
Received July 2, 2019, accepted July 22, 2019, date of publication August 27, 2019, date of current version September 11, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2937730

DRACON: A Dedicated Hardware Infrastructure
for Scalable Run-Time Management
on Many-Core Systems
DANIEL GREGOREK , JOCHEN RUST, AND ALBERTO GARCIA-ORTIZ
Institute of Electrodynamics and Microelectronics, University of Bremen, 28359 Bremen, Germany

Corresponding author: Daniel Gregorek (gregorek@item.uni-bremen.de)

This work was supported by the Institute of Electrodynamics and Microelectronics, University of Bremen, Germany.

ABSTRACT Many-core architectures integrate a large number of comparatively small processing cores
into a single chip. However, the high degree of parallelism increases the run-time resource management
complexity and overhead. The employment of dedicated hardware enhancements potentially enables a high
quality of the resource management while management overhead is mitigated. To exploit the potential
of hardware enhancements, we propose a dedicated infrastructure for run-time resource management on
homogeneous MIMD many-core processors. For hardware enhanced resource management, a scalable and
cluster-based system architecture is implemented. The resulting architecture (DRACON) utilizes message
passing based communication, the dedicated infrastructure and hardware accelerators for resource manage-
ment. A comprehensive evaluation for DRACON and reference architectures is performed using a transaction
level simulation framework and dynamic task management as a use case. As benchmarks, synthetic models
and task graphmodels of real-world applications are applied. The results reveal the limited scalability of clas-
sical architectures for resource management on many-cores. It is therefore necessary to apply cluster-based
or moderately distributed architectures for many-core resource management. Further, the results demonstrate
a significant performance improvement for the DRACON architecture at a number of hundreds of processing
cores. Our evaluations show that DRACON generally outperforms software-only run-time management on
many-core and achieves a performance improvement of up to 15.21% for single-program and more than 6%
for mixed workloads.

INDEX TERMS Computer architecture, many-core, dynamic run-time management, dedicated hardware.

I. INTRODUCTION
The evolution ofmicroprocessors encountered the power wall
during the early 2000’s [16]. Subsequently, energy efficiency
became a mandatory design objective of microprocessors.
Therefore, common multi-core processors employ multiple
large-sized cores in parallel to improve the performancewhile
maintaining an affordable power level. In contrast, a many-
core employs an even larger amount of small-sized cores
which is expected to provide a better energy/performance
trade-off [4], [7]. Nevertheless, the advancements of CMOS
technology reached a fundamental limit of threshold voltage
scaling and entered a leakage limited regime [50]. Con-
sequently, microprocessors are expected to face extensive
device under-utilization (dark silicon) due to power and

The associate editor coordinating the review of this article and approving
it for publication was Juan Touriño.

application concurrency limitations [19]. The run-time man-
ager (RTM) of a many-core constitutes an essential facility to
tackle the challenges of dark silicon [27]. However, the large
amount of processing cores and the potentially fine-grained
user tasks cause the RTM overhead to rise [34]. Accordingly,
innovative and competitive approaches for many-core RTM
are required.

A. MANY-CORE RTM
In the many-core domain, issues like task- and power-
management become eminent. Further, pervasive synchro-
nization problems must be addressed for user applications
and RTM management tasks as well. Additionally, the
requirement of scalability is raised to a many-core RTM.
Therefore, a many-core RTM must be designed in a way
to provide a maximum of performance independently of
the number of available processing cores. It is therefore

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 121931

https://orcid.org/0000-0003-1412-797X
https://orcid.org/0000-0002-6461-3864


D. Gregorek et al.: DRACON: Dedicated Hardware Infrastructure for Scalable Run-Time Management on Many-Core Systems

necessary to maximize locality and to minimize the con-
tention for data resources [33]. With the rising amount of
processing cores, the application of distributed RTMs and
private local memory becomes considerable for many-core
processors. Another major approach to improve the scal-
ability and to mitigate the contention for resources is the
employment of dedicated RTM processing cores.

The Linux OS kernel is a representative for a symmet-
ric software-based run-time system. Linux provides good
scalability and high performance, even in the many-core
domain [9]. Due to the shared-memory design, Linux
depends on high-performance cache coherence and fine grain
lock access. Asymmetric approaches like AsymOS dedicate
processing cores to dedicated RTM functionality [40]. The
approach allows the partitioning of resources between user
applications and the RTM. One of their advantages lies in
the reduced contention between user and RTM the available
resources like processing cores, memory and interconnects.
As an example, modifications to the Linux architecture using
dedicated RTM cores were proposed to eliminate applica-
tion interferences due to (non-required) periodic RTM kernel
invocations [2].

The factored operating system (fos) dedicates cores for
kernel operation to provide a scalable many-core RTM [53].
Every processing core runs a lightweight fos-microkernel
while the system services are implemented inside dedicated
and distributed system servers. Due to the dedicated system
servers, there is no additional overhead for switching between
kernel and user mode. The user tasks and the fos system
servers communicate by means of message passing. Simi-
larly, the exokernel-like approach Corey also allows dedi-
cated cores to run dedicated kernel functionality [8]. Corey
delegates control of shared data structures to the user appli-
cations to improve performance and scalability. The Multik-
ernel (Barrelfish) also has a distributed/networked approach
but tries to address heterogeneous hardware as well [5].
The Tessellation approach uses space-time partitioning of
the available resources for the user applications and system
services [13]. The approach explicitly tries to address the
issue of Quality-of-Service (QoS), which is important for
(soft) real-time systems. In particular, Tesselation explicitly
addresses the possibility to exploit hardware enhancements
provided by hardware platform. Distributed or agent-based
approaches for run-time task mapping like ADAM and Dis-
tRM focus on minimization of communication overhead
while trying to achieve a mapping quality close to a cen-
tralized (global view) approach [21], [32]. Most recently,
the distributed operating system nOS plans to address DVFS
on a many-core platform [30].

The future of many-core RTM potentially applies asym-
metric/dedicated cores and distributed approaches. Key
issues to achieve scalability are the maximization of local-
ity and mitigation of the management overhead. Symmetric
approaches (e.g. Linux) still provide sufficient scalability,
however locking is expected to become a bottleneck in
the future. Furthermore, the latency introduced by every

software-based RTM potentially limits the employment for
many-core systems.

B. HARDWARE ENHANCED RTM
The multitude of run-time management approaches is
extended by the possibility of enhancing RTM perfor-
mance by additional hardware. Especially, the emergence
of many-core systems induces a trend towards hardware
enhanced run-time management. This trend is caused by
certain challenges for many-cores: (1) Many-core can only
be leveraged by applications, if they contain sufficient
task/thread-level parallelism. Therefore, many-core applica-
tions tend to containmore fine-grained parallelism. (2) Local-
ity is getting crucially important. Data availability must be
optimized while contention must be minimized. Potentially,
the influence of communication versus computation raises.
Therefore, the requirements to the RTM scheduling/mapping
decisions increase. As a consequence, the impact of the RTM
overhead potentially rises: Due to the increasing number
of fine grained user tasks and the increasing requirements
regarding the management decisions, the management com-
plexity and overhead per tasks can be expected to become
larger. One of the directions to address these challenges for
many-core run-time management is the enhancement of the
RTM by means of dedicated hardware.

The evaluation of typical benchmark applications revealed
an average RTM contribution of 9.4%, and for I/O inten-
sive applications a contribution of 97.2% to the system
workload [41]. Generally, the management overhead causes
contention for computing, memory and communication
resources between the user application and the RTM. There-
fore, one of the purposes of RTM hardware enhancements is
to avoid additional management overhead by means of ded-
icated hardware [42]. Intrinsic capability of a dedicated and
parallel hardware implementation is the possibility to perform
RTM operations without interference to the user application.
More particular, a hardware implementation can be optimized
to exhibit significantly less jitter and lower latency compared
to a software approach [1]. Besides performance, the realiza-
tion of the RTM in hardware has the potential for a higher
energy efficiency. These benefits are desirable for emerg-
ing many-cores, soft and hard real time environments and
many other application scenarios. Drawbacks of a hardware
implementation are the additional area and wire overhead and
potential restrictions in terms of the RTM portability. One
of the primer requirements to a hardware implementation
for RTM is the reoccurrence of the RTM operations [49].
However, the decision which parts to implement in hardware
instead of software is not trivial. In the many-core regime,
the amount of available parallel computing power for user
application and for RTM raises, i.e. there may be sufficient
computing power to perform an RTM operation in software.
Therefore, the dedicated RTM hardware should only deal
with time critical operations.

The architecture of a hardware enhanced RTM for
many-core may be constituted by means of tightly coupled

121932 VOLUME 7, 2019



D. Gregorek et al.: DRACON: Dedicated Hardware Infrastructure for Scalable Run-Time Management on Many-Core Systems

FIGURE 1. Architectural patterns for hardware enhanced RTM. Hardware
enhancements are drawn gray.

modules, loosely coupled modules or a separate infrastruc-
ture. Fig. 1 outlines their different architectural patterns.
Actual realizations may use a combination or mixture of the
presented patterns. Additionally, the architecture of the RTM
enhancements depends on the overall system architecture of
a many-core, e.g. the memory hierarchy and the interconnect
topology.

