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ABSTRACT Statistical local kernel principal component analysis (SLKPCA) has demonstrated its success in
incipient fault detection of nonlinear industrial processes by incorporating the statistical local analysis (SLA)
technology. However, the basic SLKPCA method builds the statistical model only based on the normal data
and neglects the utilization of the prior fault information, which is often available in many industrial cases.
To take full advantage of the prior fault information, this paper proposes an enhanced SLKPCA method,
called primary-auxiliary SLKPCA (PA-SLKPCA), for better incipient fault monitoring. The contribution of
the proposed method includes three aspects. First, one primary-auxiliary statistical monitoring framework is
designed, by which not only the normal training data are applied to develop a primary SLKPCA model,
but also the prior fault data are used to build the auxiliary SLKPCA models. Second, a double-block
modeling strategy is developed to construct the auxiliary SLKPCA model for each fault case, where a
variable grouping strategy based on Kullback-Leibler divergence is applied to divide the process variables
into the fault-relevant group and fault-independent variable group, and the sub-model is developed for each
group. Third, the Bayesian inference is used to combine the statistical results of each variable group, and one
weighted fusion strategy is further designed to integrate themonitoring results from the primary and auxiliary
models. Lastly, two case studies including one numerical system and the simulated continuous stirred tank
reactor (CSTR) system are used for method evaluation and the simulations show that the proposed method
can detect the incipient faults effectively and outperform the traditional SLKPCA method.

INDEX TERMS Incipient fault, fault detection, kernel principal component analysis, statistical local
analysis, prior fault information.

I. INTRODUCTION
Due to the higher requirements for the safety and continuity
in the modern industries, the fault diagnosis technologies
become the focus of attention in the field of process sys-
tem engineering. The advanced supervisory control and data
acquisition systems have been widely applied in the mod-
ern industrial processes, which make it possible to collect
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a large amount of running data for process status monitor-
ing. Therefore, many data-driven fault diagnosis methods
have been developed [1]–[5], which usually apply the sta-
tistical analysis tools, such as principal component analysis
(PCA) [6]–[8], canonical correlation analysis [9], and partial
least squares [10], to extract the intrinsic features for status
description and fault detection. Among these methods, PCA
is the most popular one and many enhanced versions have
been widely used to deal with the complicated process char-
acteristics including the data nonlinearity, process dynamics,
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and multi-mode operation. Jiang and Yan [11] combined the
nonlinear kernel PCA (KPCA) with the basic linear PCA to
build a parallel PCA-KPCA method, which mines the both
linear and nonlinear relationships simultaneously. For the
processes with multiple grades, Zhou et al. [12] designed a
multi-grade PCA (MGPCA) model in a probabilistic frame-
work, and evaluated it by a real industrial polyethylene pro-
cess. To extract the dynamic information of the components,
a dynamic inner PCA (DiPCA) method was presented by
Dong and Qin [13] by considering the analysis of time series
data. More related studies can be found in some review
papers [14]–[16].

The above studies have achieved their success in many
applications. However, they may not function well when
the incipient fault occurs. Different to the significant/mature
fault, which is with the relatively large fault magnitude and
leads to the clear process changes, the incipient fault usually
means the difficult-to-detect slight abnormalities [17]. Its
main characteristics are the small fault magnitude and the
underlying damage to process. Because of the small mag-
nitude, the incipient faults are often masked by the process
noises. As its influence is unclear and underlying at the initial
phase, it is often extremely difficult to detect by the basic
PCA andKPCAmethods [18]. Based on these characteristics,
the incipient fault detection problem is one of the most chal-
lenging tasks in the processmonitoring field. As time goes on,
the incipient fault may evolve into themature serious fault and
lead to the destructive influence. Therefore, timely detection
of incipient fault is of great importance to ensure the process
safety and improve the product quality.

To handle the incipient fault detection problem, researchers
have proposed some modified PCA methods. Considering
that the traditional PCA can not detect the small shift effec-
tively without utilizing the process dynamic information,
Wold [19] designed an EWMA-PCA method by introducing
the exponential weighting moving average strategy. Aiming
at the isolation of the incipient faults, Ji et al. [20] stud-
ied the incipient fault isolation based on the exponential
smoothing reconstruction and demonstrated its efficiency by
two case studies. To mine the data distribution information
for incipient fault detection, Harmouch et al. [21] presented
a Kullack-Leibler divergence (KLD) based modified PCA
method. As to the KLD-PCA method, Chen et al. [22]
gave some further investigations by defining the symmetri-
cal evaluation function. Chen et al. [23] also discussed one
probability-relevant PCA method for the incipient detection
in the high-speed trains. In order to isolate the incipient
fault, Zhao and Gao [24] put forward a sparse dissimilarity
analysis method by considering the difference of data dis-
tribution. As the incipient fault of batch process is easily
concealed by the trend of non-stationary process, a two-layer
fault detection model was established by Zhang et al. [25],
where the cointegration analysis and PCA are combined to
monitor the nonstationary and stationary variables, respec-
tively. Ge et al. [26] has put forward a two-step fault detec-
tion method considering both significant faults and incipient

faults, which adopts traditional multivariate statistical mon-
itoring method to detect significant faults, and proposes an
optimal residual generation method to detect incipient faults.
For detecting the incipient sensor faults in the multimode
processes, a modified recursive transformed component sta-
tistical analysis method was developed by Shang et al. [27]
by utilizing conditionally independent Bayesian learning.

