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ABSTRACT In this paper, an adaptive neural control issue is addressed for a class of switched unknown
strict-feedback nonlinear system under constraint output, in which the input signal is quantized. The control
goal is to design a quantized controller to ensure that the system’s output signal follows a given reference
signal, meanwhile, the system output signal meets the asymmetric constraint requirement. To this end,
the radial basis function neural networks (RBFNNs) are employed to approximate the unknown nonlinear
functions. Adaptive backstepping technique and barrier Lyapunov function method are utilized to design the
tracking controller and analyze the closed-loop stability. The proposed control strategy is shown to deal with
the presented problem well. Finally, two simulation examples are presented to illustrate the efficacy of the
design scheme.

INDEX TERMS Adaptive neural control, asymmetric constraint, backstepping, quantized control, switched
systems.

I. INTRODUCTION
In recent years, the problems of quantized control have been
paid a lot of attention. Plenty of practical systems are stud-
ied by considering quantized input [1]–[5]. There are two
main reasons that quantization needs to be considered in
practical systems. On the one hand, quantization is inevitable
since the control input signals to plants will be transmitted
into piece-wise constant. For instance, the standard ampli-
fier, a stepping motor, these devices could be viewed as
input quantizers. On the other hand, the quantization scheme
requires a low communication rate. Due to the importance
of the theoretical and practical applications, the quantized
feedback method has been investigated a lot for linear or
nonlinear systems in the literature [6]–[11]. These early
results on the quantization control are limited to the sys-
tems with precise mathematical models. However, the real
controlled plants are not always precisely known because of
the modeling error or some uncertainties. The robust control
technique is thus introduced to deal with the quantization
control issue of the systems with uncertainties. By adaptive
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control approach and backstepping technique, some quan-
tization control schemes are presented for strict-feedback
nonlinear uncertain systems [12]. Besides, many scholars
apply adaptive neural or fuzzy control approaches to address
the control problems of unknown nonlinear systems, since
RBFNNs or fuzzy logic systems (FLS) are useful tools to
approximate the unknown nonlinear functions [13]–[19]. Par-
ticularly, the recent works in [20], [21] give out some new
quantized adaptive neural/fuzzy control strategies for a class
of nonlinear uncertain systems in strict-feedback form.

Though significant results have been obtained respectively,
there are still further problems needed to be addressed. Also,
all the aforementioned results on the quantized control are
proposed without considering the cases of output or state
constraints. Then in practice, the system output may be con-
strained during operation range. In this case, the method
of Barrier Lyapunov Functions (BLF) is applied in control
design and stability analysis in [22], [23]. And then this
approach is extended to discuss asymmetric output con-
straints. In [24], a new adaptive neural control scheme is
addressed for uncertain non-affine systems with output con-
straint. In [25], [26], the authors apply log-type BLFs to
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ensure the output signal tracking the given reference signal,
meanwhile, the system output meets the constraint require-
ment. Recently, a novel design approach is presented in [27],
which works well for whatever having constraint requirement
or no constraint requirement.

Due to its important applications, the control issues of
switched systems have been paid a lot of attention during
the past decades [28], [29]. Since the stability analysis and
control design of switched system are more complicated,
some approaches have been developed, including common
Lyapunov function(CLF) method [30], [31], average dwell
time(ADT)method [32]–[35] and persistent dwell time(PDT)
method [36], [37]. Compared with ADT method and PDT
method, the advantage of CLF method is that it allows
arbitrary switchings among subsystems. Multiple Lyapunov
functions approaches, such as ADTmethod and PDTmethod,
need the switching signal stay at a subsystem for a certain
time, the CLF method relaxes this limitation [33]. In [33],
the established control approach employs the CLF method
to construct an adaptive switching control law. However,
the output constraint issue hasn’t been addressed in their
work and it is important to consider the output constraint
requirement in practice, for example, as the autonomous fleet
move along the sea, every ship should be constrained so that
it can prevent collision.

