
SPECIAL SECTION ON ADVANCES IN MACHINE LEARNING AND
COGNITIVE COMPUTING FOR INDUSTRY APPLICATIONS

Received August 5, 2019, accepted August 20, 2019, date of publication August 27, 2019, date of current version September 16, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2937838

Data Simulation by Resampling—A Practical Data
Augmentation Algorithm for Periodical Signal
Analysis-Based Fault Diagnosis
TIANHAO HU , TANG TANG, AND MING CHEN
School of Mechanical Engineering, Tongji University, Shanghai 201804, China

Corresponding author: Tang Tang (tang.tang@tongji.edu.cn)

This work was supported in part by the Application of New Mode for Intelligent Manufacturing of Lifting Equipment for Large-scale
Marine Engineering 2017, in part by the Project of Remote Operation and Maintenance Standards and Test Verification for Integrated
Circuit Packaging Key Equipment 2018 in the Ministry of Industry and Information Technology, China, and in part by the Program for
Young Excellent Talents in Tongji University, Shanghai, China under Grant 2016KJ020.

ABSTRACT In recent years, machine learning and deep learning based fault diagnosis methods have been
studied, however, most of them remain at the experimental stage mainly because of two obstacles, briefly, a)
inadequate faulty examples and b) various working conditions of industrial data. In this literature, a practical
algorithm named Data Simulation by Resampling (DSR) is proposed for data augmentation to alleviate the
two problems in fault diagnosis. In essence, as a form of Vicinal Risk Minimization (VRM), DSR utilizes
a two-stage resampling operation to simulate vicinal examples in both time domain and frequency domain.
By doing so, DSR can both increase the sample diversity and the quantity of training set, which regularizes
machine learning and deep learning based methods to achieve a higher generalization performance. Our
experiments verify the effectiveness of DSR and show the possibility of combining it with other augmentation
algorithms.

INDEX TERMS Data augmentation, resampling, vicinal risk minimization, generalization.

I. INTRODUCTION
Fault diagnosis plays an important role in Prognostic and
Health Management (PHM) of intelligent manufacturing.
With the rise of artificial intelligence, machine learning and
deep learning technologies have been utilized for different
fault diagnosis applications [1]–[4]. Usually, thesemodels are
trained to minimize their average error over the training data,
which is a learning rule called Empirical Risk Minimization
(ERM). Based on ERM principle, an adequate and complete
training set with a large quantity of examples is required to
optimize models’ parameters. Besides, the successful appli-
cations of ERM always rely on a universal hypothesis that,
training data and testing data are expected to subject to the
same distribution.

However, in real-world diagnostic scenarios, it is hard to
meet the two demands. On the one hand, considering the
production cost andmachinery stability requirements, the dis-
tribution of industrial data is severely imbalanced [4], [5],
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where in most operating periods, machinery runs under a
healthy condition. Although a large amount of data can be
easily obtained through an online data acquisition system [3],
actually effective faulty data is very rare. Besides, labelling
work for massive data is also expensive. On the other hand,
in real production processes, the generation mechanism of
data is often non-stationary [6]. For instance, a piece of pro-
duction equipment needs to operate alternately under 3 dif-
ferent set of process parameters, where load, rotating rate,
temperature and other factors keep fluctuating and/or differ in
different periods. Limited faulty data might not cover all the
variations of working conditions. And this may lead to a bad
generalization performance when applying trained models
directly to testing scenarios.

An insufficient and incomplete training set really chal-
lenges the suitability of machine learning basedmodels, espe-
cially those equippedwith ERMprinciple. Strikingly, ERM is
guaranteed as long as the number of training data is sufficient
for model optimization [7]. When the model complexity is
fixed, the less the training data is, the larger the generalization
error boundary is [8]. Recent research [9] has shown that
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several ERM based models (like large neural networks) tend
to memorize (instead of generalizing from) training data. And
when it comes to the evaluation of examples from testing
distribution, a sharp decline may occur to those models just
because of a slight discrepancy between training distribution
and testing distribution [10]–[13].