Depending on the actual realization, different RTM con-
figurations may be assigned to the architectural patterns.
As an example, the hardware modules at the loosely cou-
pled approach may operate as a Master module controlling
the processing cores, another approach may use a loosely
coupled hardware enhancement as a Slave module which is
controlled by a software RTM running at the cores. Addition-
ally, depending on e.g. the type of a system call, the same
hardware module may operate as a Master in one situa-
tion and as a Slave in another. Different functionalities (e.g.
scheduling, synchronization, power management) may be
assigned to the hardware enhancements. As an example,
the STEPNP MP-SoC platform provides dedicated hardware
enhancements for message passing, context switching and
task scheduling [44]. Also depending on the actual realiza-
tion, the tightly coupled modules may serve as an enhance-
ment of the core itself, or as an enhancement of the intercon-
nect interface (e.g. a NoC router). A separate infrastructure
usually provides dedicated hardware resources for both RTM
computation and RTM communication.

C. CONTRIBUTION
DRACON is an experimental many-core architecture provid-
ing a dedicated infrastructure for hardware enhanced run-time
management. This work extends our contributions presented
in [22], [25] with respect to a systematic RTM taxonomy,
the integration of distributed RTM hardware accelerators and
a comprehensive evaluation of DRACON vs. state-of-the-art
HW and SW solutions. Our architecture instantiates multiple
distributed hardware modules dedicated to RTM functional-
ity. Due to the distribution of the hardware modules, a high
flexibility, scalability and large optimization potential exists.
DRACON particularly aims at embedded applications which
require hundreds of processing cores, dynamic run-timeman-
agement, a high responsiveness and low-power operation.
However, other requirements or many-core application sce-
narios may be applied and also benefit from the approach

FIGURE 2. Conceptual comparison of (a) homogeneous many-core system
versus (b) many-core containing a dedicated run-time management
infrastructure. The dedicated infrastructure reserves processing cores for
RTM computation (drawn gray) and applies additional interconnects. The
number of processing cores is identical for both cases.

(e.g. the separation of the hardware for user applications and
the RTM enhances the overall security capabilities of the
systems).

Based on preliminary work it became obvious, that a
centralized architecture for hardware enhanced RTM does
not provide sufficient scalability for many-core [24]. The
instantiation of a single hardware enhancedRTMprovides the
possibility to highly optimize the hardware module, however
it still may become a performance bottleneck. If the number
of cores exceeds typical multi-core scales and the task sizes
are small, the cores cannot be fully utilized anymore by the
centralized RTM. To overcome the limitations of a central-
ized hardware architecture, DRACON facilitates a clustered
and hardware enhanced approach for run-time management.
The hardware enhancements constitute a dedicated infras-
tructure providing dynamic run-time management to the user
application. Fig. 2 shows the conceptual comparison of a
homogeneous many-core versus a system with a dedicated
infrastructure (drawn gray).

The following Section II compares to related work.
Section III presents our contributions including the archi-
tecture of the DRACON RTM. Section IV evaluates the
performance of DRACON including a comparison to refer-
ence RTM implementations. Finally, Section V concludes the
paper.

II. RELATED WORK
The contribution is compared to related work regarding the
scalability of the RTM architecture and regarding the scope of
the employed RTM hardware enhancements. Generally, it is
expected that a larger scope of the RTM hardware enhance-
ments increases the performance but exhibits a higher area
overhead.

A. ENHANCEMENTS FOR SYNCHRONIZATION
The performance of synchronization mechanisms is of major
importance in parallel computing. Due to the increasing
number of processing cores and the increasing number of
fine-grained user tasks the synchronization effort is expected
to rise. Therefore, a multitude of synchronization approaches
implemented in hardware and software exist. The follow-
ing section outlines state-of-the-art approaches of hardware
enhancements for task synchronization.

VOLUME 7, 2019 121933



D. Gregorek et al.: DRACON: Dedicated Hardware Infrastructure for Scalable Run-Time Management on Many-Core Systems

STHORM is a clustered many-core computing plat-
form [6]. The platform follows a globally asynchronous
locally synchronous (GALS) approach and targets embedded
applications, e.g. in the field of computer vision. It consists
of up to 4 cluster each of which contains 1-16 process-
ing cores. Additionally, each cluster contains a dedicated
module for hardware synchronization (HWS) and a clus-
ter controller [51]. The clusters can be further extended by
hardware processing elements (HWPE) as accelerators for
user computation. STHORM potentially shares the global
interconnect between user and RTM. The programmable pro-
cessing cores are inside the so-called ENCore 16 block. The
most peculiar components of the HWS are atomic counters,
a programmable notifier and a dynamic task allocator. The
components of the HWS allow to provide a binary mutex
and interrupt-based event notification (no busy-wait). As an
example, the task synchronization capabilities of the HWS
module are exploited by the hardware-assisted run-time soft-
ware (HARS). However, until today, HARS only provides
intra-cluster task synchronization [36].

Further, a low power heterogeneous many-core SoC for
multimedia applications is presented by the Toshiba cor-
poration [38]. The SoC contains two ARM cores, two
reconfigurable processors, hardware accelerators and two
many-core clusters, each cluster containing 32 processing
cores. A bus interconnect is used for communication between
the many-core clusters. A single many-core cluster consists
of 32 VLIW processors called multimedia processors (MPB),
a NoC connecting the processors, local caches and a cluster
control module. For the NoC a tree topology was selected.
The cluster control module contains hardware semaphores
which assists in the synchronization of the VLIW processing
cores.

The MPPA-256 is a clustered and NoC-based many-core
architecture [17]. TheMPPA clusters are connected bymeans
of data and control NoCs. Similar to STHORM, each of the
16 processing clusters contains a dedicated and full-fledged
system core for resourcemanagement (RM). Basic purpose of
the RM system cores is the NoC RX event management and
DMA activation [18]. Additionally, the MPPA contains four
I/O subsystems, each of which are controlled by a quad-core
system processor. In particular, the main processes of the
applications reside at the dedicated quad-core system proces-
sor of the I/O subsystem. Therefore, the computation on the
clusters is initiated by the I/O subsystem.

B. ENHANCEMENTS FOR SCHEDULING
Hardware enhancements provide a promising approach to
tackle the complexity of the scheduling problem. Particularly
for a large number of cores and small sized tasks, the ris-
ing impact of the scheduling overhead demands for a ded-
icated hardware implementation [34]. Therefore, hardware
enhancements for scheduling are especially considerable for
multi- andmany-core systems. Additionally, hardware sched-
ulers also provide worthwhile characteristics for real-time
systems. As an example, the hardware implementation of

a priority scheduler offers substantial speed-up opportunities
compared to a software-based implementation. Generally,
the dedicated implementation of a hardware scheduler pro-
vides an additional space-time trade-off regarding the amount
and time-multiplexing of instantiated data path components.
As an example, the sorting procedure to dynamically obtain
the highest priority task can be accelerated by applying multi-
ple hardware comparators. The following section presents an
outline of state-of-the-art approaches in hardware enhance-
ments for scheduling with a focus on their architectural prop-
erties and implementation details.

Park et al. [43] implemented a hardware operating system
kernel (HOSK) as a loosely-coupled centralized master mod-
ule. Additionally to a common multiprocessor interconnect,
they apply a dedicated interconnect for context management.
The HOSK supports hardware implemented thread schedul-
ing,management of inter-process communication and context
switching in a multicore environment. The HOSK thread
scheduler applies dedicated RAM memory for storing thread
control data (instead of registers).

Nexus++ is using a Master-Slave configuration for task
dependency resolution and scheduling at run-time [15].
It supports a task-based programming language using prag-
mas. Origin of Nexus++ is a scalability bottleneck in
the software-based run-time library for task management.
Peculiarity of Nexus++ is the high degree of hardware
implementation, i.e. it is a fully hardware implemented task
management module. Recently, Nexus++ has been extended
by using multiple parallel units in the data path for task
management [14]. Similarly, Task Superscalar proposes an
out-of-order pipeline for resolving task dependencies at run-
time [20]. The approach is inspired by the classical out-of-
order pipeline to exploit instruction-level parallelism. Task
Superscalar targets for task management on many-core and
uses a distributed front-end, but a single centralized queue for
task dispatching. Nexus++ and Task Superscalar facilitate
a hardware enhanced centralized RTM architecture for task
management. However, both solutions lack scalability due to
the drawbacks of centralism in computation and communica-
tion.

IsoNet targets a scalable and distributed architecture for
task queueing and load balancing [35]. IsoNet has been
inspired by Carbon which uses a centralized hardware task
queue [34]. In contrast, IsoNet comprises a dedicated hard-
ware mesh network (separate infrastructure) to perform the
task queueing and task migration at run-time. However,
the actually implemented protocol to perform the load bal-
ancing is based on a tree structure comprising a (centralized)
root node. The reason is probably due to the lower complexity
of the tree based protocol which is fully implemented in
dedicated hardware. The approach claims to be scalable for
more than 1024 cores, but is constrained to independent tasks.
Also, due to a limited synchronization scheme, the Isonet
nodes may not find a globally optimal load balance.

As an alternative to fully dedicated networks, the interfaces
of existing interconnects may be enhanced by dedicated RTM

121934 VOLUME 7, 2019



D. Gregorek et al.: DRACON: Dedicated Hardware Infrastructure for Scalable Run-Time Management on Many-Core Systems

functionality. The Eclipse architecture employs a dedicated
hardware shell at the interconnect interfaces which provides
distributed task scheduling [46]. Heisswolf et al. propose a
hardware extension to NoC routers to provide quality-of-
service to the applications by means of decentralized NoC
region management [26]. Similarly, the routers might be
extended to accelerate the application mapping in a decen-
tralized fashion [52]. Also, the routers could be enwrapped
by additional hardware to dynamically map the task com-
munication to the common electrical or an additional optical
NoC [10], [11].

In comparison, the clustered DRACON architecture pro-
poses a dedicated infrastructure for RTM. The infrastruc-
ture comprises RTM computation and communication for
scalable, flexible and global-view run-time resource manage-
ment.

