(48]

[49]

A. Graves, A. Mohamed, and G. Hinton, *“Speech recognition with deep
recurrent neural networks,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., May 2013, pp. 6645-6649.

S. Wang and J. Jiang, “Learning natural language inference with LSTM,”
in Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum.
Lang. Technol., Jan. 2015, pp. 1442-1451.

B. Rister and D. Lawson, ‘“Image captioning with attention,” in Proc. I[EEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit., Jan. 2016, pp. 1-5.
M. Yuan, Y. Wu, and L. Lin, “Fault diagnosis and remaining useful life
estimation of aero engine using LSTM neural network,” in Proc. IEEE
Int. Conf. Aircr. Utility Syst. (AUS), Oct. 2016, pp. 135-140.

C. T. Volinsky, A. E. Raftery, D. Madigan, and J. A. Hoeting, “Bayesian
model averaging: A tutorial,” Stat. Sci., vol. 14, no. 4, pp. 382417, 2002.
G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, ‘“Improving neural networks by preventing co-
adaptation of feature detectors,” 2012, arXiv:1207.0580. [Online].
Available: https://arxiv.org/abs/1207.0580

W. Zaremba, I. Sutskever, and O. Vinyals, ‘“Recurrent neural
network regularization,” 2014, arXiv:1409.2329. [Online]. Available:
https://arxiv.org/abs/1409.2329

Q. Lyu and J. Zhu, “Revisit long short-term memory: An optimization
perspective,” in Proc. NIPS, 2014, pp. 1-9.

L. Dong, L. Xiong, and K. Yu, “Uncertainty analysis of multiple hydro-
logic models using the Bayesian model averaging method,” J. Appl. Math.,
vol. 2013, Nov. 2013, Art. no. 346045.

W. He, N. Williard, M. Osterman, and M. Pecht, ‘Prognostics
of lithium-ion batteries based on Dempster—Shafer theory and the
Bayesian Monte Carlo method,” J. Power Sources, vol. 196, no. 23,
pp. 10314-10321, Dec. 2011.

Y. Liu, G. Zhao, and X. Peng, “A fusion prediction method of lithium-ion
battery cycle-life,” Chin. J. Sci. Instrum., vol. 36, no. 7, pp. 1462-1469,
Jul. 2015.

K. Pugalenthi and N. Raghavan, “A holistic comparison of the different
resampling algorithms for particle filter based prognosis using lithium
ion batteries as a case study,” Microelectron. Rel., vol. 91, pp. 160-169,
Dec. 2018.

YUEFENG LIU received the B.S. degree from
the Inner Mongolia University of Technology,
Huhhot, China, in 2001, and the M.S. degrees
from the Inner Mongolia University of Science &
Technology, Baotou, China, in 2008, where he has
been an Associate Professor, since 2011. He is cur-
rently pursuing the Ph.D. degree from the Harbin
Institute of Technology, Harbin, China.

His research interests include prognostics and
health management, and deep leaning.

GUANGQUAN ZHAO received the B.E., M.E.,
and Ph.D. degrees from the Harbin Institute of
Technology, Harbin, China, in 2000, 2002, and
2007, respectively, where he is currently an Asso-
ciate Professor and a Master Student Supervisor.

His main research interest includes deep
learning and its application on fault diagnosis and
prognosis.

XIYUAN PENG received the B.E., M.E., and
Ph.D. degrees from the Harbin Institute of Tech-
nology, Harbin, China, in 1984, 1987, and 1992,
respectively, where he is currently a Professor and
a Ph.D. Candidate Supervisor.

His main research interests include automatic
test technology and intelligent fault diagnosis.

VOLUME 7, 2019



	INTRODUCTION
	RELATED WORK
	LONG SHORT-TERM MEMORY NETWORKS
	BAYESIAN MODEL AVERAGING

	BMA–LSTMN PREDICTION METHODS FRAMEWORK
	OVERALL FRAMEWORK
	LSTMN MODEL CONSTRUCTION
	OFFLINE BMA
	ONLINE ITERATED BMA

	EXPERIMENTAL RESULTS AND DISCUSSION
	EXPERIMENT DATA SETS
	EXPERIMENT SETTINGS AND EVALUATION CRITERION
	RUL ESTIMATION BY COMPARING BMA–LSTMN WITH THE SINGLE LSTMN MODELS
	EXPERIMENT METHOD
	PREDICTION VALUES OF BMA-LSTMN COMPARED WITH THOSE OF THE SINGLE LSTMN MODELS

	RUL ESTIMATION BASED ON ONLINE BMA COMPARED WITH OFFLINE BMA
	UNCERTAINTY ANALYSIS OF BMA–LSTMN
	RESULTS COMPARED WITH EXISTING WORKS UNDER THE SAME CONDITIONS

	CONCLUSION
	REFERENCES
	Biographies
	YUEFENG LIU
	GUANGQUAN ZHAO
	XIYUAN PENG