An intuitive solution to this dilemma is Data Augmenta-
tion [14], where a model is trained on similar but different
examples to the training data. Data Augmentation was ini-
tially formalized by the Vicinal Risk Minimization (VRM)
principle [7]. In VRM, the concept of vicinity is utilized to
describe the neighborhood around each training example, and
what Data Augmentation does is to define the form of vicinal
distribution, then virtual examples could be sampled from the
vicinal distribution as to enlarge the original distribution of
training domain. Taking image classification as an instance,
a typical strategy is to utilize horizontal reflections, slight
rotations, mild scaling and adding noise as a set of augmenta-
tion operations [14], and the distribution of virtual examples
derived from those operations is defined as the vicinity of an
original example. Despite the consistent contribution of Data
Augmentation to generalization, however, for fault diagnosis,
what is the vicinity of most industrial data (especially period-
ical vibration signals)?

A practical vibration analysis technology named Order
Tracking [18] gives us inspiration. In Order Tracking,
time-varying signals can be approximately resampled into
a stationary pattern in the angular domain, thus to allow
stationary frequency analysis based algorithms to be applied.
The successful applications of Order Tracking indicate a
hypothesis that speed-related periodical vibrations share the
same pattern in the angular domain despite different rotating
speeds. Therefore, intuitively, it is common to define the
vicinity of an original (vibration) example as a set of signals
from the same pattern but under different rotating speeds.

In this paper, a simple data augmentation algorithm named
as Data Simulation by Resampling is proposed to simu-
late (virtual) vicinal examples from each original signal.
In essence, it is a simulation process, where simulated signals
can be obtained via a two-stage resampling process based on a
pseudo rotating speed ratio from one training example. To ful-
fill the whole process, Fast Fourier Transform (FFT) and its
inverse version (IFFT) are embedded in to acquire frequency
spectra and simulated time signals. Besides, the influences
of working load and environmental noise are also taken into
consideration in DSR, which brings two extra parameters
in DSR.

Despite the simplicity of the core philosophy, DSR allows
a significant improvement of generalization performance on
several different diagnosis models in, a) working condition
transferring diagnostic scenarios as well as b) its few-shot
counterpart (with extremely few training examples). Besides,
a thorough set of ablation study experiments are also imple-
mented, and the results validate the effectiveness of both DSR
as well as its combination with a prior data augmentation
algorithm (Mix-up [15]).

The rest of paper is organized as follows. In Section II,
some prior works on fault diagnosis and data augmentation
are reviewed. Section III describes the proposed algorithm in
detail. Sequentially, experiments and the corresponding result
analysis on several diagnosis scenarios, as well as the ablation
studies are depicted in Section IV. Finally, the conclusion of
this literature is made in Section V.

II. RELATED WORKS
A. FAULT DIAGNOSIS
In industry applications, most bearing fault diagnosis systems
are based on traditional signal processing methods [1], [2]
such as the FFT, Hilbert Transform (HT), Empirical
Mode Decomposition (EMD) [16], Wigner-Ville Distribu-
tion (WVD), and Wavelet Transform (WT) [17]. In view
of the varying rotating speed problem, Order Tracking has
been proposed and has achieved a great success [18], [19].
Besides, traditional machine learning methods have also been
applied for rotating machinery fault diagnosis, and some
typical models developed with different modification strate-
gies have been verified to be efficient, such as K-Nearest-
Neighbor (KNN) [20], Support Vector Machine (SVM) [21],
Decision Tree (DT) [22], Back Propagation Neural Net-
work (BPNN) [23], Extreme Learning Machine (ELM) [24],
Sparse Coding (SC) [25], etc.

In recent years, deep learning (DL) based algorithms
have been studied for different fault diagnosis applica-
tions [26]–[38]. Convolution Neural Network (CNN) was
first proposed by Lecun, and the classic LeNet-5 has been
successfully modified for fault diagnosis [26] where 1-D
raw time domain signals are folded into 2-D images via
segmentation. Because of its unique topology structure, CNN
has been utilized for most cases of time domain and time-
frequency analysis based diagnosis scenarios. Sun et al. [27]
utilized model transferring strategy that directly transfers
parameters from trained BPNN to convolutional filter with-
out fine-tuning. Experiments show the great adaptability of
convolutional filters when processing raw time sequences.
Jia et al. [5] proposed a Deep Normalized Convolutional
Neural Network (DNCNN) in which normalization lay-
ers are utilized intended for imbalanced classification.
Zhang et al. [28] proposed a new 1-D deep convolutional
structure called Convolution Neural Networks with Train-
ing Interference (TICNN) for vibration signal under noisy
environment and different working loads. They evaluated the
effects of Dropout, Batch Normalization and noise injection
on the model’s performance. Inspired by the Second Gen-
eration Wavelet Transform (SGWT), Pan et al. [29] pre-
sented the Lifting-Net where the structure is constructed
alternately by split layers, predict layers and update layers
with different convolutional kernel size. The effectiveness
of some other novel CNN-based structures have also been
verified [30]–[31].