Besides these above-mentionedmethods, an important tool
for incipient fault monitoring is the statistical local analysis
(SLA) [28]. SLA transforms the complex fault detection
into the monitoring of the mean of a Gaussian vector and
constructs an improved residual for inspecting the intrinsic
data changes. Kruger et al. [29] firstly combined it with PCA
to provide the statistical local PCA (SLPCA) for detecting the
early changes of the covariance structure of the process vari-
ables. It has been proved that SLPCA can enhance the ability
of traditional PCA to monitor incipient fault. Furthermore,
Chen et al. [30] and Li et al. [31] also validated that SLA can
be propitious to the sensitivity of incipient fault detection.
To handle the issue of the nonlinear process incipient fault
monitoring, Ge et al. [32] developed the statistical local
kernel PCA (SLKPCA) by integrating SLA with KPCA and
the applications show that SLKPCA is more effective than the
traditional KPCA in terms of incipient fault detection of the
benchmark Tennessee Eastman process. Deng and Deng [33]
andWang [34] further discussed the combination of SLAwith
kernel methods.

Considering that the advantages of SLKPCA, this paper
is to make SLKPCA as a basic tool and seek for a modified
SLKPCAmethod for better incipient fault monitoring perfor-
mance. One clear shortcoming of the present SLKPCAmeth-
ods is the neglecting of the available prior fault information.
In the usual SLKPCA modeling procedure, only the normal
data are used for statistical analysis with the assumption of no
available prior fault information. In fact, there are often some
available fault information in the real industrial cases. The
fault information includes the prior fault data, the fault mech-
anism and the expert knowledge, etc. Especially, the prior
fault data can be very helpful for fault detection. Although
the fault data may be not enough to cover all the possible
patterns, they still contain many important information which
is very helpful to detect the incipient faults, especifically
the incipient faults same to the known fault pattern in the
database. Therefore, to build an auxiliary model by the prior
fault data is of great value to improve the incipient fault
detection.

Based on these discussions, this paper is to propose an
enhanced SLKPCA method, referred to as primary-auxiliary
SLKPCA model, for better incipient fault detection perfor-
mance by making good use of the prior fault data. In the
proposed method, the traditional SLKPCA model based on
the normal data is used as the primary monitoring model to
ensure the performance baseline. By analyzing the fault data,
an auxiliary SLKPCA model is developed which applies the
Kullback-Leibler divergence to divide the variables into the
fault-related group and fault-independent group, and builds a
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sub-model for each group. Furthermore, the Bayesian infer-
ence technology is applied to combine the monitoring results
from each auxiliary sub-models, and the weighted fusion
strategy is designed to integrate the results from the primary
and auxiliary SLKPCA models. Finally, two case studies are
used to show the effectiveness of the proposed method.

The rest of this paper is summarized as follows.
In section II, traditional KPCA and SLKPCA are reviewed
briefly. Section III gives a specific variable grouping
strategy based on KLD and details the principle of
the primary-auxiliary SLKPCA (PA-SLKPCA) method.
Section IV describes the fault detection framework and the
corresponding flow chart. Then, two simulation examples
are presented to illustrate the proposed method in section V.
Finally, some conclusions are drawn in section VI.

II. PRELIMINARIES
A. KPCA
As a nonlinear extension of the linear PCA method, KPCA
is an effective nonlinear process monitoring tool [35]–[37].
The basic idea of this method is to transform the original
variables into high-dimensional feature space by an implicit
nonlinear mapping function, and then implement the standard
linear PCA in the feature space [35], [38]. Compared with
other nonlinear PCA methods, its advantage lies in avoiding
the complex nonlinear optimization problem by introducing
the kernel trick. The fundamental principle of this method is
described as follows.

For the given training data matrix X ∈ Rn×m, where n and
m are the sample number and the variable number, respec-
tively, a nonlinear function9(·) is used tomap the dataX onto
the new feature space 9(X), where the variables are linearly
related. In the linear feature space, the PCA decomposition is
carried out as

9(X) =
k∑
j=1

t jvTj + E, (1)

where vj is called the loading vector, t j is called the score
vector or principal component vector,E is the residual matrix,
and k is the the retained principal component number.

The loading vector vj represents the data projection direc-
tion, which can be computed by the eigenvalue decomposi-
tion of the 9(X)’s covariance matrix as

1
n− 1

9T (X)9(X)vj = λjvj, (2)

where λj is the j-th eigenvalue corresponding to the eigen-
vector vj. As the nonlinear mapping function 9(·) is usually
unknown, it is difficult to solve Eq. (2). Considering that
the projection vector vj can be expanded by the training data
matrix 9(X) as [38]

vj = 9T (X)pj, (3)

where pj ∈ Rn is the coefficient vector.

By combining Eqs.(2) and (3), the KPCA optimization will
be lastly transformed into an kernel matrix decomposition as

1
n− 1

Kpj = λjpj, (4)

where K is the kernel matrix defined by K = 9(X)9T (X),
whose element kij is the inner product of the i-th sample9(xi)
and the j-th sample 9(xj). That means kij = 9T (xi)9(xj).
To compute the kij, the kernel trick is applied as

kij = 9T (xi)9(xj) = ker(xi, xj). (5)

In this paper, we adopt the commonly used radius basis kernel
function ker(xi, xj) = exp(−||xi − xj||2/σ ), where σ is the
kernel width. By solving Eq.(5), a series of eigenvectors pj
ordered by their corresponding eigenvalues λj are available.
Usually, we only retain the first n non-zero eigenvalues for
statistical modeling. In this paper, n is selected so that the
cumulative eigenvalue sum exceeds 99.9% of the overall
cumulative eigenvalue sum.