III. DRACON APPROACH
Distributed architectures have better scaling properties com-
pared to centralizedmanagement architectures. However, dis-
tribution comes with the overhead of data replication and
communication. Therefore, DRACON endeavours a clus-
tered RTMarchitecture to present a suitable trade-off between
a centralized and a fully distributed system.

A. RTM TAXONOMY
This work contributes a particular taxonomy to describe and
compare actual RTM architectures. The taxonomy uses three
major RTM components to assemble an RTM: RTM master,
RTM slave and RTM data table. An RTM master performs
decision making and global view operation. An RTM slave
assists locally and provides the interface to the processing
cores. An RTM data table contains the management data.

The taxonomy allows to represent the logical architecture
of an RTM. It describes the interaction, the responsibilities
and the hierarchy of the RTM components. Actually, different
logical architectures can be mapped onto the same hardware
architecture (e.g. a homogeneous many-core may run various
RTMs). Therefore, the taxonomy is independent of the under-
lying hardware architecture. Accordingly, the employment
of dedicated resources (see Sec. I-B) is only defined by the
mapping of the logical RTM architecture to the hardware.
As an example for using the taxonomy, Fig. 3 outlines cer-
tain logical RTM architectures. The related work Nexus++
corresponds to a centralized architecture (Fig. 3a), fos and
STHORM (and DRACON) correspond to a clustered archi-
tecture (Fig. 3b), Linux to a symmetric architecture (Fig. 3c)
and Isonet to a distributed one (Fig. 3d).

B. HARDWARE ARCHITECTURE
The DRACON approach facilitates a dedicated infrastructure
for run-time management [22]. The overall RTM system
constitutes a hardware enhanced and clustered RTM architec-
ture. The approach is particularly inspired by the Nexus++
hardware task manager [15], the software-based factored
operating system (fos) [53] and the STHORM platform [39].

FIGURE 3. Examples of RTM architectures. A centralized architecture 3a
has a single RTM master. A clustered architecture 3b groups the
computation resources while each group is controlled by one RTM master.
A symmetric architecture 3c has one RTM master per core and typically
employs shared memory. A fully distributed architecture 3d has one RTM
master per core each having private data. Subfigure 3e shows the legend.

The dedicated infrastructure enhances a common
many-core system and is hierarchical due to the clustering of
the resources to be managed. It is also distributed, since each
cluster can be managed autonomously. The RTM architecture
shown in Fig. 3b is established by an infrastructure of ded-
icated hardware resources enhancing a baseline many-core.
The baseline many-core system consists of numerous pro-
cessing cores, connected by a common many-core intercon-
nect. As a low-latency interface, a closely coupled hardware
enhanced RTM slave (HSLV) is connected to each core. The
HSLVs are connected to a local management interconnect,
which constitutes a cluster of core + HSLV pairs. Each
cluster is controlled by a hardware enhanced RTM master
(HMST). Communication between the HMSTs is done via a
global management interconnect. Fig. 4 gives an outline of
the proposed system architecture.

It is the exclusive purpose of the dedicated infrastructure
to perform the RTM computation and communication. There-
fore, no user computation or communication is allowed at the
dedicated management infrastructure. Oppositely, the base-
line system is not necessarily reserved for the user com-
putation and communication. Therefore, the baseline sys-
tem could also be used by the RTM adaptively at run-time.
In the current contribution, run-time adaptivity is not used,
i.e. exactly one RTM master is instantiated per HMST and
the RTM runs only at the dedicated infrastructure.

1) BASELINE SYSTEM
For the elaboration of the DRACON approach, a homoge-
neous many-core is considered as an initial baseline system.
The many-core may consist of arbitrary processing cores
and local memories which are connected by a common
many-core interconnect. Also, the DRACON approach does
not rely on any particular topology of the interconnect. There-
fore, mesh, torus or other interconnect topologies may be
applied. By default, DRACON assumes a non-coherent mem-
ory sub-system (similar to Intel SCC [31] and Swallow [29]).
The baseline system is not necessarily clustered by itself,
the hierarchy may only be constituted by the RTM dedicated
infrastructure.

VOLUME 7, 2019 121935



D. Gregorek et al.: DRACON: Dedicated Hardware Infrastructure for Scalable Run-Time Management on Many-Core Systems

FIGURE 4. Architecture of the DRACON infrastructure for run-time management (drawn gray) on top of a baseline many-core system (drawn
dimmed). The DRACON infrastructure consists of hardware enhanced RTM Masters (HMST) and hardware enhanced RTM Slaves (HSLV). The RTM
components communicate by means of message passing and perform the management operations at run-time. The processing cores are connected
by a common many-core interconnect.

The primary duty of the processing cores is the execution
of user tasks. The cores therefore consist of a programmable
processor, local memory and a network interface. The com-
mon baseline interconnect is responsible for data transfer
between the cores (task communication). It further allows
to have multiple connections/ports to the main memory. The
baseline interconnect may connect to any external memory or
I/O. However, off-chip communication is out of the scope of
this work.

2) DEDICATED INFRASTRUCTURE
The DRACON approach enhances a common many-core
architecture by means of a dedicated RTM infrastructure.
In a default case, the baseline interconnect is assumed to
be a NoC having a mesh topology. Therefore, the place-
ment/positioning of the hardware enhanced RTM masters is
expected to have an effect on the locality, i.e. the cores which
are grouped into a cluster should have a small Manhattan
Distance at the baseline many-core interconnect. Therefore
the chip is split into rectangles and the RTM masters are
placed evenly all-over the chip. Fig. 5 shows an XY view
of the placement of RTM masters for an 6x8 configuration
having 4 HMSTs and 44 cores.

a: HW-ENHANCED RTM MASTER
Each instance of a hardware enhanced RTM master (HMST)
realizes one instance of an RTM master (see III-A) on
a dedicated hardware resource. Each HMST has its pri-
vate address-space, the communication between one HMST
and it’s HSLVs and between the HMSTs is strictly
message based. An example message protocol for task man-
agement is presented in Sec. III-D. For RTM communica-

FIGURE 5. Placement of hardware enhanced RTM components (XY view).

tion, an HMST must contain an interface to the dedicated
management interconnects. To execute the actual RTM mas-
ter, a programmable RISC processor and SRAM memory
may be applied. To speed-up RTM operations, a HMST
can be enhanced by additional hardware accelerators. In our
present scenario we consider HW modules for the acceler-
ation of task synchronization, scheduling and mapping (see
also Sec. III-E). Also, further hardware optimizations can be
seamlessly integrated, e.g. an optimized instructions set for
the programmable RISC processor.

b: HW-ENHANCED RTM SLAVE
The hardware enhanced RTM slaves (HSLV) consist of
a messaging interface, a system-call dispatcher and a
tightly-coupled interface to the core. Also, task queues and

121936 VOLUME 7, 2019



D. Gregorek et al.: DRACON: Dedicated Hardware Infrastructure for Scalable Run-Time Management on Many-Core Systems

TABLE 1. Overview of DRACON system calls with inputs and outputs.

multiple context buffers can be integrated. The dedicated
hardware HSLV can be implemented with low area overhead
and operates in parallel to the core [22]. Any system-call
from a user task is fetched by the HSLV and dispatched to
its RTM master by means of a dedicated message. Due to
the dedicated infrastructure for the run-time management the
core is relieved from the execution of the RTM service.

C. TASK MANAGEMENT
Dynamic hardware faults or changes of the user requirements
make dynamic run-time task management a necessary fea-
ture of a many-core RTM. As a use case for DRACON,
a dynamic and scalable run-time task manager is proposed
and implemented based on the presented RTM taxonomy
(see Sec. III-A). The DRACON task manager constitutes a
clustered RTMarchitecture and provides the synchronization,
communication and scheduling of user tasks. The applied task
management mechanisms and algorithms are selected based
on their practicability to be implemented in hardware.

Due to its generality, the task management follows a rigor-
ous task graph based view to the user application. Every task
is fully exposed and handled by the RTM. The implemented
task manager does not require a priori knowledge of the char-
acteristics of an application, i.e. the task graph must not be
known to the task manager in advance. In particular, the task
synchronization and communication is dynamically signal-
ized by the user tasks at run-time. Nevertheless, each task is
usually associated to the vertex of a task graph. To optimize
the RTM operation at compile- or run-time, the task manager
may analyze and exploit the particular task graph properties.

According to the task graph model, we divide the life-time
of a task into the phases receive, compute and transmit.
Fig. 6 shows an example task graph which will be used
throughout the section to highlight the characteristics of the
proposed task manager. The task nc receives its input from
the tasks nx1, nx2 and sends its output to the tasks ny1, ny2.
An identifier (key) is assigned to each edge of the graph
(e.g. k1 for the edge from nx1 to nc). The task manager
provides a set of system calls to the user tasks to realize
the dynamic execution of the task graph model. Tasks can
be created by using the system call sysc-task-spawn.
The tasks signalize their termination by means of the system

FIGURE 6. Example task graph: The task nc receives its input data from
the tasks nx1 and nx2 and sends its output to the tasks ny1 and ny2.

call sysc-task-exit. To allow the MPI-like inter-task
communication, the task manager provides the system calls
sysc-info-send and sysc-info-recv. An overview
of the most important system-calls, which are provided by
the RTM is listed in Tab. 1. In our current implementation
we assume the system calls to be fully exposed to the user
application. However, a lightweight software layer can be
applied as future work to enable compatibility to state-of-the-
art software frameworks (e.g. OpenMP).