Although some scholars have discussed the problem of
constraint output by adaptive neural/fuzzy control approach
for usual unknown nonlinear systems in a strict feedback form
and give some interesting results, the corresponding results
cannot be directly extended to switched uncertain nonlinear
systems with input quantization. Motivated by the above dis-
cussions, the presented paper mainly focuses on quantization
control for a class of switched nonlinear uncertain systems
with output constraint. The main contributions of the paper
lie in that (1) Based on common Lyapunov method, a new
backstepping design scheme is proposed. Different from the
existing results, the proposed adaptive laws do not require
their initial value must be nonnegative. Then in the exist-
ing results, to guarantee the stability of closed-loop systems
these initial values of adaptive variables must be negative.
(2) During controller design, we consider the cases of input
quantization and output constraint. The proposed controller
guarantees that the system’s output follows the reference sig-
nal with the quantized input signal and meets the constraint.
(3) The proposed control scheme ensures the achievement of
the desired control issue under the arbitrary switching among
the subsystems.

A. SOME PRELIMINARIES
Considered the following switched dynamic system with
input quantized signal

η̇i = fi,σ (t)(η̄i)+ gi,σ (t)(η̄i)ηi+1
η̇n = fn,σ (t)(η̄n)+ Qu(uσ (t))

y = η1, (1)

where η̄i = [η1, η2, . . . , ηi]T (i = 1, . . . , n) is the state vector
of system. fi,σ (t)(·) : Ri → R, gj,σ (t)(·) : Rj → R, (j =
1, 2, . . . , n−1) are smooth unknown nonlinear functions and
fi,σ (t)(0) = 0, gj,σ (t) are referred to the unknown bounded
functions. σ (t) is a piecewise function which is the switched
signal among different subsystems, σ (t) : R+ → M =

{1, 2, . . . ,m}. For the sake of simplicity, σ (t) is replaced by
k in the rest of this paper. It denotes that the kth subsystem
is running when σ (t) = k . Let {t0, t1, t2, . . .} denote the
switching times, which means the switching occurs at time ti.
u denotes the designed input controller for the switched sys-
tem. Qu(·) is the input quantizer.
Quantized inputQu is taken into consideration to construct

an adaptive neural controller. According to [39], the quantizer
has the following character

|Qu(u)− u| ≤ δ∗u |u| + d
∗
u (2)

where 0 < δ∗u < 1 and d∗u are quantizer parameters.
Remark 1: In real applications, different practical quan-

tizers are used to design the adaptive controller, such as
uniform,logarithmic, and hysteresis quantizers, and all these
practical quantizers satisfy the condition (2), see [39]. In this
paper, hysteresis quantizer is used to quantize the input,
which is described as

Qu(u) =



sgn(u)u∗b,
u∗b

1+ δ∗u
< |u| ≤ u∗b, u̇ < 0, or

u∗b < |u| ≤
u∗b

1− δ∗u
, u̇ > 0

sgn(u)u∗b(1+ δ
∗
u ), u∗b < |u| ≤

u∗b
1− δ∗u

u̇ < 0, or

u∗b
1− δ∗u

≤
u∗b(1+ δ

∗
u )

1− δ∗u
, u̇ > 0

0, 0 ≤ |u| <
d∗u

1+ δ∗u
, u̇ < 0, or

d∗u
1+ δ∗u

≤ u ≤ d∗u , u̇ > 0,

Qu(u(t−)), u̇ = 0

where u∗b = $
1−i
u d∗u with i ∈ N+ and $u =

1−δ∗u
1+δ∗u

. Qu(u) ∈
{0,±u∗b}, d

∗
u determines the size of the quantizer of the

dead-zone.
Assumption 1: Assume the desired output signal yr (t)

is continuous and has up to the nth order derivative. Let
ȳri = [yr , y

(1)
r , · · · , y

(i)
r ]T (i = 1, 2, . . . , n), which satisfies

||ȳri|| ≤ y∗r , where y
∗
r is a positive constant, and y

(i)
r denotes

the ith order time derivative of yr (t).
Assumption 2: Assume that the signs of the unknown