For a testing data sample xh ∈ Rm at the h−th sample
instant, its j-th kernel principal component th,j can be obtained
by projecting the 9(xh) onto the eigenvector vj, which is
expressed by

th,j = 9T (xh)vj = KT
h pj, (6)

where Kh = 9(X)9(xh) ∈ Rn is the kernel vector of the
testing vector xh.
Two monitoring statistics T 2 andQ are used to monitor the

process changes. T 2 statistic represents the variation in the
kernel principal component subspace, depicted by the first
k kernel principal components, while Q statistic monitors
the data changes in the residual subspace, represented by the
other kernel principal components. For the testing vector xh,
the corresponding statistics are developed as

T 2
= [th,1, th,2, · · · , th,k ]3

−1
k [th,1, th,2, · · · , th,k ]T, (7)

Q =
n∑
j=1

t2h,j −
k∑
j=1

t2h,j, (8)

where 3k is the diagonal matrix composed of the first k
eigenvalues λ1, λ2, · · · , λk . The confidence limits of the
T 2 and Q statistics are determined by the non-parametric
kernel density estimation (KDE) technology [39]. When one
of these two statistics exceeds the corresponding confidence
limit, it means one fault is detected.

B. STATISTICAL LOCAL KPCA
Statistical local analysis (SLA) has proven to be an effective
approach to detect the abrupt data changes. SLA investigates
the changes of model parameters of a given system function.
The parameter deviation can be detected by a change in
the mean value of a Gaussian probability density function
[28], [29], [32]. By combining SLA with KPCA, an enhance
KPCA method – Statistical local KPCA (SLKPCA) can be
developed [32]. Based on the scores vectors and the eigenval-
ues, SLKPCA constructs a novel residual function, which has
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FIGURE 1. The modeling framework of the proposed PA-SLKPCA method.

a more powerful capability in the detection of incipient faults.
For the kernel principal component th,j, the corresponding
initial residual is defined as [32]:

rh,j = 2t2h,j − 2λj (9)

Next, the improved residual is built by applying the moving
window technology, which is expressed as [32]

r̃h,j =
1
√
w

h∑
l=h−w+1

(2t2l,j − 2λj) (10)

where w is the width of the moving window. w is an impor-
tant parameter for SLKPCA. A large w helps increasing the
detection rate of incipient fault because of the introduction
of the historical data. However too large w may lead to the
large detection time delay. The reasonable value of w can be
selected by experiment testing.

For one testing vector xh, its corresponding improved
residual vector is denoted by r̃h = [̃rh,1 r̃h,2 · · · r̃h,n],
where the first k components describe the principal system
changes, while the other n−k components represent the noise
information. Therefore, the improved residual vector r̃h is
divided into two parts r̃sh and r̃nh expressed by

r̃sh = [̃rh,1 r̃h,2 · · · r̃h,k ] (11)

r̃nh = [̃rh,k+1 r̃h,k+2 · · · r̃h,n] (12)

Based on the improved residuals r̃sh and r̃nh, two monitor-
ing statistics of SLKPCA are developed as

T 2
= r̃sh6−1s (r̃sh)T , (13)

Q = r̃nh6−1n (r̃nh)T , (14)

where 6s and 6n are the residual covariance matrix, which
can be computed by the training data.

As an unsupervised fault detection method, SLKPCA
improves the performance of traditional KPCA in monitoring
incipient faults. However, this method only uses normal data
in statistical modeling without considering the utilization of
prior fault information, which will result in the omission and
waste of some prior fault information, and further lead to
the degradation of fault detection performance. In this paper,

we try to make good use of the prior fault data to improve the
basic SLKPCA method.

III. PRIMARY-AUXILIARY STATISTICAL LOCAL KPCA
In order to make full use of the prior fault data,
we are to design a modified SLKPCA approach, called
primary-auxiliary SLKPCA (PA-SLKPCA), which combines
the normal training data and the prior fault data simultane-
ously for statistical modeling. The whole modeling frame-
work is shown in Fig. 1. The normal training data are applied
to build the primary SLKPCAmodel, which plays a dominat-
ing role in the processmonitoring. Besides, the prior fault data
are used to develop the auxiliary SLKPCA models, which
focus on the emphasis of the fault information and assist the
monitoring of incipient faults. The monitoring results from
the primary model and the auxiliary models are integrated
based on the weighting strategy for a comprehensive moni-
toring. Different to the traditional SLKPCAmethods, the pro-
posed PA-SLKPCA method shows the great potential in the
detection of the incipient faults because of the introduction of
the prior fault information.

As the SLKPCA modeling has been discussed in the
previous section, this section focuses on the details of the
auxiliary SLKPCA modeling. The auxiliary SLKPCA model
is in fact a double-block model, which firstly divides all
the variables into two blocks including the fault-related
group and the fault-independent group, and then builds the
sub-model for each group, respectively. Specifically, the aux-
iliary SLKPCA modeling includes three steps of variable
grouping, sub-model development and monitoring statistics
integration. We describe the details in the following.

A. VARIABLE GROUPING USING KL DIVERGENCE
The first step of the auxiliary SLKPCA modeling is to dis-
tinguish the fault-related variables from the other variables,
so that the developed auxiliary model targets the specific
fault and provides more pertinent information for incipient
fault detection. To handle this problem, we propose a novel
variable grouping strategy based on KL divergence, which
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measures the difference of probability distributions of two
variables to locate the fault variables.

Among all the monitored variables, some variables involv-
ing the fault are called fault-related variables, while other
variables are not related or weakly related to the fault, called
fault-independent variables. Usually, it is reasonable to sup-
pose that the fault-related variables have the different prob-
ability distributions compared to the normal variables, while
the fault-independent variables are very similar to the normal
one in terms of the probability distribution.