In most cases of frequency domain based diagnosis, Auto-
Encoder (AE) models are usually utilized as an inference
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mechanism. Jia et al. [32] presented a study of stacked
AE with two-stage training processes for bearing diagno-
sis. Sun et al. [33] proposed a Sparse Auto-Encoder (SAE)
based model for induction motor fault diagnosis. Tricks of
de-noising coding and dropout are utilized to get a more
robust feature representation. In [34], Wang et al. combined
the Gaussian kernel function and stacked auto-encoder for
fault diagnosis of the inter-shaft bearing of an aircraft engine.
Except the literature mentioned above, some researchers have
prompted the AE based deep structure for gearbox [35], [36]
and hydraulic pump [37]. Besides, there are also a few
attempts of shallow CNN structures being utilized for fre-
quency domain based fault diagnosis [38].

However, despite the contributions of those models men-
tioned above, the contradiction between limited faulty sam-
ples and model complexity challenges most ERM based
models and prevent them from being applied in actual
diagnostics applications. In order to validate the effective-
ness of the proposed data augmentation algorithm DSR,
both ERM based (BPNN, CNNs) and several non-ERM
based (SVM, KNN) models are utilized as comparison
methods, and their implementation details are described in
Section 4.1.

B. DATA AUGMENTATION
Nowadays, the successful applications of most ERM-based
deep models cannot be separated from data augmentation.
In the field of image recognition, it is common to use
slight rotation, transition, cropping, scaling as data aug-
mentation [8], [14], where its rationality lies at the fact
that the semantic meaning of training examples does not
change. In [39], Zhong et al. proposed the Random Erasing
algorithm on training images to enhance the invariance of
trained models. In the field of speech recognition, where
speech signals are similar to the periodic vibration signals,
noise is routinely injected into training signals with high
Signal-to-Noise Ratio (SNR), as to improve the robustness
and accuracy of models [40], [41]. And in fault diagno-
sis, one has also been used to improve the generaliza-
tion performance of diagnosis models [28], [30]. Another
practical augmentation method for fault diagnosis is slicing
training samples with overlap [28], and extra acquisition
and storage requirements are introduced to obtain primi-
tive signals, which are expected to be longer than sliced
samples.

In all cases mentioned above, substantial domain knowl-
edge has been leveraged for the design of suitable augmenta-
tion approaches. And several domain-independent algorithms
have also been developed mainly for network based models.
The core philosophy is to replace the high confidence of
softmax distribution caused by the hard label in ERM with a
smooth one by regularizations, such as label smoothing [42],
and/or adding a penalty term to cross-entropy loss [43].
Besides, Zhang et al. [15] proposed Mixup, which uses a
simple convex combination of inputs and the corresponding

labels given as follows for augmentation:{
xinput = λxi + (1− λ) xj
yinput = λyi + (1− λ) yj

where examples (xi, yi) and
(
xj, yj

)
are randomly drawn from

the training set, and λ ∼ Beta (a, a) for a ∈ (0,+∞). We can
easily find that λ ∈ (0, 1) and a controls the strength of
interpolation between feature-label pairs. The mixture of fea-
tures and the corresponding labels contributes to smoothing
the output distribution of models, and this method potentially
satisfies the Lipschitz condition.

III. DATA SIMULATION BY RESAMPLING
A. MOTIVATIONS FROM ORDER TRACKING
Order Tracking is a classic vibration analysis method, which
allows stationary frequency analysis based algorithms to be
applied. It uses recorded information of rotating speeds [19]
or estimated instantaneous phases [20] to resample vibration
signals into the angular domain as to eliminate the interfer-
ence of speed-variations.

Take Computed Order Tracking (COT) [18] as an instance,
the whole process is illustrated in Fig.1. Conventionally,
vibration signals are sampled at a constant increment of
time (i.e. uniform 1t) and keyphasor pulses are sampled at
a constant increment of rotating angle, COT uses the time
intervals between pulses to resample vibration signals in the
angular domain with constant angular increment (i.e. uniform
1θ ). And usually, quadratic fitting is utilized to determine the
resampling coordinate along the time axis.