function gi,k are consistent and known, which satisfy the
following inequality

g∗
i
< |gi,k | < ḡ∗i , (3)

where g∗
i

and ḡ∗i are positive constants. For simplicity,
gi,k > 0 is assumed to be positive in the following context.
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Lemma 1 [40]: For any unknown continuous function
f (η) : Rn→ R, it can be described as f (η) = φT9(η)+1(η),
φT9(η) is the neural network, φ = [φ1, φ2, . . . , φl] ∈ Rl is
the weight vector, 9(η) = [91(η), 92(η), . . . , 9l(η)]T ∈ Rl

is the radial basis function vector, 9i(η) = exp[− 1
ρ
||η −

µi||
2], where µi = [µi1, µi2, . . . , µin]T , µii and ρ are

the center and the width of the chosen Gaussian functions,
respectively. If the node number l is large enough, for any
given positive constant 1∗, |1(η)| < 1∗ will be satisfied.
Lemma 2 [41]: For any ξ ∈ R and ε∗ ≥ 0, 0 ≤ |ξ | ≤

ξ tanh( ξ
ε∗
)+ ζ ∗ε∗ is true and ζ ∗ = 0.2785.

Suppose the constraint requirements act on the output sig-
nal y and the given reference signal yr , i,e., −BLy(t) < y <
BHy(t), −BLy(t) < yr < BHy(t), where BLy(t), BHy(t) are
known smooth functionswhich are the constraint requirement
on the output signal. Thus we have −BLy(t) < y− yr + yr <
BHy(t), define the output error z1 := y− yr , BL(t) = BLy(t)+
yr > 0, BH (t) = BHy(t)−yr > 0, a further calculating shows
that

−BL(t) < z1 < BH (t), (4)
where BL(t) > 0 and BH (t) > 0 are continuous functions
which have up to nth order derivative.

II. MAIN RESULTS
In this section, the control issue of the system (1) is investi-
gated, and an adaptive neural quantized controller is designed
to guarantee the output error convergence to a small neighbor
of origin.
The considered asymmetric barrier function has the following
form

Vb =
1
2
02, 0 =

BLBH z1
(BH − z1)(BL + z1)

−BL(0) < z1(0) < BH (0). (5)
Remark 2: For the asymmetric barrier function 0, 0→+∞
if z1 → BH , then the BLF Vb → +∞. Considering z1 →
−BL , 0 → −∞, then the BLF Vb → +∞. By making z1
satisfy the constraint−BL < z1 < BH , then−BLy < y < BHy
can be guaranteed.

From (5), the dynamic of 0 is

0̇ = 0̄ +�ż1, (6)

where 0̄ = 31ḂH + 32ḂL , 31 =
∂0
∂BH
=

BL z21
(BH−z1)2(BL+z1)

,

32 =
∂0
∂BL
=

BH z21
(BH−z1)(BL+z1)2

, � = ∂0
∂z1
=

BHBL (z21+BHBL )
(BH−z1)2(BL+z1)2

.

In the following, backstepping technique is applied to con-
struct the controller and to obtain the main results.

Step 1: Considering Vb = 1
20

2 and z1 = y− yr , and then

V̇b = 00̄ + 0�(f1,k + g1η2 − ẏr ). (7)
According to Lemma 2, the unknown nonlinear function f1,k
can be described as f1,k = φT1,k8(η1) + 11,k (η1), and then
the following inequality holds

0�f1,k ≤ |0�||φT1,k8(η1)+11,k (η1)|

≤ |0�|θ∗1U1, (8)

where U1 =‖ 8(η1) ‖ +1, θ∗1 = max{|11,k |, ‖ φ1,k ‖}.