Kullback-Leibler divergence (KL divergence), also called
relative entropy or information divergence, is an effective tool
to evaluate the difference between two probability density
functions [40]–[42]. Given two continuous probability den-
sity functions f (x) and g(x) on a random variable x, the KL
information is defined as [40]

I (f ||g) =
∫
f (x)log

f (x)
g(x)

dx. (15)

Although the KL information seems to be a distance measure
between two distributions, it is not a real distance because
of its asymmetric property. Furtherly, the KL divergence is
built as the symmetric form of the KL information, which is
expressed by

KLD(f , g) = I (f ||g)+ I (g||f ). (16)

If f (x) and g(x) are from the same distributions, the KL
divergence is equal to zero. Otherwise, when these two distri-
butions are different, the KL divergence will be a value bigger
than zero. Greater the KL divergence is, more different the
two distributions are. By assuming the Gaussian distribution
for f (x) and g(x), their probability density functions are given
as

f (x) =
1√
2πλf

exp(−
(x − µf )2

2λf
), (17)

g(x) =
1√
2πλg

exp(−
(x − µg)2

2λg
), (18)

where µf , λf are the mean and variance of f (x), respectively,
while µg, λg are the mean and variance of g(x), respectively.
With Eqs. (17) and (18), the KL information can be com-

puted as [22]

I (f ||g) =
1
2
[log(

λg

λf
)+

λf

λg
+

(µf − µg)2

λg
− 1], (19)

and then the KL divergence is given by [22]

KLD(f , g) =
1
2
[
λf

λg
+
λg

λf
+ (µf − µg)2(

1
λf
+

1
λg

)− 2].

(20)

Given one prior fault dataset X f
∈ Rnf×m and the normal

dataset X ∈ Rn×m, they are with the same m measured
variables x1, x2, · · · , xm. Assume that the data distribution
f (xi) describes the normal data while the data distribution

g(xi) is for the fault data, then the KL divergence of the
variable xi is computed by

KLDi =
1
2
[
λf (xi)
λg(xi)

+
λg(xi)
λf (xi)

+ (µf (xi)− µg(xi))2

(
1

λf (xi)
+

1
λg(xi)

)− 2]. (21)

If KLDi is clearly bigger than zero, that means these two
distributions are very different and the variable xi should
be regarded as a fault-related variable. Otherwise, if the KL
divergence is very close to zero, the corresponding variable is
a fault-independent variable. In the real applications, the ran-
dom noises affect the computation of KL divergence so that
the KL divergence between two same data distributions are
not exactly zero. Therefore, we give the following rules for
variable grouping{

xi is fault − related, if KLDi ≥ σi,
xi is fault − indepdent, if KLDi < σi,

(22)

where σi is the KL divergence threshold for variable group-
ing. The determination of σi is data-driven. Firstly the normal
KLDi values corresponding to the variable xi are computed
and then the KDE technique is applied to calculate the 99%
confidence limit as the threshold σi.

By this decision rule, the training data matrix X can be
divided into two blocks X1 and X2, which are corresponding
to the fault-related variable group and the fault-independent
variable group, respectively.

It should be noted that an implicit assumption is the
probability distribution difference can be observed in the
given prior fault. In this paper, we only consider the
case of the significant prior faults, which meet the above
assumption.

B. AUXILIARY MODEL DEVELOPMENT
For each prior fault pattern, the monitored variables can be
divided into two groups and then the SLKPCA modeling
is performed for each group. So a double-block SLKPCA
model is obtained based on one prior fault dataset. If there
are C prior fault patterns, the variable grouping can be car-
ried out C times, which leads to C auxiliary double-block
SLKPCA models. For the c-th fault case, its double-
block SLKPCA modeling brings the improved residuals
expressed as

r̃ (c,b)h,j =
1
√
w

h∑
l=h−w+1

2(t (c,b)h,j )2 − 2λ(c,b)j , (23)

where c = 1, 2, · · · ,C indicates the fault case number, while
b = 1, 2 is the index of sub-model in the double-block
SLKCPA model. b = 1 corresponds to the fault-related
variable group, while b = 2 indicates the fault-independent
variable group.

All the residual components are divided into two parts of
r̃sh for the principal system change part and r̃nh for the noise
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part, written by

r̃s(c,b)h = [̃r (c,b)h,1 r̃ (c,b)h,2 · · · r̃
(c,b)
h,k ], (24)

r̃n(c,b)h = [̃r (c,b)h,k+1 r̃
(c,b)
h,k+2 · · · r̃

(c,b)
h,n ]. (25)

Based on the residual vectors, the SLKPCA sub-model mon-
itoring statistics T 2 and Q are constructed as

T 2(c,b)
= r̃s(c,b)h (6(c,b)

s )−1(r̃s(c,b)h )T , (26)

Q(c,b)
= r̃n(c,b)h (6(c,b)

n )−1(r̃n(c,b)h )T , (27)

where T 2
h
(c,b)

and Q(c,b)
h correspond to the b-th sub-model for

the double-block SLKPCA model of the c-th fault case. For
the C prior fault datasets, there will be C auxiliary SLKPCA
models. All these auxiliary models are integrated together to
become one holistic auxiliary model. The integration strategy
is discussed in the following section.

C. MONITORING RESULTS INTEGRATION
After obtaining the monitoring statistics of each group,
Bayesian fusion strategy is applied to integrate themonitoring
results of the sub-models.