The run-time task management requires computation time
to service the system-calls and in particular for the scheduling
and mapping of the user tasks to processing cores. As user
applications may consist of hundreds or thousands of tasks,
a crucial trade-off between the quality and the overhead of
the run-time decisions has to be considered. A hardware
enhanced run-time manager hides the additional computation
time due to the provided parallelism. Fig. 7 illustrates the
benefits by means of a comparison between a software-based
implementation and the DRACON approach. A software
implementation will, at least initially, service a system call at
the local processing core and requires more context switches
(Fig. 7a). The hardware enhanced DRACON task manager
forwards a system call (Fig. 7b) by means of a message
to the HMST. The HMST services the system calls and
may precompute the scheduling before going idle. If a core
becomes idle, the next tasks can be dispatched immediately.
The responsiveness of the management system is therefore
improved and the cores are given more time for processing
the user task.

1) TASK MAPPING AND SCHEDULING
The quality of the mapping and scheduling decisions has
significant impact on the overall system performance [47].

VOLUME 7, 2019 121937



D. Gregorek et al.: DRACON: Dedicated Hardware Infrastructure for Scalable Run-Time Management on Many-Core Systems

FIGURE 7. Comparison of task management for the task nc having two input and two output edges. The
software based approach (Fig. 7a) runs at the same core and interrupts the user task for RTM service. The
software approach schedules serially to the core. The hardware enhanced solution DRACON (Fig. 7b)
implements the same RTM interface but sends messages between the HSLV and the HMST. The hardware
approach requires less interruption of the user task and schedules in parallel to the core. The outcome is an
earlier dispatching of the next waiting task nk .

However, a timing overheadmay be inducedwhen computing
the task management at run-time. The possibility of inte-
grating hardware accelerators into the DRACON architecture
enables the employment of high quality algorithms with a low
timing overhead.

To improve the quality of the mapping, the RTM may
leverage run-time information like Manhattan Distance and
task communication volume. For scheduling, the RTM can
consider the expected task execution times for priority sort-
ing. Due to the clustered architecture, DRACON uses a hier-
archical two-step task mapping approach. The first step maps
a user task to a cluster, the second step maps to the local
core. Task migration between clusters is performed by a load
balancing mechanism. Also, the task scheduling operates
in a decentralized manner: Each RTM master can operate
on its cluster independently from the others. By default,
the scheduling is quasi-preemptive: a running user task may
be preempted by a higher priority system task but not by
another user task.

2) TASK SYNCHRONIZATION AND COMMUNICATION
To have a flexible task synchronization and communication
sub-system which is able to work in a distributed environ-
ment, a communication infrastructure based on a distributed
dictionary was developed. Each RTM master maintains a
copy of the dictionary and forwards the synchronization

messages between the tasks. To speed-up the synchroniza-
tion, the dedicated interconnects are used for transporting the
synchronization messages.

A unique key is assigned to each task communication (i.e.
task graph edge). Inside a cluster, user tasks can directly
send and receive (non-empty) values by means of the com-
munication key. To handle the communication between tasks
residing in different clusters, the sub-system requires knowl-
edge of the locality of the tasks. Therefore, the synchro-
nization sub-system utilizes a dynamic localize-at-receive
mechanism: The position (cluster) of the key is connected
to the position of the receiving task. Every time a read
request occurs, and the belonging position of the key is
not yet revealed or has changed, the position of the key is
broadcasted by the HMST via the global management inter-
connect. The other HMSTs read that broadcast and update
their key positions accordingly. The broadcast is fully trans-
parent to the user tasks, and allows their synchronization,
even when tasks change their position from one cluster to
another. Any value which is send to a key, who’s position
is not yet discovered, is pending until the required broadcast
occurs. As soon as the position of a given key is known,
a transport of the waiting values to the discovered position is
triggered.

The task synchronization sub-system can be used to
quickly transport memory addresses between communicat-

121938 VOLUME 7, 2019



D. Gregorek et al.: DRACON: Dedicated Hardware Infrastructure for Scalable Run-Time Management on Many-Core Systems

TABLE 2. Overview of DRACON messages.

FIGURE 8. Task synchronization and communication example. Task nc
receives two memory addresses by means of system calls (→) and
messages via the dedicated interconnects (99K). Subsequently, the actual
data is read via the common interconnect (⇒).

ing tasks. The actual large-volume user data is subsequently
transported via the common interconnect. Therefore, arbi-
trary communication between dynamically mapped user
tasks can be resembled. Fig. 8 shows an example sequence
based on the task graph in Fig. 6 demonstrating the imple-
mented task synchronization and communication sub-system.

3) APPLICATION START-UP
Since the targeted applications potentially have a large num-
ber of parallel tasks, the DRACON RTM uses a recursive
task fork/join strategy for application start-up [22]. Every
recursive task spawns two additional system tasks and then
blocks until its child’s have terminated. As the last step of
the expansion, the actual child tasks of the application are
spawned. The final number of working child tasks is fixed
and determined by the application profile.

D. DEDICATED MESSAGE PROTOCOL
DRACON sends messages via the dedicated RTM intercon-
nects to implement the communication between the RTM
hardware components. Each message has a header and one
or more 32-Bit data fields. The header contains the message
type, at least the source address, the message priority and a
broadcast flag. E.g. load balancing messages may run at a
lower priority than task spawn or exit messages. Additionally,
a message drop mechanism may be applied to drop certain
low-priority messages during high workload on the intercon-
nects. The size of the message header depends on the actual
hardware configuration (i.e. number of components/address-
width) and the direction of the message. Tab. 2 gives a short
outline of the implemented messages. If a message is related
to a system call, the HSLV copies the required fields from the
registers of the processing core into the message (e.g. key and
data value for msg-info-send) and dispatches it to the
HMST. Furthermore, the potential response from the HMST
is injected into the processing core registers.

E. RT-LEVEL IMPLEMENTATION
The essence of the DRACON architecture has been imple-
mented at the register transfer level. The RT level design
comprises VHDL models for the dedicated RTM infrastruc-
ture and the baseline hardware (see Sec. III-B). Additionally,
a low-level C library was implemented as a software interface
to the dedicated hardware. In the current implementation,
the low-level C library basically acts as an interface between
the dedicated message passing infrastructure and the task
manager presented in Sec. III-C. But in general, arbitrary
hardware/software implementations for many-core RTM can
be applied. As an example, a hardware priority queue can be
connected to a software programmable RTM processor by
means of the C library. Key aspects of the dedicated RTM
infrastructure are the hardware enhanced message passing for
RTM communication and hardware enhancements for RTM
computation. For communication, dedicated RTM modules
for message transmission (TX) and reception (RX) are imple-
mented. The implementation of the dedicated management
interconnect is loosely based on the AMBA 2.0 specifica-
tions [3]. For RTM computation, VHDL modules for the

VOLUME 7, 2019 121939



D. Gregorek et al.: DRACON: Dedicated Hardware Infrastructure for Scalable Run-Time Management on Many-Core Systems

FIGURE 9. Hardware accelerators for dynamic task management.

HMST and HSLV were implemented. The VHDL model for
the baseline hardware comprises the processing core and a
VHDL behavioral model for accessing shared memory.

The main component of a hardware enhanced RTMmaster
is a programmable PLASMA/mLite RISC processor [45].
The current implementation uses a memory mapped connec-
tion scheme to the processor. Therefore, SRAM memories,
message TX/RX modules or further hardware accelerators
can be connected to the processor seamlessly. The low-level C
library is used to access the connected hardware components.
The HMST regularly polls for incoming RTM messages. If a
message arrives, the corresponding action is performed (see
Tab. 1). The hardware enhanced RTM slaves are tightly cou-
pled to custommade processing cores. The HSLV is basically
constituted by a finite state machine (FSM) which processes
the RTM communication messages and manipulates the reg-
ister file of the processing core. If a user task raises a system-
call, the core activates the FSM by means of the sysc signal.
The FSM may halt the core to read or write the register
file. Also, the FSM may take over the memory interface of
the core to exchange data between the register file and the
main memory (e.g. to perform a context switch). The core
facilitates a sub-set of the MIPS instruction set to model the
behavior of the actual user tasks.

As use cases for hardware accelerators, hardware modules
for task synchronization, priority scheduling and mapping
have been implemented at the RT level. To enable scalabil-
ity, the module for priority scheduling is constituted by a
fully parallel task sorting logic and an additional sequential
SRAM memory. Therefore, the highest priority tasks always
reside in a parallel region implemented by registers while
the lower priority tasks are stored in the sequential SRAM.
The architecture of the scalable hardware priority queue is
shown in Fig. 9a. The mapping module linearly searches
an SRAM which holds the status information of the cores.
One SRAM word holds the information regarding 4 cores.
During the search, the most suitable core corresponding to a
reference position is selected. Fig. 9b shows the architecture
of a hardware taskmappingmodule. Additionally, a hardware
synchronization module consisting of an array of FIFOs (one
FIFO per communication key) was implemented to partly
realize the task synchronization sub-system in hardware. The
FIFOs either hold the communication values or the tasks
waiting for values.

IV. EVALUATION
The following section covers the evaluation of the
DRACON architecture compared to particular RTM

reference architectures. Sec. IV-A introduces the experimen-
tal setup and the properties of the applied RTM reference
architectures. Sec. IV-B applies synthetic benchmarks to ana-
lyze certain design aspects under particularly adapted condi-
tions. Sec. IV-C evaluates the RTM architectures under real-
istic conditions using the MCSL benchmark suite. Finally,
in Sec. IV-D the gate level area overhead of DRACON is
approximated.