Remark 3: By applying inequality (8), θ∗1 has nothing to
do with switching signal k , that ensures common Lyapunov
function method can be used to analyze the stability of the
switched system. In the following procedure, an update law
will be presented to estimate the unknown parameter θ∗1 .
By Lemma 3, the above inequality implies that

|0�|θ∗1U1 ≤ θ
∗

1U10� tanh(
U10�

ε∗1
)+ θ∗1 ζ

∗ε∗1 (9)

Define Lynapunov function candidate as

V1 = Vb +
1
2r∗1

θ̃21 , (10)

where θ̃1 = θ∗1 − θ̂1, r
∗

1 is a positive constant. Differentiat-
ing (10) and by simple calculation,

V̇1 ≤ 00̄ + 0�(g1,kz2 + g1,kα1 − ẏr )−
1
r∗1

˙̂
θ1θ̃1

+θ∗1U10� tanh(
U10�

ε∗1
)+ θ∗1 ζ

∗ε∗1 . (11)

Then, the above inequality (11) can be rewritten as

V̇1 ≤ −k∗10
2
+ 0α̌1 + 0�g1,kz2 + 0�g1,kα1 + θ∗1 ζ

∗ε∗1

+θ̃1U10� tanh(
U10�

ε∗1
)−

1
r∗1

˙̂
θ1θ̃1, (12)

where k∗1 is a design positive constant and

α̌1 = k∗10 + 0̄ −�ẏr + θ̂1�U1 tanh(
0�U1

ε∗1
). (13)

Design the virtual control coefficient α1 as

α1 = −
1
ḡ∗1
ᾱ1 tanh(

0�ᾱ1

ε∗1
)

ᾱ1 =
1
�
α̌1. (14)

Designing the update law ˙̂θ1 as

˙̂
θ1 = r∗1U10� tanh(

U10�

ε∗1
)− ν∗1 θ̂1, (15)

where ν∗1 is a design positive constant. For the term
0�g1,kα1, one has

0�g1,kα1 ≤ −0�ᾱ1 tanh(
0�ᾱ1

ε∗1
)

≤ ε∗1ζ
∗
− |0�ᾱ1|

≤ ε∗1ζ
∗
− 0�ᾱ1. (16)

From (12)-(16), it is easy to obtain that

V̇1 ≤ −k∗10
2
+ 0�g1,kz2 −

ν∗1

r∗1
θ̂1θ̃1 + C∗1 , (17)

where C∗1 = θ
∗

1 ζ
∗ε∗1 + ζ

∗ε∗1 .
Remark 4: In the above proof procedure, we have not required
the initial value of θ̂1(0) being positive. However, such a
requirement is necessary for current adaptive neural or fuzzy
control design.
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Step i. Define zi = ηi − αi−1(2 ≤ i ≤ n − 1), θ̃i = θ∗i − θ̂i,
and choose Lyapunov candidate function as

Vi = Vi−1 +
1
2
z2i +

1
2r∗i

θ̃2i . (18)

Differentiating (18), one has

V̇i = V̇i−1 − zi−1gi−1,kzi + zi f̄i,k

+zigi,k (zi+1 + αi)−
1
r∗i

˙̂
θiθ̃i, (19)

where

f̄i,k (Zi) = fi,k + gi−1,kzi−1 − α̇i−1, (20)

where Zi = [η̄Ti , ȳ
T
ri,
ˆ̄θTi ]

T , ˆ̄θi = [θ̂1, θ̂2, · · · , θ̂i]T ,

α̇i−1 =

i−1∑
j=1

∂αi−1

∂ηj
(fj,k + gj,kηj+1)

+

i−1∑
j=1

∂αi−1

∂θ̂j

˙̂
θj +

i−1∑
j=1

∂αi−1

∂yr (j)
yr (j+1).