For one testing sample xh, its fault probabilities,
decided by the T 2 statistic from the b-th sub-model of
the c-th double-block SLKPCA model, are denoted by
p(c,b)
T 2 (F |xh), which can be computed by the Bayesian infer-
ence as [43], [44]

p(c,b)
T 2 (F |xh) =

p(c,b)
T 2 (xh|F)p(F)

p(c,b)
T 2 (xh|N )p(N )+ p(c,b)

T 2 (xh|F)p(F)
, (28)

where p(F) and p(N ) are the prior fault and normal probabili-
ties, respectively. p(F) is equivalent to the significance level α
while p(N ) is equal to the confidence level 1−α, respectively.
p(c,b)
T 2 (xh|F) and p(c,b)

T 2 (xh|N ) are the posterior probabilities
under fault and normal conditions, respectively, which can be
calculated as

p(c,b)
T 2 (xh|N ) = exp

(
−
T 2(c,b)

T 2
lim

(c,b)

)
(29)

p(c,b)
T 2 (xh|F) = exp

(
−
T 2
lim

(c,b)

T 2(c,b)

)
(30)

where T 2
lim

(c,b)
is the confidence limit of the monitoring

statistic T 2
h
(c,b)

.
Similarly, the fault probabilities for the Q statistic is

expressed by [43], [44]

p(c,b)Q (F |xh) =
p(c,b)Q (xh|F)p(F)

p(c,b)Q (xh|N )p(N )+ p(c,b)Q (xh|F)p(F)
(31)

where the posterior probabilities p(c,b)Q (xh|F) and p
(c,b)
Q (xh|N )

are obtained by

p(c,b)Q (xh|N ) = exp
(
−

Q(c,b)

Qlim(c,b)

)
(32)

p(c,b)Q (xh|F) = exp

(
−
Qlim(c,b)

Q(c,b)

)
(33)

By combining the monitoring statistics from the
fault-related group and the fault-independent group, two
unified fault probability indices for the c-th auxiliary model
are developed as

BIC (c)
T 2 =

2∑
b=1

p(c,b)
T 2 (F |xh)

p(c,b)
T 2 (xh|F)∑2

l=1 p
(c,l)
T 2 (xh|F)

(34)

BIC (c)
Q =

2∑
b=1

p(c,b)Q (F |xh)
p(c,b)Q (xh|F)∑2
l=1 p

(c,l)
Q (xh|F)

(35)

So far, both the primary and the auxiliary SLKPCAmodels
are built with their statistics as T 2, Q, BIC (c)

T 2 and BIC (c)
Q .

The following question is how to combine the results from
the primary-auxiliary models for the holistic monitoring.
A natural idea is to apply one reasonable weighting strategy.
As the primary SLKPCA model is the basic model, it should
always works. Because the auxiliary model only aims at some
specific known fault, it performswell when the corresponding
fault occurs and can not ensure a good performance for other
kinds of faults. Therefore, the auxiliarymodel for one specific
fault should be activated only when it detects the fault. Based
on these considerations, we design a weighting approach as
follows.

WT 2
=

T 2

T 2
lim

+

C∑
c=1

w(c)
T 2

BIC (c)
T 2

α
(36)

WQ =
Q
Qlim
+

C∑
c=1

w(c)
Q

BIC (c)
Q

α
(37)

wherew(c)
T 2 is set 1 if the BIC

(c)
T 2 statistics of several continuous

samples are beyond the significance level α, otherwise it is
zero.w(c)

Q is set by the same rule. The weighted statisticsWT 2

andWQ can give a comprehensive and sensitive detection for
the incipient faults. When WT 2 > 1 or WQ > 1, the process
is considered to be faulty. Otherwise, the process is under
normal condition.

IV. THE PROCESS MONITORING PROCEDURE USING
PA-SLKPCA
The incipient fault detection method based on PA-SLKPCA
can be divided into two stages: offline modeling and online
monitoring, and the corresponding flow chart is shown
in Fig. 2. The detailed steps are described below.
offline modeling

(1) Collect the normal training data X and the C prior
fault datasets Xc(c = 1, 2, · · · ,C) from the historical
datasets, and standardize them using the mean and vari-
ance of the normal data.

(2) Establish the primary SLKPCA model using the normal
data X .
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FIGURE 2. The process monitoring flowchart based on PA-SLKPCA.

(3) For each fault dataset Xc, perform the variable grouping
and build an double-block SLKPCA model as the c-th
auxiliary model.

(4) For some normal validation data, compute the monitor-
ing statistics of the primary and the auxiliary SLKPCA
models, respectively, and determine the monitoring
statistics’ confidence limits T 2

lim, Qlim, T
2
lim

(c,b)
and

Qlim(c,b) using the KDE technology.

Online monitoring

(1) Gather the testing data xh at the h-th sample instant, and
scale it with the mean and variance of the normal data.

(2) Project the normalized data on the primary SLKPCA
model and all the auxiliary SLKPCA models, and com-
pute the monitoring statistics T 2, Q, T 2(c,b) and Q(c,b).

(3) Compute the integrated statistics BIC (c)
T 2 and BIC (c)

Q
for each auxiliary model using the Bayesian inference
strategy.

(4) Obtain the final primary-auxiliary model statisticsWT 2

and WQ and determine if some fault occurs.

V. CASE STUDIES
In this section, a numerical example and the simulated contin-
uous stirred tank reactor (CSTR) system are used to verify the
proposed algorithm. The traditional KPCA and SLKPCA are
also applied for comparison. In order to evaluate the different
methods, three indices including fault detection rate (FDR),
fault detection time (FDT) and false alarm rate (FAR) are
adopted. FDR is the percentage of faulty samples exceed-
ing the confidence limit over the total faulty samples, FDT
refers to the first sample of six consecutive faulty samples
exceeding the confidence limit, while FAR is the ratio of the
number of the normal samples over the confidence limit to
the total normal sample number. In the monitoring charts of
all methods, the confidence limits are plotted in the dashed
line while the statistics are given by the solid line. For the
convenience of method comparison, all the confidence limits
in the monitoring charts are normalized to 1.