A. EXPERIMENTAL SETUP
The evaluation is performed bymeans of the transaction-level
simulation framework Agamid [23]. The framework provides
a fine-tuned combination of different levels of abstraction
to resemble a task-accurate simulation model. To speed up
simulation, task behaviour is abstracted by task execution
time and communication volume. However, major emphasis
is put on the synchronization model to keep a high degree
of accuracy. Further, a highly generic and template based
RTM is integrated into the framework to evaluate RTM imple-
mentations on a uniform basis. We use Agamid to model
HW/SW RTM architectures and compare DRACON to ref-
erence models. The timing model is calibrated by means of
cycle-accurate evaluations of the RTL model (timing param-
eters are given in [23, Tab. 3]). By convention, the model
is not related to a specific clock frequency and any timing
values are given without a unit. All RTM configurations use
a quasi non-preemptive scheduling. User tasks may only be
preempted by system tasks. The mapping of a user task to
a core is only performed, if there is an idle core available.
Depending on the RTM configuration, the processing cores
are either used for user computation, for RTM or shared
between both. All RTM configurations are multi-master sys-
tems by default. The multi-master RTMs use a recursive task
fork mechanism for application start-up (see III-C.3).

To compare the performance results of the hardware
enhanced run-time management, two major reference archi-
tectures were implemented. The first one is a classical sym-
metric software RTM (SW-Symm) using a single shared
memory. An aggressive synchronization model is used to
simulate access protection to shared RTM resources. The
synchronization model uses a semaphore-based locking
mechanism and only considers the semaphore access itself
as a critical section while the actual read and write opera-
tions on the shared resource can happen concurrently. There-
fore, the synchronization model mimics a high degree of
parallelism due to local caches but guarantees protection of
shared resources. The second major reference architecture
is an asymmetric software RTM (SW-Asym) having a more
progressive distributed architecture. The RTM masters of
SW-Asym communicate by means of message passing via
a shared interconnect and therefore RTM communication
interferes with the user communication. To evaluate the
impact of hardware accelerators for task management we
distinguish between the baseline DRACON architecture
without accelerators and DRACON-AC including acceler-
ators. In addition to the RTM architectures we compare

121940 VOLUME 7, 2019



D. Gregorek et al.: DRACON: Dedicated Hardware Infrastructure for Scalable Run-Time Management on Many-Core Systems

FIGURE 10. Overview of RTM design space parameters.

FIGURE 11. Synthetic benchmarks.

between different task scheduling and task mapping algo-
rithms. Fig. 10 gives an overview of the RTM parameters
which are considered for evaluation.

B. SYNTHETIC BENCHMARKS
In the following section synthetic benchmarks are used to
evaluate the performance of the RTM implementations. The
purpose of the synthetic benchmark applications is to provide
a clear knowledge of the application characteristics and to
introduce particular challenges to selected sub-systems of
the RTM. In other words, the characteristics of the synthetic
benchmarks shall avoid undesired RTM side-effects which
would be introduced by real-world benchmark applications.
In particular benchmarks consisting of independent tasks,
horizontal task dependencies, and barrier dependencies are
applied. An overview of the different task graph structures is
given in Fig. 11.

Independent tasks (Fig. 11a) are used to analyze the
RTM performance for task scheduling and task dispatching.
The horizontal benchmark (Fig. 11b) consists of multiple
sequences of tasks. Inside a sequence, tasks read input from
the preceding tasks and communicate the output to their suc-
cessor. The horizontal task communication is used to analyze
the RTM mapping capabilities. To analyze the task synchro-
nization capabilities of the RTM, a barrier scheme is applied
(Fig. 11c). To model a barrier, additional synchronization
tasks are inserted into a task graph.

1) SCHEDULING
The following section considers the employment of basic
run-time algorithms for scheduling of independent tasks
(Fig. 11a) on a single cluster of cores. It is to be investigated,
if the employment of a higher quality run-time scheduler
(e.g. priority-based) reveals a better result compared to other
scheduling algorithms. Thereby, the impact of the actual
run-time scheduling overhead is considered. To evaluate the
scheduling effects, a synthetic benchmark consisting of inde-
pendent tasks is considered. The execution time of the tasks
is exposed to the scheduler and is taken into account for
priority-based scheduling. Tasks with a larger execution time

are selected first. Random scheduling is employed as refer-
ence and used to normalize the evaluation results. The task
sizes l are varied by using a uniform distribution between
1 to 20000. Further, the number of cores and the number
of tasks is varied. Each of the design points is tested for
100 iterations, each iteration having a different task set.
An algorithm gain G is computed by comparing the speedup
using priority scheduling versus random scheduling (see
Eqn. 1).

G = Sprio/Srand = Trand/Tprio (1)

Fig. 12a shows the gain Greal by comparing priority
scheduling vs. random scheduling using DRACON-AC. The
priority scheduling exhibits a performance gain vs. random
scheduling of up to 25%. The ratio between SW-Symm and
DRACON-AC is shown in Fig. 12b. DRACON-AC using
a hardware priority queue exhibits a 5% performance gain
considering real RTM overhead for a rising number of tasks.
The symmetric software-based RTM allows to use prior-
ity scheduling, however it is potentially not scalable if the
number of cores becomes larger. The priority scheduling
appears generally not applicable for asymmetric software-
based RTMs due to the limited number of RTM masters and
the high management overhead. For the DRACON architec-
ture, the overhead of priority scheduling can be significantly
mitigated by the integration of hardware implemented prior-
ity queues (DRACON-AC).

2) TASK MAPPING
To evaluate the impact of task mapping a synthetic bench-
mark having horizontal dependencies between communicat-
ing tasks is used (Fig. 11b). The amount of sequences is
expressed by the variable p. Since each sequence is running
independently of the others, p also denotes the degree of
parallelism of the benchmark. The optimal mapping of the
benchmark would use m = p cores, where each sequence
of tasks is mapped onto one of the cores and no inter-core
communication would occur.

For the evaluation, Round-Robin, and two Nearest-
Neighbor run-time mapping heuristics are applied. As a ref-
erence, random mapping is used. The Round-Robin (RR)
maps to the first idle core in a round-robin fashion, therefore
generating a moderate degree of locality in the mapping
decisions. The Nearest-Neighbor algorithms map to an idle
core nearest to a given reference position [12]. The first
Nearest-Neighbor maps nearest to the location of the parent
task. The second algorithm, called Near-Data (ND), maps
nearest to the focal point of the input data. The Random
and Round-Robin mapping both have O(1) time com-
plexity. For the Nearest-Neighbor mappings a linear algo-
rithm having O(m) time complexity has been implemented.
The DRACON-AC implementation uses a linear hard-
ware search engine to accelerate the mapping decisions
(see Sec. III-E).

Generally, task mapping can not be considered inde-
pendently of task scheduling, i.e. the task selection can

VOLUME 7, 2019 121941



D. Gregorek et al.: DRACON: Dedicated Hardware Infrastructure for Scalable Run-Time Management on Many-Core Systems

FIGURE 12. Scheduling.

have considerable influence to the subsequent locality of
the task mapping. For this evaluation, First Come First
Serve (FCFS) scheduling has been selected for the givenmap-
ping benchmark. Due to the horizontal task dependencies,
the FCFS scheduling generates a depth-first order preferring
tasks inside a sequence before starting a new sequence. For
the given evaluation, the benchmark consists of p = 16
sequences, each sequence having 8 tasks. The mean task
size has been set to l = 32000. The mean communica-
tion volume between two tasks amounts to 8000 bit. The
task sizes and communication volume have a random uni-
form distribution and a standard deviation of σl = 800
(task size) and σv = 100 (communication volume). As a
parameter the communication volume between the tasks is
varied.

Fig. 13 shows the gain of Round-Robin, Near-Parent
and Near-Data mapping compared to random mapping for
DRACON-AC. As shown, the Near-Data algorithm has a
reasonable gain if the communication volume is increased.
However, the overall speedup generally decreases if the com-
munication volume is increased. Further, there is a break-even
point between RR mapping and Nearest-Neighbor mapping:
For small communication volume RR mapping performs
better, for large communication volume Nearest-Neighbor
mapping gives better results.

3) SYNCHRONIZATION
To evaluate the impact of task synchronization to the applica-
tion performance, a synthetic benchmark describing a barrier
synchronization scenario was implemented (Fig. 11c). The
number of barriers is varied while the total amount of work
and the degree of parallelism is kept constant. In other
words, the number of tasks increases proportionally to the
number of barriers while the task granularity decreases.
Fig. 14 shows the corresponding application speedup.
The figures reveal the significant influence of the syn-
chronization barriers to the application performance.
DRACON-AC uses memory-mapped hardware FIFOs to

FIGURE 13. Task mapping: Gain vs. random mapping using DRACON-AC.

FIGURE 14. Synchronization: Varying barrier count.

accelerate task synchronization (see Sec. III-E). Due to the
memory mapping overhead, there is further optimization
potential for DRACON-AC by improving the interface to
the hardware FIFOs (e.g. using a dedicated instruction set
architecture).

121942 VOLUME 7, 2019



D. Gregorek et al.: DRACON: Dedicated Hardware Infrastructure for Scalable Run-Time Management on Many-Core Systems

FIGURE 15. Dispatching: Speedup versus task size.

4) DISPATCHING
Fast dispatching of user tasks is a crucial requirement in the
many-core domain. To evaluate the dispatching capabilities
of the proposed DRACON architecture a synthetic bench-
mark consisting of independent tasks is applied (Fig. 11a).
For the run-time task management, a simple FCFS schedul-
ing algorithm and a simple round-robin mapping is used.
The task dispatching operates in a distributed environment
having multiple RTM masters. The recursive application
start-up mechanism (see Sec. III-C.3) is applied. The eval-
uation omits DRACON-AC as it does not contain addi-
tional implementation for task dispatching compared to
DRACON.