FIGURE 1. The resampling process of COT.

However, convinced by the effectiveness of Order Track-
ing, we usually ignore a basic hypothesis underlying it. That
is, in the perspective of pattern recognition,

Assumption: Signals under different speed-variations /
speeds may satisfy the same pattern in the angular domain.

Order Tracking use this assumption to find the invari-
ant angular pattern of signals with speed-variations. And
inversely, we can also utilize it to simulate virtual signals with
various speeds / speed-variations from just the same pattern,
as shown in Fig.2.
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FIGURE 2. Signals under different speed-variations / speeds may satisfy
the same pattern in the angular domain.

According to the idea above, in this paper, we design a
two-stage resampling process to fulfill the framework of our
methodology. And the Fast Fourier Transform is embedded
in to obtain the frequency spectrum.

B. RESAMPLING IN TIME DOMAIN
Suppose the shaft rotates at a constant speed in a relatively
short period of time, that means the relationship between
rotating angle and speed is a linear function, where θ (v, t) =
θ0+2πvt/60. As illustrated in Fig.3, two signals with rotating
speeds (here vo and vs respectively) but the same sampling
interval (1t) in the time domain are derived from the same
angular pattern. The only difference between them is their
different sampling intervals (1θ and 1ϕ) in the angular
domain.

Intuitively, we can easily obtain a simulated signal
under a different rotating speed by resampling. Given
an original signal with n sampling points, denoted as
A(t) = {(1t, a1) , (21t, a2) , . . . , (n1t, an)}, where a1...n
are the vibration amplitudes. Its rotating speed is vo.
It can be reformed in the angular domain as A(θ) =

(θ1, a1) , (θ2, a2) , . . . (θn, an), where θi = θ0+i·2πvo1t/60.
If we want to obtain a signal with rotating speed vs, we can
just resample A(θ) in the angular domain with a set of new
coordinates, which can be computed as ϕj = θ0 + j ·
2πvs1t/60.
Moreover, the resampling process can be simplified to a

more direct form, which represents another physical mean-
ing. Further considering the following equation:

ϕj = θ0 +
2π
60
vo · j1t = θ0 +

2π
60
vo · j

vs
vo
1t

def
H⇒ 1τ =

vs
vo
1t

Suppose a pseudo speed rate denoted as r = vs/vo, thus
the new time increment for resampling can be calculated as

1τ = r1t (1)

Therefore, as also illustrated in Fig.3, the resampling process
can be directly done in the time domain with resampling
coordinates [1τ, 21τ, . . .N1τ ]. After that, we replace the
increment of 1τ with the original increment 1t , and finally,
the resampled signal can be reformed as:

A(t)
s = {(1t, b1) , (21t, b2) , . . . , (N1t, bn)} (2)

where b1...n represent the interpolation result during resam-
pling.

In perspective of the simplified process, resampling can be
simply regarded as a stretch or compression operation for 1-D
signals along the time axis. And it is important to emphasis
that the dimension of a resampled signal is different from
its original one, where N 6= n. And the boundary constraint
should be satisfied that:

N1τ < n1t ⇐⇒ N <
n
r

(3)

In order to obtain features of simulated signals with the
same dimension of original ones, another resampling is
needed to be done, which is described in the next subsection.

C. LOAD INFLUENCE AND ENVIRONMENTAL NOISE
To the knowledge of several prior works [44], in fault diag-
nosis, the manifestation of vibration is affected not only by
the rotating speed, but also by the load distribution around the
defect point. A classic defect model [44] gives us an insight of
this, Given a vibration signal x(t) produced by rolling bearing
with a single defect on the inner race, it can be represented as

x (t) = [d (t) · q (t) · a (t)] ∗ h (t)

where d (t) , a (t) , h (t) are the pattern of impulses, transfer
function and impulse response of the low-pass filter, respec-
tively; and q (t) denotes the changes in load distribution when
the shaft rotates. which is affected by the maximum load
intensity q0,a load coefficient term affected by the applied
load.