A. A NUMERICAL EXAMPLE
In this paper, a nonlinear numerical system with 6 variables
is designed with the following mathematical equations.

x1 = t1 + e1,
x2 = t21 − 2t2 + e2,
x3 = −t32 + 3t23 + e3,
x4 = t2 + 5t4 + e4,
x5 = t23 − 2t4 + e5,
x6 = −t23 + 3t34 + e6,

(38)

where the data source ti(1 ≤ i ≤ 4) ∈ [0, 2] is the random
signal with uniform distribution, while ei(1 ≤ i ≤ 6) is
the Gaussian-distributed noise with the zero mean and the
variance of 0.3. First, 300 samples under the normal condition
are generated for model training while another 2000 normal
samples are as the validation dataset for the confidence limit
determination. Then two groups of incipient faults including
one small step change and one weak ramp change, tabu-
lated as follows, are simulated for testing the performance of
incipient fault detection methods. Each fault dataset includes
500 samples.
• Fault D1: t2 is imposed with a step bias of 0.5 from the
201st sample.

• Fault D2: t1 is injected with a ramp changewith the slope
of 0.005 from the 201st sample.

Three methods of KPCA, SLKPCA, PA-SLKPCA are
applied for statistical modeling. For all methods, the ker-
nel width σ is set to 100 and the retained KPC number is
computed by the 90% cumulative percent variance (CPV)
criterion. For the SLKPCA and PA-SLKPCA methods,
the moving window width w is set to 20. The 99% confidence
limits, obtained by the KDE method, are adopted for all
statistics. That means the significance level α is equal to 0.01.
When PA-SLKPCA is applied, two prior fault datasets are
generated. It should be noted that the prior fault are supposed
to be the significant type in this paper. The step bias of the
prior fault D1 is set to 2.0, while the slop value of the prior
fault D2 is set to 0.02. The variable group results for the fault
D1 and D2 are demonstrated in the Fig. 3, where Class 0
indicates the fault-independent variables, while Class 1 rep-
resents the fault-related variables. From the Fig. 3(a), it can
be observed that the fault-related variables correspond to the
Nos. 2, 3 and 4, which are the same to the real faulty variables.

FIGURE 3. Variable grouping results for the fault D1 and D2.
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By the Fig. 3(b), the fault-related variables are indicated as the
Nos. 1, and 2. This also corresponds to the real fault mecha-
nism. By applying these prior fault information, the auxiliary
SLKPCA monitoring model can be built.

Firstly, the monitoring charts on the fault D1 using
KPCA, SLKPCA and PA-SLKPCA are illustrated in
Figs. 4, 5, and 6. In this case, when PA-SLKPCA is applied,
only the prior information of fault D1 is utilized. The corre-
sponding monitoring indices are listed in the Table 1, where
− represents fault can not be detected by this statistic. The
KPCA monitoring charts in the Fig. 4 indicate that the fault
D1 can not be detected effectively. It has the poor FDRs
of 0.08 and 0.12 for the T 2 and Q statistics, respectively.
When SLKPCA is applied, it improves the fault detection
performance clearly. The FDRs of the T 2 and Q statistics are
increased to 0.493 and 0.767, respectively. By applying the
PA-SLKPCAwith the prior information of fault D1, theWT 2

FDR gets to the 0.663, while the WQ FDR is also enhanced
to the 0.853. By the Table 1, three methods have the similar
FARs, while the FDTs of SLKPCA and PA-SLKPCA are
superior to the basic KPCA method. To further analyze the
PA-SLKPCA method, the monitoring charts in the auxiliary
SLKPCA (A-SLKPCA) model are displayed. Fig. 7(a) gives
the SLKPCA monitoring charts from the fault-related sub-
model, while Fig. 7(b) demonstrates the monitoring results

FIGURE 4. The KPCA monitoring charts on the fault D1.

FIGURE 5. The SLKPCA monitoring charts on the fault D1.

FIGURE 6. The PA-SLKPCA monitoring charts on the fault D1.

TABLE 1. Monitoring results on fault D1 dataset obtained by KPCA,
SLKPCA and PA-SLKPCA.

FIGURE 7. The auxiliary SLKPCA monitoring charts on the fault D1.

from the fault-independent sub-model. The T 2 andQ’s FDRs
of fault-related sub-model are 0.737 and 0.843, respectively,
which are much higher than the SLKPCA’s. By contrast,
Fig. 7(b) gives no clear fault alarms. That shows the auxiliary
SLKPCAmodel based on the double-blockmodeling strategy
can emphasize the influence of fault variables and drives
the performance increasing. All these analyses demonstrate
that the utilization of the prior fault information benefits the
detection of the incipient faults significantly.

The former PA-SLKPCA method only considers the prior
information of fault D1. Does it help or worsen the detection
of the fault D2? The conclusion can be observed from the
Figs. 8, 9, and 10, and Table 2. The KPCA detection rates on
the fault D2 are 0.197 and 0.143 for T 2 and Q, respectively,
which shows the unsatisfactory performance. In the Fig. 9,
SLKPCA does better, which prompts the indices to 0.473 and
0.656, respectively. When PA-SLKPCA is applied, the WT 2

and WQ detection rates are 0.493 and 0.680, respectively,
which are not the remarkable improvement. This is because
the prior information of fault D2 is not considered in the
PA-SLKPCA.However, it should be pointed out that themon-
itoring performance is not worsened even if the correspond-
ing fault information is not considered. Furthermore, we add
the prior information of fault D2 in the auxiliary model. The
augmented method is denoted as PA-SLKPCA-2. Compared
to the PA-SLKPCA, the PA-SLKPCA2 gives a little enhance-
ment on the WT 2 statistics with the FDR of 0.513 while
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FIGURE 8. The KPCA monitoring charts on the fault D2.