Note that, when i = 2, f̄2,k (Zi) = f2,k + g2,k0� − α̇1.
By Lemma 2, it follows that

zi f̄i,k ≤ | zi | θ∗i (‖ 8i(Zi) ‖ +1) =| zi | θ∗i Ui

≤ ziθ∗i Ui tanh(
ziUi
ε∗i

)+ θ∗i ζ
∗ε∗i , (21)

where θ∗i = max{|1i,k |, ‖ φi ‖} and Ui =‖ 8i(Zi) ‖ +1.
Design the virtual control coefficient αi as

αi = −
1
ḡ∗i
ᾱi tanh(

ᾱizi
ε∗i

) (22)

ᾱi = k∗i zi + θ̂iUi tanh(
ziUi
ε∗i

), (23)

where k∗i is a design positive constant, ζ ∗ = 0.2785.
Taking (21) and (22) into consideration, (19) can be
expressed as
V̇i = V̇i−1 − k∗i z

2
i − zi−1gi−1,kzi + zigi,kzi+1 + ziᾱi

zigiαi −
1
r∗i
θ̃i(
˙̂
θi − r∗i ziUi tanh(

ziUi
ε∗i

)), (24)

where r∗i is a design positive constant. Similar to inequal-
ity (16), for the term zigi,kαi, one has

zigi,kαi ≤ ε∗i ζ
∗
− ziᾱi. (25)

Design the update law θ̂i as
˙̂
θi = r∗i Ui tanh(

ziUi
ε∗i

)−
ν∗i

r∗i
θ̂i, (26)

where ν∗i is a design constant. Therefore, by using (25) and
the above (26), (24) can be rewritten as

V̇i ≤ −k∗10
2
−

i∑
j=2

k∗j z
2
j − zi−1gi−1,kzi

+zigi,kzi+1 −
i∑

j=1

ν∗j

r∗j
θ̃jθ̂j + C∗i , (27)

where C∗i =
∑i

j=1(θ
∗
i ζ
∗ε∗j + ζ

∗ε∗j ).

Step n: In this step, quantized controller will be designed
for system (1) to track the given reference signal.

Define zn = ηn−αn−1, θ̃n = θ∗n−θ̂n, and choose Lyapunov
candidate function as

Vn = Vn−1 +
1
2
z2n +

1
2r∗n

θ̃2n . (28)

The time derivative of (28) is

V̇n = V̇n−1 + zn f̄n,k + znQu −
1
r∗n

˙̂
θnθ̃n, (29)

where f̄n,k (Zn) = fn,k + gn−1,kzn−1, Zn = [η̄Tn , ȳ
T
rn,
ˆ̄θTn ]

T .
Design the real control law u as

u = −ū tanh(
znū
ε∗n

) (30)

ū = −
1

1− δ∗u
(ᾱn − d∗u tanh(

d∗u zn
ε∗n

))

ᾱn = −k∗n zn − θ̂nUn tanh(
znUn
ε∗n

),

where k∗n is a design positive constant. From the definition of
the quantizer, multiply |zn| on both side of the equation (2)
resulting in

|zn||Qu − u| ≤ δ∗u |u||zn| + d
∗
u |zn|. (31)

Then, (31) can be further extended as

znQu ≤ znu+ δ∗u |u||zn| + d
∗
u |zn|

≤ −znū tanh(
znū
ε∗n

)+ δ∗uznū tanh(
znū
ε∗n

)+ d∗u |zn|

≤ −(1− δ∗u )znū tanh(
znū
ε∗n

)+ d∗u |zn|

≤ −(1− δ∗u )znū+ d
∗
u |zn| + (1− δ∗u )ε

∗
n . (32)

Similar to inequality (21), one can get

zn f̄n ≤ | zn | θ∗n (‖ 8n(Zn) ‖ +1) =| zn | θ∗nUn

≤ znθ∗nUn tanh(
znUn
ε∗n

)+ θ∗n ζ
∗ε∗n (33)

where θ∗n = max{|1n,k |, ‖ φn ‖} and Un =‖ 8n(Zn) ‖ +1.
Apparently, combining from (28) to (33) gives