Therefore, in the perspective of data augmentation, signals
under different loads and rotating speeds can be commonly
regarded as the vicinal examples of the original training
signals. In addition, environmental noise as another fac-
tor [28], [30] should also be considered for the generation
of vicinal signals. In order to integrate both load and noise
influence, a pseudo load ratio coefficient l and a set of noise
{ε1...N} are introduced, and the resampled signalA′(t)s can be
multiplied by l and then added by noise, where the result is
calculated as:

A′(t)s = (1t, lb1 + ε1) , (21t, lb2 + ε2) ,

. . . , (N1t, lbN + εN ) (4)
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FIGURE 3. Illustration of two signals in the time domain with different rotating speeds and their sharing pattern in the angular domain. Here 1θ and 1ϕ
are the sampling intervals in angular domain, 1θ 6= 1ϕ, 1t is the shared sampling interval in the time domain.

FIGURE 4. The whole process of the proposed DSR (Data Augmentation by Resampling). Resampling operations take place in both time
domain and frequency domain, where the first resampling leads to dimension incompatibility (n6=N) and the second one solve the
problem as well as keep the characteristics of the frequency spectrum of the resampled signal.

D. RESAMPLING IN FREQUENCY DOMAIN
By means of the FFT method, we can obtain the frequency
spectra of A(t) and A′(t)s , denoted as F and F ′s, which
share the same maximum of frequency fmax , but differ in the
frequency resolution of, denoted as f , f ′s, where:(

fmax , f , f ′s
)
=

(
1

21t
,

1
n1t

,
1

N1t

)
(5)

It is necessary to align the dimension of both the time
domain and frequency domain, while isomorphic data are
the basic requirement for most machine learning based algo-
rithms. Therefore, another resampling operation is utilized to
transfer the resolution of Fsfrom f ′s to f . And the amplitude
spectrum is selected as the simulated signal in the frequency
domain.

After that, an Inverse FFT (IFFT) operation is adopted
to cope with the simulated frequency spectrum. And the

real-part of the complex result after IFFT is selected as the
simulated signal in the time domain. Since we only select
the real part of the IFFT result, in order to compensate for the
lost energy (roughly half of the IFFT result), we multiply the
real part by

√
2 to get the final simulated signal in the time

domain. The whole process of DSR is shown in Fig.4.
It is important to emphasize the choice of basement sig-

nal used for interpolation in the second resampling process.
There are two options, one is to interpolate directly on the
complex result after FFT, and the other is to interpolate
separately on both amplitude characteristics and phase char-
acteristics of the complex result. We choose the first one on
account of a less phase shift. Taking the average interpolation
as an example, from Fig.5 we can observe that the interpola-
tion solution on the complex result retains more phase char-
acteristics of the intensive spectral line, the analysis of which
plays an important role in traditional fault diagnosis methods.
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FIGURE 5. Different ways of interpolation. The red arrow represents the
interpolation result based on the complex result z1, z2, and the blue one
represents the interpolation result separately based on the amplitude
and phase characteristic of z1, z2.

FIGURE 6. The comparison of (a) original signal, (b) resampled signal,
(c)(d) two IFFT results based on different interpolation options.

This can be validated in Fig.6 that the IFFT result of the first
option has a better performance than the one of the second
option, where the first one has a lower deformation of vibra-
tion amplitudes in the time domain.

In a summary, in order to obtain a simulated frequency
spectrum as well as the corresponding simulated time signal
from the original signalA(t), a pseudo speed ratio r , a pseudo
load ratio l and a set of noise {ε1...N} are required for the
basic calculation. Empirically, we suppose those parameters
subject the Gaussian distribution, where (r, l, ε0...N ) are sam-
pled from a joint distribution of three independent Gaussian
distributions, where:

(r, l, ε0...N ) ∼ N (µ,3)

= N
(
1, σ 2

r

)
·N

(
1, σ 2

l

)
·N

(
0, σ 2

ε IN
)
. . .

(6)

Algorithm 1 Data Simulation by Resampling

Input: One original signal: A(t) Parameters to generate
pseudo coefficients: σ 2

r , σ
2
l , σ

2
ε

Output: A simulated frequency spectrum and a simulated
time signal

Do:
1. Generate pseudo parameters (r, l, ε0...N ) according to

Eq.(6)
2. Resample the given original data A(t) to A(t)

s
3. Add load influence and noise and compute A′(t)s

according to Eq. (4)
4. Calculate the FFT result F ′s of A′(t)s by FFT.
5. Resample F ′s from resolution f ′s to f as a simulated

frequency spectrum.
6. Calculate the IFFT result of resampled F ′s
7. Select the real part of the IFFT result, and multiply it

by
√
2 to obtain the simulated time signal

End

Besides, the generated r, l should subject to the boundary
constrain, that is r, l > 0. The whole procedures are summa-
rized as Algorithm I.