In the experiment, the task size is varied while only one
cluster of 32 cores is used. The number of tasks is set to
n = 100. Fig. 15a shows the speed-up versus the task size
using a single RTMmaster for SW-Asym and DRACON. The
speedup is limited by the management overhead for small-
sized user tasks. For larger user tasks, the speedup raises up to
theoretical maximum S = n · l/dn/me · l = 100/d100/32e =
100/4 = 25. All three implementations have comparable
performance and a steep increase in application speedup if
the task size grows around 1000.

Fig. 15b shows the achievable application speedup when
applying multiple clusters of cores. The number of overall
processing cores is a constant and set to 256 cores. For DRA-
CON and the asymmetric software RTM the number of RTM
masters is set to k = 16. The number of user tasks is increased
to n = 1000. Notably, the SW-Asym and DRACON have a
better performance for task sizes of l ≈ 1000, however have
a maximum speedup of S = 200 for larger user tasks. For
large user tasks, the speedup of the symmetric software RTM
gets close to the theoretical maximum of m = 256 due to the
larger number of user cores.

5) RTM MASTER
The number of RTM masters and their implementation can
have significant impact to the overall system performance.
Therefore, an analysis varying the number of RTM masters
while keeping the number of cores constant is performed.

A benchmark consisting of horizontal task dependencies
(Fig. 11b) and a large number of concurrent sequences (p =
2000) is applied. Fig. 16a, and 16b show the results for
SW-Asym, and DRACON. On the average, one RTM master
per 16 cores appears to be optimal. The evaluation indicates
the feasibility and usefulness of asymmetric RTM architec-
tures. While increasing the number of cores, increasing the
number of RTM masters maintains a reasonable application
speedup. DRACON has a considerably better performance
compared to SW-Asym. Therefore, dedicated interconnects
potentially further improve the scalability of RTM implemen-
tations.

C. MCSL BENCHMARKS
The following section applies MCSL task graph benchmarks
which are derived from real-world applications [37]. In par-
ticular the task graphs for a sparse matrix solver (Sparse),
a robot control (Robot), Fpppp a quantum chemistry applica-
tion, and H264 video decoder are used. The actual mapping
of the tasks is computed by the RTM at run-time. There-
fore, the evaluation does not consider the static task map-
pings which are proposed by MCSL, but only the task graph
models. The evaluation compares between the RTM archi-
tectures SW-Symm, SW-Asym, DRACON and DRACON-
AC. In addition to the regular H264 benchmark, a modified
version, the H264p is applied. The regular H264 has a large
degree of concurrency, however it also has a dominating
sequential section resulting into a limited maximum speedup.
To show the speedup capabilities of the highly concurrent
H264 section, the modified version (H264p) is applied where
the sequential bottleneck was removed. The characteristics of
the benchmark applications (maximum speedup Smax , num-
ber of task ncnt, number of edges ecnt, accumulated com-
putation timetwrk and accumulated communication volume
cvol in 32bit words) is shown in Tab. 3.

1) SINGLE-PROGRAM
At a first instance, only single program benchmarks are
applied, i.e. only one instance of a MCSL benchmark is
running at a time. As a metric, the parallel application

VOLUME 7, 2019 121943



D. Gregorek et al.: DRACON: Dedicated Hardware Infrastructure for Scalable Run-Time Management on Many-Core Systems

FIGURE 16. Evaluation of optimal number of RTM masters.

TABLE 3. Benchmark characteristics [37].

speedup S is applied while varying the number of cores and
RTMmasters. By default, priority-basedMax-Bottom-Level-
First scheduling [48] and Round-Robin (RR) mapping is
applied.

Fig. 17 shows the result for the MCSL benchmarks.
At m = 512 cores, DRACON-AC using ND mapping
achieves an improvement of 15.21% vs. SW-Asym. Notably,
the Near-Data (ND) mapping algorithm can only be exploited
by the DRACON-AC architecture due to its high RTM
overhead. However, RR mapping reveals comparable per-
formance for the MCSL benchmarks while having lower
complexity. For the MCSL Sparse and Fpppp benchmark
DRACON-AC achieves best results using either RR or ND
mapping. For H264p SW-Asym, DRACON and DRACON-
AC using RR mapping achieve similar performance to
DRACON-AC using ND mapping. Further, for H264p the
SW-Symm RTM using either RR or ND mapping does not
scale well beyond m ≥ 256 cores.

2) RANDOM INJECTION
The following analysis considers the periodic injection of
the Sparse, Robot, Fpppp and H264 workloads. Each work-
load has a probability of 0.25 to be launched at the begin-
ning of an injection interval. The length of an injection
interval thereby has a Poisson distribution. Due to memory
restrictions of Agamid, especially for large configurations
(m ≥ 1024), only a limited amount of injection intervals can
be simulated. To get a more meaningful result, the output is
averaged over multiple simulation runs (samples). Neverthe-
less, simulations considering a large system and a high injec-
tion frequency potentially have a lower accuracy. According

to the preceding evaluations, priority-based scheduling and
RR mapping is applied for all the RTM architectures.

Fig. 18 shows the normalized application speedup for an
injection frequency of (10−8/ns) with respect to a varying
number of cores. As additional reference models, SW-Asym-
GI having a global common interconnect andMS-HWhaving
a single but highly optimized RTM masters are considered in
the this section. While SW-Asymmay correspond to fos [53],
SW-Asym-GI has a strong similarity to STHORM [39],
MS-HW can be seen as a counterpart to Nexus++ [15].
As a zero reference measurement, Ref-Zero shows the appli-
cation performance when using a centralized, zero overhead
RTM. The results indicate a rising impact of RTM commu-
nication for a larger number of cores. The more cores, the
smaller the performance difference between DRACON and
DRACON-AC. DRACON and DRACON-AC reveal a much
better scalability compared to the symmetric and asymmetric
software references: 6.12% improvement for DRACON-AC
vs. SW-Asym at m = 256 and 6.27% at m = 1024. While
SW-Symm suffers from lock contention with a larger number
of cores, SW-Asym and SW-Asym-GI suffer from contention
at the common interconnect between user and RTM. Thereby,
high priority RTM communication may block and slow down
user communication.

D. GATE-LEVEL ANALYSIS
Tab. 4 provides values for the gate-level area of HMSTs,
HSLVs and user processing cores. The values have been
obtained using an industrial 65nm low-power process. Each
HMST and each user processing core contains one dedicated
RISC processor which is implemented as mLite/PLASMA
CPU [45]. 32-Bit RX buffers for message communication
are considered inside each HMST. Assuming a system of
256 processing cores including 16 HMSTs the RX buffers
have a size of 16 entries which gives one RX entry per
connected core at the local and the global management inter-
connect. To address the impact of on-chip memory 4kB of
SRAM per user processing core and HMST are included.
Eqn. 2 can be applied to estimate the area overhead of
DRACON (where m is the overall number of processing

121944 VOLUME 7, 2019



D. Gregorek et al.: DRACON: Dedicated Hardware Infrastructure for Scalable Run-Time Management on Many-Core Systems

FIGURE 17. MCSL benchmarks including task communication.

cores, and k is the number of hardware enhanced RTM
masters and A[x] is the area of design unit x). Consider-
ing 256 processing cores and 16 RTM masters, DRACON
exhibits an area overhead of 3.01%.

�area=
(m−k) · (A[Core]+A[HSLV ])+k · A[HMST ]

m · A[Core]
(2)

V. CONCLUSION
The many-core regime raises novel paradigms for hard-
ware and software designers: The impossibility of full tran-
sistor utilization (dark silicon), an increasing number of
fine-grained user tasks, and 2D/3D network-on-chips con-
necting a large number of cores. Therefore, the requirements
to architectures and algorithms for run-time task and power

VOLUME 7, 2019 121945



D. Gregorek et al.: DRACON: Dedicated Hardware Infrastructure for Scalable Run-Time Management on Many-Core Systems

FIGURE 18. Random injection and varying number of cores.

TABLE 4. Area for 65nm technology [µm2].

management also increase. Asymmetric software architec-
tures (e.g. fos [53]) provide an advancement in scalability
compared to symmetric architectures (e.g. Linux), however
both suffer from software-induced management latencies.

This work contributes the DRACON architecture,
a dedicated infrastructure for hardware enhanced run-time
management. Purpose of the parallel RTM hardware is the
elimination of user interferences and the significant miti-
gation of RTM overhead. The DRACON architecture facil-
itates dedicated hardware resources for RTM computation,
dedicated interconnects and a low-latency interface between
the user cores and the RTM. Additionally, DRACON allows
the integration of distributed hardware accelerators for RTM
algorithms.

As a use case for the DRACON architecture, dynamic task
management is considered. The evaluation of DRACON and
reference implementations proves the efficiency of using a
dedicated infrastructure to enhance computation and commu-
nication for RTM in the many-core domain. Using DRACON
achieves an improvement of up to 15.21% for single-program
and 6.12% - 6.27% improvement for multi-program. For
256 processing cores including 16 RTM masters, an afford-
able area overhead of 3.01% is approximated. In contrast to
previous works (e.g. Nexus++ [15], IsoNet [35], STHORM
[39]), DRACON provides improved scalability, performance
and task management functionality. A symmetric software
reference revealed a scalability bottleneck due to global RTM
lock contention. Also, symmetric architectures may suffer
from a large, global view search space of the management

algorithms. On the other hand, fully distributed approaches
suffer from a higher communication overhead. Therefore,
a clustered approach appears necessary to enable scalabil-
ity for many-cores. However, reference implementation of
a clustered and asymmetric software RTM revealed lim-
ited scalability due to contention between user and RTM
communication at the interconnects. In comparison, DRA-
CON improves scalability by using dedicated interconnects
for RTM communication and distributed hardware acceler-
ators for low-overhead and high-quality RTM management
algorithms. Consequently, it appears worthwhile to add a
dedicated infrastructure for many-core RTM. Subsequent
research approaches evolve for adaptive implementations of
hardware enhanced resource management.