FIGURE 9. The SLKPCA monitoring charts on the fault D2.

FIGURE 10. The monitoring charts on the fault D2 based on PA-SLKPCA.

FIGURE 11. The monitoring charts of the fault D2 based on PA-SLKPCA-2.

TABLE 2. Monitoring results on fault D2 dataset obtained by KPCA,
SLKPCA and PA-SLKPCA.

shows a clear improvement on theWQ statistic with the FDR
of 0.790. Also, the PA-SLKPCA-2 WQ statistic detects the
fault at the 252nd sample, while the SLKPCA Q statistic
only detects the fault at the 294th sample. This means that
PA-SLKPCA modeling can improve the SLKPCA method if
the corresponding fault information is utilized.

To sum up, PA-SLKPCA can detect the incipient fault
D1 and D2 more effectively with the utilization of the prior

fault information. More prior fault information is available,
better monitoring performance are obtained. When the fault
information is not available, PA-SLKPCA still works and its
performance is the same to the basic SLKPCA method.

B. THE CSTR SYSTEM
Continuous stirred tank reactor (CSTR) is a commonly used
equipment in the field of chemical industry, which has
been extensively applied as a benchmark system to validate
the fault detection and diagnosis methods [45]–[47]. The
schematic diagram of one CSTR system is shown in Fig. 12,
where the first-order irreversible exothermic reaction A→ B
occurs and the cooling jacket removes the reaction heat.
To make the reaction temperature stable, one cascade control
system is designed which applies the reaction temperature
controller as the master controller and the coolant flow con-
troller as the slave controller. Also a level cascade control
system is designed by using the output flow controller as
the slave controller. In the Fig 12, QC denotes the coolant
flow, QF denotes the reactor feed flow, QO denotes the reac-
tor output flow, TF represents the reactor feed temperature,
T represents the reactor temperature, TCF represents the
coolant feed temperature, TC represents the coolant output
temperature, CAF is the concentration of the reactant A in
the feed stream, CA is the concentration of the reactant A in
the outlet stream, and h is the reactor level. In this figure,
some control system symbols are used. TT , FT and LT
represent the temperature transmitter, the flow transmitter and
the level transmitter, respectively. TC , FC and LC represent
the temperature controller, the flow controller and the level
controller, respectively. More detailed descriptions can be
seen in the literature [47], [48].

FIGURE 12. The CSTR schematic diagram.

The CSTR mechanical models involve four main differ-
ential equations, which describe the dynamic behaviors of
the reactor temperature T , the reactor level h, the reactant
A concentration CA and the coolant temperature TC . The
detailed mathematical expressions can be seen in the ref-
erences [48]. By simulating the CSTR mechanical models,
normal and fault operation datasets are generated. The sim-
ulated six fault types can be seen in Table 3, which include
the valve sticking, the sensor fault, and the process changes.
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TABLE 3. The CSTR system fault patterns.
.

Each dataset includes ten variables [47] and all the mea-
sured variables are collected considering the Gaussian noises.
A normal operation dataset with 300 samples is generated
for statistical modeling while another 2000 normal samples
are simulated to constitute the validation dataset for the
confidence limit determination. Each fault dataset includes
800 samples, where the fault is injected from the 241st sample
instant.

Three methods of KPCA, SLKPCA, and PA-SLKPCA are
applied to detect the fault. The kernel width σ is selected
as 100 and the moving window w is set to 60. For the
PA-SLKPCA method, we assume that two faults F1 and
F2 are prior. The monitoring results are analyzed as follows.

Firstly we investigates the fault F1 and its moni-
toring charts obtained by three methods are listed in
Figs. 13, 14, and 15. Fault F1 involves the valve failure. The
normal value of the coolant control valve is 0.3. When the

FIGURE 13. The monitoring charts of the fault F1 based on KPCA.

FIGURE 14. The monitoring charts of the fault F1 based on SLKPCA.

FIGURE 15. The monitoring charts of the fault F1 based on PA-SLKPCA.

fault occurs, the coolant control valve is fixed on the constant
value 0.297. It is clear that the deviation is very slight. So this
fault can be viewed as an incipient fault. However, this fault
means the malfunction of the coolant control valve, which
may lead to the serious result when some large disturbances
occur because it factually affects the reactor temperature
control. As the valve failure value is very close to the normal
condition, this fault is difficult to detect by the traditional
KPCA method. The KPCA monitoring charts are shown
in Fig. 13, where the T 2 FDR is 0.030 and the Q FDR
is 0.048. As SLKPCA is developed by incorporating the
statistical local analysis for the incipient changes detection,
it gives better performance in the Fig. 14. The SLKPCA Q
statistic detects this fault with the higher FDR of 0.627 and
the T 2 statistic also makes a certain improvement with the
FDR of 0.245. By further considering the fault informa-
tion, PA-SLKPCA gives the best performance, which has
the highest FDR of 0.964 and 0.936 for the WT 2 and WQ,
respectively.

Furthermore, the process monitoring charts on the fault
F5 are demonstrated in Figs. 16, 17, and 18. The fault
F5 involves the slow change of the catalyst activation energy
parameter ER. As this fault occurs, ER ramps up with
the rate of 0.5K/min. Compared with the nominal value
8750K, the fault magnitude is very small and can be thought

FIGURE 16. The monitoring charts of the fault F5 based on KPCA.