E. FORMALIZATION IN VICINAL RISK MINIMIZATION
In most diagnosis applications, the learning problem of diag-
nosis models can be summarized as searching a function hεH
to describe the relationship between pattern x and target y.
Giving a loss function l (h (x) , y) as the criterion, the mini-
mization process of expected risk can be formulated as:

R (h) =
∫
l (h (x) , y)dP(x, y)

where P(x, y) is the joint distribution of (x, y). But unfortu-
nately, P(x, y) is unknown in most situations. Instead, a set
of examples, denoted as D = {(xi, yi)}ni=1, can be relatively
easy to be obtained, where (xi, yi) ∼ P. And it is commonly
to minimizes the empirical risk:

RERM (h) =
1
n

n∑
i=1

l (h (xi) , yi)

The empirical risk and the expected risk can be equivalent
if and only if joint distribution P is approximated by the
empirical distribution PERM , formed by Dirac function δ
centered at each (xi, yi), where

dPERM (x, y) =
1
n

n∑
i=1

δ (x = xi)δ (y = yi)

However, when it comes to a model with quantities of
parameters (i.e. > n) such as a large neural network, it is
trivial for model h to memorize limited training examples
used for learning, which can lead to a sharp decline on
performance as encountered with examples just outside the
dense region of density dPERM (x, y). This phenomenon is
called, conventionally, ill-condition.
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TABLE 1. Description of the dataset and diagnosis scenarios.

It is natural to consider to improve the estimation
dPERM (x, y) of density dP(x, y) by replacing the Dirac func-
tion δ (x = xi)with a vicinal distribution centered at xi, which
are expected to provide a better support of the original distri-
bution [7], [15]:

dPVRM (x, y) =
1
n

n∑
i=1

δ (y = yi) v (x̃|xi)dx

where v (x̃|xi) as the vicinal distribution measures the prob-
ability density of the virtual pattern x̃ in the neighborhood
about xi. Particularly, Chapelle et al. [7] considered Gaussian
vicinities v (x̃|xi) = N

(
xi, σ 2

ε IN
)
, which is equivalent to

noise injection as augmentation [28], [30], [40], [41]. In this
paper, the virtual example can be obtained by the simulation
process of DSR, and the vicinity distribution of xi can be
denoted as:

v (x̃|xi) = P (simu (xi) | r, l, ε)

(r, l, ε) ∼ N
(
1, σ 2

r

)
·N

(
1, σ 2

l

)
·N

(
0, σ 2

ε IN
)

(7)

where function simu(·) represent the nonlinear mapping
of the simulation process of DSR. The pair of parameter(
σ 2
r , σ

2
l , σ

2
ε

)
controls the manifestation of vicinity distribu-

tions. when σ 2
r , σ

2
l → 0, DSR degenerates into noise injec-

tion, and when σ 2
r , σ

2
l , σ

2
ε → 0, the vicinal risk degenerates

into empirical risk.

F. LIMITATIONS OF DSR
In DSR, the second resampling procedure will inevitably
cause phase shift. This shift has no effect on the amplitude
spectrum, but it does lead to deformation (just like part of a
beat phenomenon, see Fig.6(c)) in the virtual signals, which
is analytically intractable. The deformation can bring in some
unexpected patterns, leading to a harder optimization process,
and/or even a wrong optimization direction for networks.

Besides, the distribution of a simulated signal resembles
its original one as shown in Fig.6(c), especially at both ends.
Therefore, excessive use of simulated virtual examples may
cause overfitting by similar distributions.

Third, since we can use DSR to simulate signals with a
higher rotating speed, the compressed signal (after the first
resampling procedure) struggles to have a frequency reso-
lution as precise as the original one. Therefore, the pseudo
speed ratio r cannot exceed a certain value, which is related
to the cutoff frequency of the machinery and the sampling
rate.

Finally, the selection of hyper-parameters
(
σ 2
r , σ

2
l , σ

2
ε

)
also requires prior knowledge. For example, we need to know

the range of the rotating speed fluctuations, the environmen-
tal signal-to-noise ratio, etc. to empirically determine those
parameters.