REFERENCES
[1] J. Adomat, J. Furunas, L. Lindh, and J. Starner, ‘‘Real-time kernel in hard-

ware RTU: A step towards deterministic and high-performance real-time
systems,’’ in Proc. 8th Euromicro Workshop Real-Time Syst., Jun. 1996,
pp. 164–168.

[2] H. Akkan, M. Lang, and L. Liebrock, ‘‘Understanding and isolating the
noise in the Linux kernel,’’ Int. J. High Perform. Comput. Appl., vol. 27,
no. 2, pp. 136–146, Feb. 2013.

[3] AMBA Specification Rev 2.0, ARM, Cambridge, U.K.,1999.
[4] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,

K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick, ‘‘The landscape of parallel computing research:
A view from Berkeley,’’ EECS Dept., Univ. California, Berkeley, CA,
USA, Tech. Rep. UCB/EECS-2006-183, 2006.

[5] A. Baumann, P. Barham, P. E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, A. Singhania, ‘‘The multikernel: A new os
architecture for scalable multicore systems,’’ in Proc. ACM SIGOPS 22nd
Symp. Oper. Syst. Princ., Oct. 2009, pp. 29–44.

[6] L. Benini, E. Flamand, D. Fuin, and D. Melpignano, ‘‘P2012: Building
an ecosystem for a scalable, modular and high-efficiency embedded com-
puting accelerator,’’ in Proc. Design, Automat. Test Europe Conf. Exhib.
(DATE), Mar. 2012, pp. 983–987.

[7] S. Borkar, ‘‘Thousand core Chips—A technology perspective,’’ in Proc.
DAC, Jun. 2007, pp. 746–749.

[8] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek, R. Morris,
A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and Z. Zhang, ‘‘Corey: An
operating system for many cores,’’ in Proc. 8th USENIX Conf. Oper. Syst.
Design Implement., Dec. 2008, pp. 43–57.

[9] S. Boyd-Wickizer, A. T. Clements, Y. Mao, A. Pesterev, M. F. Morris,
R. Morris, and N. Zeldovich, ‘‘An analysis of Linux scalability to many
cores,’’ in Proc. OSDI, Oct. 2010, pp. 1–16.

[10] W. Büter, C. Osewold, A. Ahmed, D. Gregorek, andA. Garcia-Ortiz, ‘‘ Pre-
dictable photonic interconnects using an autonomous channel management
and a TDMA-NoC,’’ in Proc. 10th Int. Symp. Reconfigurable Commun.-
Centric Syst.–Chip (ReCoSoC), Jun./Jul. 2015, pp. 1–6.

[11] W. Büter, C. Osewold, D. Gregorek, andA. Garcia-Ortiz, ‘‘DCM:An IP for
the autonomous control of optical and electrical reconfigurable NoCs,’’ in
Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE), Mar. 2014, pp. 1–4.

[12] E. Carvalho, N. Calazans, and F. Moraes, ‘‘Heuristics for dynamic task
mapping in NoC-based heterogeneousMPSoCs,’’ in Proc. 18th IEEE/IFIP
Int. Workshop Rapid Syst. Prototyping (RSP), May 2007, pp. 34–40.

[13] J. A. Colmenares, S. Bird, H. Cook, P. Pearce, D. Zhu, J. Shalf,
S. Hofmeyr, K.Asanović, and J. Kubiatowicz, ‘‘Resource management
in the tessellation manycore OS,’’ in Proc. HotPar, vol. 10, Jun. 2010,
pp. 1–6.

[14] T. Dallou, N. Engelhardt, A. Elhossini, and B. Juurlink, ‘‘Nexus#:
A distributed hardware task manager for task-based programming mod-
els,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS),
May 2015, pp. 1129–1138.

[15] T. Dallou and B. Juurlink, ‘‘Hardware-based task dependency resolution
for the starss programming model,’’ in Proc. 41st Int. Conf. Parallel
Process. Workshops (ICPPW), Sep. 2012, pp. 367–374.

[16] A. Danowitz, K. Kelley, J. Mao, J. P. Stevenson, and M. Horowitz,
‘‘CPU DB: Recording microprocessor history,’’ Commun. ACM, vol. 55,
no. 4, pp. 55–63, 2012.

121946 VOLUME 7, 2019



D. Gregorek et al.: DRACON: Dedicated Hardware Infrastructure for Scalable Run-Time Management on Many-Core Systems

[17] B. D. de Dinechin, R. Ayrignac, P.-E. Beaucamps, P. Couvert, B. Ganne,
P. G. de Massas, F. Jacquet, S. Jones, N. M. Chaisemartin, F. Riss, and
T. Strudel, ‘‘A clusteredmanycore processor architecture for embedded and
accelerated applications,’’ in Proc. IEEE High Perform. Extreme Comput.
Conf. (HPEC), Sep. 2013, pp. 1–6.

[18] B. D. de Dinechin, P. G. de Massas, G. Lager, C. Léger, B. Orgogozo,
J. Reybert, and T. Strudel, ‘‘A distributed run-time environment for the
Kalray MPPA-256 integrated manycore processor,’’ Procedia Comput.
Sci., vol. 18, pp. 1654–1663, Jan. 2013.

[19] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger,
‘‘Dark silicon and the end of multicore scaling,’’ in Proc. 38th Annu. Int.
Symp. Comput. Archit. (ISCA), Jun. 2011, pp. 365–376.

[20] Y. Etsion, F. Cabarcas, A. Rico, A. Ramirez, R. M. Badia, E. Ayguade,
J. Labarta, and M. Valero, ‘‘Task superscalar: An out-of-order task
pipeline,’’ in Proc. 43rd Annu. IEEE/ACM Int. Symp. Microarchit.,
Dec. 2010, pp. 89–100.

[21] M. A. A. Faruque, R. Krist, and J. Henkel, ‘‘ADAM: Run-time agent-based
distributed applicationmapping for on-chip communication,’’ inProc. 45th
Annu. Design Automat. Conf. (DAC), Jun. 2008, pp. 760–765.

[22] D. Gregorek and A. Garcia-Ortiz, ‘‘The DRACON embedded many-
core: Hardware-enhanced run-time management using a network of ded-
icated control nodes,’’ in Proc. Int. Symp. VLSI (ISVLSI), Jul. 2015,
pp. 416–421.

[23] D. Gregorek and A. Garcia-Ortiz, ‘‘The Agamid design-space exploration
framework task-accurate simulation of hardware-enhanced run-time man-
agement for many-core,’’ Des. Automat. Embedded Syst., vol. 22, no. 4,
pp. 293–314, Dec. 2018.

[24] D. Gregorek, C. Osewold, and A. Garcia-Ortiz, ‘‘A scalable hardware
implementation of a best-effort scheduler for multicore processors,’’ in
Proc. Euromicro Conf. Digit. Syst. Design (DSD), Sep. 2013, pp. 721–727.

[25] D. Gregorek, R. Schmidt, and A. Garcia-Ortiz, ‘‘Transaction level analysis
for a clustered and hardware-enhanced task manager on homogeneous
many-core systems,’’ Feb. 2015, arXiv:1502.02852. [Online]. Available:
https://arxiv.org/abs/1502.02852

[26] J. Heiβwolf, A. Zaib, A. Weichslgartner, R. König, T. Wild, J. Teich,
A. Herkersdorf, and J. Becker, ‘‘Hardware-assisted decentralized resource
management for networks on chip with QoS,’’ in Proc. IEEE 26th Int.
Parallel Distrib. Process. Symp. Workshops PhD Forum, May 2012,
pp. 234–241.

[27] J. Henkel, H. Khdr, S. Pagani, and M. Shafique, ‘‘New trends in dark
silicon,’’ in Proc. 52nd ACM/EDAC/IEEE Design Automat. Conf. (DAC),
Jun. 2015, pp. 1–6.

[28] A. Herkersdorf, A. Lankes, M. Meitinger, R. Ohlendorf, S. Wallentowitz,
T. Wild, and J. Zeppenfeld, ‘‘Hardware support for efficient resource
utilization in manycore processor systems,’’ in Multiprocessor System–
Chip. New York, NY, USA: Springer, 2011, pp. 57–87.

[29] S. J. Hollis and S. Kerrison, ‘‘Overview of swallow—A scalable 480-core
system for investigating the performance and energy efficiency of many-
core applications and operating systems,’’ Apr. 2015, arXiv:1504.06357.
[Online]. Available: https://arxiv.org/abs/1504.06357

[30] S. J. Hollis, E. Ma, and R. Marculescu, ‘‘nOS: A nano-sized distributed
operating system for many-core embedded systems,’’ in Proc. IEEE
34th Int. Conf. Comput. Design (ICCD), Oct. 2016, pp. 177–184. doi:
10.1109/ICCD.2016.7753278.

[31] J. Howard, S. Dighe, S. R. Vangal, G. Ruhl, N. Borkar, S. Jain,
V. Erraguntla, M. Konow, M. Riepen, M. Gries, G. Droege,
T. Lund-Larsen, S. Steibl, S. Borkar, V. K. De, and R. Van Der Wijngaart,
‘‘A 48-core IA-32 processor in 45 nm CMOS using on-die message-
passing and DVFS for performance and power scaling,’’ IEEE
J. Solid-State Circuits, vol. 46, no. 1, pp. 173–183, Jan. 2011.