FIGURE 17. The monitoring charts of the fault F5 based on SLKPCA.

FIGURE 18. The monitoring charts of the fault F5 based on PA-SLKPCA.
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TABLE 4. Fault detection rates on CSTR system faults obtained by KPCA,
SLKPCA and PA-SLKPCA.

TABLE 5. Fault detection times on CSTR system faults obtained by KPCA,
SLKPCA and PA-SLKPCA.

as one incipient fault. The increasing of ER leads to the
slowing-down of the reaction, which further results in the ris-
ing of the reactant A concentration. That means the degrada-
tion of product quality. As no prior information on this fault is
involved in the auxiliary model, PA-SLKPCA can not ensure
the performance improvement. However, two PA-SLKPCA
statistics still do better than the KPCA and SLKPCA meth-
ods. It is straightforward that KPCA can not detect this fault
effectively. SLKPCA T 2 andQ detect the fault F5 at the 343rd
and 354th sample, respectively. By contrast, PA-SLKPCA
WT 2 detects the fault F5 at the 313rd sample, 30 samples ear-
lier than the SLKPCA T 2 statistic, while PA-SLKPCA WQ
alarms the fault at the 350th sample, also 4 samples earlier
than the SLKPCA Q statistic. The FDRs of PA-SLKPCA
WT 2 and WQ statistics are 0.863 and 0.813, respectively,
which are higher than the corresponding SLKPCA’s FDRs
of 0.763 and 0.714. On the whole, PA-SLKPCA still performs
satisfactory in the detection of unknown fault type.

For an overall comparison, the FDRs and FDTs of three
methods are listed in the Table 4 and 5. From Table 4,
the average FDRs of KPCA are 0.118 and 0.125 for T 2 andQ,
respectively. SLKPCA improves the fault detection rates to
0.365 and 0.446, respectively. By incorporating the prior fault
information, PA-SLKPCA further enhances the process mon-
itoring performance with a higher average FDRs of 0.606 and
0.619 for WT 2 and WQ, respectively. The fault detection
rates in Table 5 also demonstrate the superiority of the pro-
posed PA-SLKPCA method. The average FARs (AFARs) of
three methods are tabulated in the Table 6. Considering each
fault testing dataset involves 240 normal samples, there are
1440 normal samples for all the six fault datasets. AFAR is
computed as the ratio of the alarming samples over the total
1440 samples. By the Table 6, we observe that all the methods

TABLE 6. Average False alarming rates (FARs) on CSTR system faults
obtained by KPCA, SLKPCA and PA-SLKPCA.

are consistent with the 99% confidence limit, which means
the AFAR is around 0.01.

In the above analysis, we only test the case with the fixed
fault samples. Next we discuss the influence of the numbers
of the fault samples. For the incipient faults involving the
slope changes, these incipient faults may evolve into the
significant faults. So if we increase the fault testing dataset
number gradually, the fault detection rate will be improved
obviously because the matured fault is easier to detect. How-
ever, for the incipient faults resulted from the step change of
process variables, the process conditions from the incipient to
mature stages are very similar so that the fault detection rates
are not affected remarkably. To demonstrate this, we change
the fault testing dataset number as 400, 500, 600, 700 and
800, respectively. The fault F1 and F5 are illustrated and
the corresponding FDRs are plotted in Fig. 19. As to the
fault F1, which belongs to the incipient fault with a small step
change, it is seen that its WT 2 and WQ FDRs are not influ-
enced seriously although they are enhanced slightly when the
fault testing dataset number is enlarged. By contrast, a clear
uptrend of FDR on fault F5 can be observed along with the
increasing of the fault testing dataset number. That is because
the fault F5 is the incipient fault involving the slope process
change. Generally, the results in Fig. 19 validate our analysis.

FIGURE 19. The FDRs on the fault F1 and F5 with different fault sample
numbers.

VI. CONCLUSION
To make full use of all available process information is
helpful to process monitoring and fault diagnosis. Based
on this strategy, this paper proposes an improved SLKPCA
method PA-SLKPCA for incipient fault detection. The most
important contribution is the design of the primary-auxiliary
monitoring framework for incipient fault detection. In addi-
tion, this paper presents a double-block modeling strategy
for the development of the auxiliary SLKPCA model, and
applies the Bayesian inference basedweighted fusion strategy
to integrate the monitoring results from the primary and
auxiliary models. The applications to the numerical system
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and the simulated CSTR process are performed to demon-
strate the effectiveness of the proposed method. Based on the
results and discussions, some conclusions can be drawn as
follows. (1) If the occurred fault is same to the prior fault,
the auxiliary model comes into play and PA-SLKPCA can
perform better than SLKPCA significantly. (2) If the occurred
fault is different to the prior faults, the auxiliary model may
also help, or may not help, but it definitely does not worsen
the fault detection results. (3) Generally, the PA-SLKPCA
method based on the utilization of prior fault information is
beneficial to the incipient fault detection. In fact, the idea
of utilizing the prior process information can be extended to
many other fault detection and diagnosis tasks.

Although the advantages of the proposed method have
been successfully demonstrated, there are some related issues
deserving further studies. One important issue is about the
incipient fault identification and classification. In this paper,
we only focus on detecting the incipient faults. Once one
fault is detected, how to identify the sources and classify
its type is the following task. Some fault identification and
classification methods have been developed in the present
works [49], [50], and how to extend them to the incipient fault
case is one valuable research topic.
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