V̇n ≤ V̇n−1 − knznn − zn−1gn−1zn + C̄
∗
n

−
1
r∗n
θ̃n(
˙̂
θn − r∗n znUn tanh(

znUn
ε∗n

)), (34)

where C̄∗n = θ
∗
n ζ
∗ε∗n + (2− δ∗u )ε

∗
n . Design the update law as

˙̂
θn = r∗n znUn tanh(

znUn
ε∗n

)−
ν∗n

r∗n
θ̂n. (35)

Then (34) becomes

V̇n ≤ −k∗10
2
−

n∑
j=2

k∗j z
2
j −

n∑
j=1

ν∗j

r∗j
θ̃jθ̂j + C∗n , (36)
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where C∗n = C∗i + C̄
∗
n . Note that,

ν∗j

r∗j
θ̃iθ̂i =

ν∗j

r∗j
θ̃i(θ∗i − θ̃i) ≤ −

1
2

ν∗j

r∗j
θ̃2i +

1
2

ν∗j

r∗j
θ∗2i . (37)

Then, (36) can be rewritten as

V̇n ≤ −a∗Vn + C∗, (38)

where a∗ = min{2k∗i , ν
∗
j }, C

∗
= C∗n +

∑n
j=1

1
2
ν∗j
rj
θ∗2j ,

and (38) can be further expressed as

Vn(t) ≤ V (0)e−a
∗t
+
C∗

a∗
(39)

From (39), the following Theorem is concluded.
Theorem 1: Considering system (1) under Assump-

tions 1-2, for any initial condition−BLy(0) < y(0) < BHy(0),
−BLy(0) < yr (0) < BHy(0), associated with the update
law (26) and the virtual controllers αi (i = 1, 2, . . . , n),
the designed controller (30) guarantees the system output
signal tracking the given reference efficacy, meanwhile,
the tracking error meets the constraint tracking requirement.
Remark 5: From (39), it is easy to obtain that all signals of

the closed-loop system are bounded. Meanwhile, as a result,
limt→∞ 0

2
1 ≤ 2C

∗

a∗ . By choosing the appropriate design
parameters, the tracking error z1 will meet the constraint
tracking requirement.

III. SIMULATION EXAMPLE
In this section, two simulation examples with constraint
output and input quantization are demonstrated to test the
validity of our proposed strategy.
Example 1: A two-order switched nonlinear system with

required constraint on output tracking is considered

η̇1 = f1,k + g1,kη2
η̇2 = f2,k + Qu
y = η1, (40)

Qu is the input quantizer, the parameters are given as δ∗u =
0.2, d∗u = 0.1, k ∈ {1, 2}. f1,1 = f1,2 = 0, f2,1 = η21 cos(η2),
f2,2 = η1η22, g1,1 = 1, g1,2 = 1.5 + sin(η1). Neural network
system 82(Z2) is adopted to approximate the unknown non-
linear functions f2,1 and f2,2. ρ = 2 is chosen for the gaussian
functions, the nodes of the centers µi are evenly distributed

on the interval

6︷ ︸︸ ︷
[−1.5, 1.5]× . . .× [−1.5, 1.5]. Choosing the

initial state η1 = 0.3, η2 = 0.1, θ̂1 = θ̂2 = 0. The required
constraint on the output signal BLy(t) and BHy(t) satisfy

BHy(t) = 0.45+ 0.3e−0.6t + sin(t)

BLy(t) = −0.2+ 0.3e−0.5t − sin(t). (41)

The given reference signal is yr = sin(t)+ 0.3, then we have
BL(t) = 0.1 + 0.3e−0.5t and BH (t) = 0.15 + 0.3e−0.6t . The
initial state satisfy−BLy(0) < y(0) < BHy(0). The parameters
are chosen as k∗1 = 10, k∗2 = 15, ε∗1 = ε

∗

1 = 0.1, r∗1 = r∗2 =
1, ν∗1 = ν

∗

2 = 0.4.

FIGURE 1. Trajectories of y , given signal yr , the tracking error z1 the
Lowerbound BLy and the upperbound BHy for example 1.

FIGURE 2. The trajectories of input u and quantized input Qu
for example 1.