[32] S. Kobbe, L. Bauer, D. Lohmann, W. Schröder-Preikschat, and J. Henkel,
‘‘DistRM: Distributed resource management for on-chip many-core sys-
tems,’’ in Proc. 7th IEEE/ACM/IFIP Int. Conf. Hardw./Softw. Codesign
Syst. Synth., Oct. 2011, pp. 119–128.

[33] O. Krieger, M. Auslander, B. Rosenburg, R. W. Wisniewski, J. Xenidis,
D. D. Silva, M. Ostrowski, J. Appavoo, M. Butrico, M. Mergen,
A.Waterland, and V. Uhlig, ‘‘K42: Building a complete operating system,’’
in Proc. 1st ACM SIGOPS/EuroSys Eur. Conf. Comput. Syst., Apr. 2006,
pp. 133–145.

[34] S. Kumar, C. J. Hughes, and A. Nguyen, ‘‘Carbon: Architectural support
for fine-grained parallelism on chip multiprocessors,’’ ACM SIGARCH
Comput. Archit. News, vol. 35, no. 2, pp. 162–173, May 2007.

[35] J. Lee, C. Nicopoulos, H. G. Lee, S. Panth, S. K. Lim, and J. Kim,
‘‘IsoNet: Hardware-based job queue management for many-core architec-
tures,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 6,
pp. 1080–1093, Jun. 2013.

[36] Y. Lhuillier, M. Ojail, A. Guerre, J.-M. Philippe, K. B. Chehida,
F. Thabet, C. Andriamisaina, C. Jaber, and R. David, ‘‘HARS: A hardware-
assisted runtime software for embedded many-core architectures,’’ ACM
Trans. Embedded Comput. Syst. (TECS), vol. 13, no. 3, Mar. 2014,
Art. no. 102.

[37] W. Liu, J. Xu, X.Wu, Y. Ye, X.Wang,W. Zhang, M. Nikdast, and Z.Wang,
‘‘A NoC traffic suite based on real applications,’’ in Proc. IEEE Comput.
Soc. Annu. Symp. VLSI, Jul. 2011, pp. 66–71.

[38] T. Miyamori, H. Xu, T. Kodaka, H. Usui, T. Sano, and J. Tanabe,
‘‘Development of low power many-core soc for multimedia applications,’’
in Proc. Design, Automat. Test Eur. Conf. Exhib. (DATE), Mar. 2013,
pp. 773–777.

[39] J. Mottin, M. Cartron, and G. Urlini, ‘‘The STHORM platform,’’ in
Smart Multicore Embedded System. New York, NY, USA: Springer, 2014,
pp. 35–43.

[40] S. Muir and J. Smith, ‘‘AsyMOS-an asymmetric multiprocessor operat-
ing system,’’ in Proc. IEEE Open Archit. Netw. Program., Apr. 1998,
pp. 25–34.

[41] D. Nellans, R. Balasubramonian, and E. Brunvand, ‘‘A case for increased
operating system support in chip multi-processors,’’ in Proc. 2nd IBM
Watson, Sep. 2005, pp. 1–10.

[42] V. Nollet, D. Verkest, and H. Corporaal, ‘‘A safari through the MPSoC
run-time management jungle,’’ J. Signal Process. Syst., vol. 60, no. 2,
pp. 251–268, 2010.

[43] S. Park, D.-S. Hong, and S. I. Chae, ‘‘A hardware operating system kernel
for multi-processor systems,’’ IEICE Electron. Express, vol. 5, no. 9,
pp. 296–302, May 2008.

[44] P. G. Paulin, C. Pilkington, M. Langevin, E. Bensoudane, D. Lyonnard,
O. Benny, B. Lavigueur, D. Lo, G. Beltrame, V. Gagne, G. Nicolescu,
‘‘Parallel programming models for a multiprocessor soc platform applied
to networking and multimedia,’’ IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 14, no. 7, pp. 667–680, Jul. 2006.

[45] S. Rhoads. Plasma-Most MIPS I (TM) Opcodes: Overview. Inter-
net. Accessed: May 2, 2012, [Online]. Available: http://opencores.
org/project,plasmas

[46] M. J. Rutten, J. T. J. van Eijndhoven, E. G. T. Jaspers, P. van der Wolf,
O. P. Gangwal, A. Timmer, and E.-J. D. Pol, ‘‘A heterogeneous multi-
processor architecture for flexible media processing,’’ IEEE Design Test
Comput., vol. 19, no. 4, pp. 39–50, Jul./Aug. 2002.

[47] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, ‘‘Mapping on
multi/many-core systems: Survey of current and emerging trends,’’ inProc.
50th Annu. Design Automat. Conf. (DAC), May 2013, pp. 1–10.

[48] O. Sinnen, Task Scheduling for Parallel Systems, vol. 60. Hoboken, NJ,
USA: Wiley, 2007.

[49] G. H. Sockut, ‘‘Firmware/hardware support for operating systems: Prin-
ciples and selected history,’’ ACM SIGMICRO Newslett., vol. 6, no. 4,
pp. 17–26, Dec. 1975.

[50] M. B. Taylor, ‘‘Is dark silicon useful? Harnessing the four horsemen of
the coming dark silicon apocalypse,’’ in Proc. 49th Annu. Design Automat.
Conf., Jun. 2012, pp. 1131–1136.

[51] F. Thabet, Y. Lhuillier, C. Andriamisaina, J.-M. Philippe, and R. David,
‘‘An efficient and flexible hardware support for accelerating synchroniza-
tion operations on the sthorm many-core architecture,’’ in Proc. Conf.
Design, Automat. Test Eur., Mar. 2013, pp. 531–534. Autom

[52] A. Weichslgartner, J. Heisswolf, A. Zaib, T. Wild, A. Herkersdorf,
J. Becker, and J. Teich, ‘‘Position paper: Towards hardware-assisted
decentralized mapping of applications for heterogeneous NoC architec-
tures,’’ in Proc. 28th Int. Conf. Archit. Comput. Syst. (ARCS), Mar. 2015,
pp. 1–4.

[53] D. Wentzlaff and A. Agarwal, ‘‘Factored operating systems (fos): The case
for a scalable operating system for multicores,’’ ACM SIGOPS Oper. Syst.
Rev., vol. 43, no. 2, pp. 76–85, Apr. 2009.

VOLUME 7, 2019 121947

http://dx.doi.org/10.1109/ICCD.2016.7753278


D. Gregorek et al.: DRACON: Dedicated Hardware Infrastructure for Scalable Run-Time Management on Many-Core Systems

DANIEL GREGOREK received the M.Sc. degree in computer engineering
from the University of Hanover, Germany, in 2009, and the Ph.D. degree
from the Institute of Electrodynamics and Microelectronics, University of
Bremen, Germany, in 2018, where he currently holds a Postdoctoral position.
His research interests include run-time management for many-core proces-
sors and system-on-chip design for mobile communications.

JOCHEN RUST received the diploma (Dipl.Ing.) degree in electrical engi-
neering and computer science from the University of Hanover, in 2007,
and the Ph.D. degree from the Institute of Electrodynamics and Microelec-
tronics, University of Bremen, Germany, 2014. Since 2008, he has been
with the Institute of Electrodynamics and Microelectronics. His research
interests include high-performance computing, approximate computing, and
hardware implementations of wireless industrial communication systems. In
2007, he received an Innovation Award from IBM for his contributions to
tree-grammar-based netlist verification.

ALBERTO GARCIA-ORTIZ received the Diploma degree in telecommuni-
cation systems from the Polytechnic University of Valencia, Spain, in 1998,
and the Ph.D. degree (summa cum laude) from the Institute of Microelec-
tronic Systems, Darmstadt University of Technology, Germany, in 2003.
He was with Newlogic, Austria. From 2003 to 2005, he was a Senior Hard-
ware Design Engineer with IBM Deutschland Development and Research,
Böblingen. He then joined the start-up AnaFocus, Spain, where he was
responsible for the design and integration of AnaFocus’ next-generation
vision system-on-chip. He is currently a Full Professor with the Chair of
Integrated Digital Systems, University of Bremen. In 2003, he received the
Outstanding Dissertation Award from the European Design and Automation
Association. He serves as an Editor for JOLPE. He is also a Reviewer of
several conferences, journals, and European projects.

121948 VOLUME 7, 2019


	INTRODUCTION
	MANY-CORE RTM
	HARDWARE ENHANCED RTM
	CONTRIBUTION

	RELATED WORK
	ENHANCEMENTS FOR SYNCHRONIZATION
	ENHANCEMENTS FOR SCHEDULING

	DRACON APPROACH
	RTM TAXONOMY
	HARDWARE ARCHITECTURE
	BASELINE SYSTEM
	DEDICATED INFRASTRUCTURE

	TASK MANAGEMENT
	TASK MAPPING AND SCHEDULING
	TASK SYNCHRONIZATION AND COMMUNICATION
	APPLICATION START-UP

	DEDICATED MESSAGE PROTOCOL
	RT-LEVEL IMPLEMENTATION

	EVALUATION
	EXPERIMENTAL SETUP
	SYNTHETIC BENCHMARKS
	SCHEDULING
	TASK MAPPING
	SYNCHRONIZATION
	DISPATCHING
	RTM MASTER

	MCSL BENCHMARKS
	SINGLE-PROGRAM
	RANDOM INJECTION

	GATE-LEVEL ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	DANIEL GREGOREK
	JOCHEN RUST
	ALBERTO GARCIA-ORTIZ