FIGURE 3. The adaptive parameter θ̂1 and θ̂2 for example 1.

Figs. 1-4 demonstrate the simulation results. Fig. 1 shows
that the output of system (1) tracks the given reference
well, also the output meets the constraint requirements.
Fig.2 shows the trajectory of η2. Fig.3 shows the adaptive
parameters θ̂1 and θ̂2. Fig.4 shows the input signal and the
quantized signal. Fig.5 shows the switched signal.
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FIGURE 4. The switched signal for example 1.

Example 2: In this example, a single-link robot arm system
is taken from [37] and [38] to further test the effectiveness
of the proposed scheme. The single-link robot arm system is
described by the following dynamic equation

η̈(t) = −
migl
J i

sin(η(t))−
Di

J i
η̇(t)+

1
J i
u(t), (42)

where η(t), u(t) denote the angle of the arm and the control
input, respectively. Since the system mass mi , inertia J i and
dampingDi form a set of discrete sequences qi = (mi, J i,Di)
are changing depending on the angle η(t), so the robot arm
can be viewed as switched system. In this example, we choose
the same parameter as in [38], q1 = (1, 1, 2), q2 = (5, 5, 2),
q3 = (10, 10, 2). qi denotes the three different subsystems
which means k ∈ {1, 2, 3}. Here, we define η1(t) = η(t),
η2(t) = η̇(t). The single-link robot arm can be rewritten as

η̇1 = η2

η̇2 = −
migl
J i

sin(η1)−
Di

J i
η2 + Qu

y = η1, (43)

the length of arm is l = 0.5m and the gravitational constant
g = 9.8. Different from the example in [37] and [38], we take
the quantized inputQu and output constraint requirement into
consideration. Choose the quantized parameter as δ∗u = 0.1,
d∗u = 0.1 and the required constraint output as

BHy(t) = 0.1+ 0.3e−0.2t + sin(t)

BLy(t) = 0.1+ 0.3e−0.2t − sin(t). (44)

The given reference signal is yr = sin(t), and then one
has BH (t) = 0.1 + 0.3e−0.2t , BL(t) = 0.1 + 0.3e−0.2t .
The chosen gaussian functions with ρ = 2 is presented to
approximate the nonlinear functions −migl

J i sin(η1) − Di

J i η2,
the nodes of the centers µi are evenly distributed on the

interval

6︷ ︸︸ ︷
[−1.5, 1.5]× . . .× [−1.5, 1.5]. Choosing the initial

state η1 = 0.1, η2 = 0.3, θ̂1 = −0.1, θ̂2 = 0. The
parameters are chosen as k∗1 = 10, k∗2 = 15, ε∗1 = ε

∗

2 = 0.1,
r∗1 = r∗2 = 1, ν∗1 = ν

∗

2 = 0.4.

FIGURE 5. Trajectories of y , given signal yr , the tracking error z1 the
lowerbound BLy and the upperbound BHy for example 2.

FIGURE 6. The trajectories of input u and quantized input Qu for
example 2.

FIGURE 7. The adaptive parameter θ̂1, θ̂2 for example 2.

Figs. 5-8 demonstrate the simulation results. Fig. 5 shows
that the output of the system (1) tracking the given reference
well, also the output signal meets the constraint requirements.
Fig.6 shows the adaptive parameters θ1 and θ2. Fig.7 shows
the input signal and the quantized input signal. Fig. 8 shows
the switched signal.
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FIGURE 8. The switched signal for example 2.

IV. CONCLUSION
The current research develops an adaptive neural constraint
output control scheme for a class of switched unknown
strict-feedback nonlinear systems. In this study, a quantized
input signal has been taken into consideration, an adaptive
neural quantized controller is constructed. The designed con-
troller ensures the output signal tracks the given reference
well, meanwhile, the constraint output requirement is satis-
fied. Under the action of the proposed quantized controller,
it is shown that all the signals of the closed-loop system are
bounded.
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