IV. EXPERIMENTS
A. DATASET AND COMPARISON METHODS
In this paper, we evaluate the DSR on the Case Western
Reserve University (CWRU) bearing database [45], which
has several different working conditions of (1HP, 1772rpm),
(2HP, 1750rpm), (3HP, 1730rpm), respectively. As shown in
TABLE 1, 3 different faulty locations and corresponding with
3 different faulty diameters for each location are contained
in this database. Combined with the normal condition, there
are 10 classes in total for recognition. Besides, we organize
6 different diagnosis scenarios in TABLE 1, where dataset
i can be regarded as the training domain while dataset j is
the testing domain for model evaluation. During the testing
period, statistics of only training domain are utilized as the
referred statistics in batch normalization of neural network
models.

It is very important to emphasis that any statistics infor-
mation of testing domain can’t be adopted for the training
process of models. Considering the fact that during online
condition monitoring, data is generated periodically single
by single, it is not appropriate for real-time diagnosis model
to use statistics of a batch of testing data to update several
reference variables during training, like means and variances
in batch normalization in neural networks. To ensure this,
we only use training set in training domain for model opti-
mization and validation set of testing domain for model eval-
uation. During the testing period, statistics of only training
domain are utilized as the referred statistics in batch normal-
ization of neural network models.

During the experiment, we use DSR and ERM to train
several traditional and classic machine learning algorithms as
well as deep learning structure based models. The implemen-
tation details are described in Table. 2. For neural network
based BPNN, CNN, TICNN, DNCNN and LeNet-5, we train
these models for 100 epochs. To guarantee their stable perfor-
mance, Adam optimizer [46] is used for the first 90 epochs,
and SGD is used for the last 10 epochs. Hyper parameters
of these models are carefully searched only based on the
validation set of training domain.

B. RESULTS AND ANALYSIS
We conduct the first experiment with fix parameters of DSR,
which are set as

(
σ 2
r , σ

2
l , σ

2
ε

)
= (0.02, 0.1, 0.02), where we

roughly set the pseudo rate variance σ 2
r as 0.02 according to
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TABLE 2. Implementation details of the comparison methods.

TABLE 3. Classification accuracy ± standard deviation (%) on six diagnosis scenarios.

the maximum fluctuation CWRU’s rotating speed, and the
other two are set empirically. For each example, 1024 con-
tinuous sample points in the time domain are randomly seg-
mented from the original mat files. The simulated virtual
examples are shown in Fig.7. And the first experiment result
is shown in TABLE. 3, where the classification accuracy and
the corresponding standard deviation are calculated under
10 repeated trials for the 6 diagnosis scenarios.

All the trained models perform well on the validation set
of training domain (near to 100%), but as shown in TABLE 3,
a collapse occurs when applying them directly to testing
domain. Strikingly, we find that DSR boosts the generaliza-
tion performance of those models’ in most of the transferring
scenarios, especially for frequency domain based models.

Amongst them, BPNN and CNN with DSR obtain 20.64%
and 17.51% increases on the average accuracy. SVM with

DSR gains 17.51% higher average accuracy than its original
structural risk minimization (SRM) principle based version.
In particular, KNN, which can be regarded as a neighbor
based probability estimation (NBE) model, achieves the best
and most stable performance with DSR, with 95.95% of the
average accuracy and 0.81% of the corresponding standard
deviation. This phenomenon fully verifies the effectiveness
of our proposed DSR, where the vicinal examples generated
by DSR improve the diversity of the original training set.
ComparedwithDirac distribution of ERM, and neighborhood
based probability estimation, the vicinal distribution formu-
lated by DSR is a better estimation of the true mechanism,
which, thereby, increases the generalization ability of the
diagnosis models.

For time domain based diagnosis models, DSR also con-
tributes to an improvement of generalization performance of
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FIGURE 7. The comparison of the original signals and the simulated virtual examples on three classes: (a) normal, (b) inner race fault
(0.021 inches), (c) outer race fault (0.07 inches). In each subFIG, the upper left and upper right are the original time sequence and its
amplitude spectrum, the lower left and lower right are the virtual ones. Note that for better telling the difference, three pairs of examples
with high speed ratios (r=0.89, 1.12, 0.88) are chosen here. Normally the difference between an original signal and its virtual one is not so
obvious.

TICNN (0.36%), LeNet-5 (5.86%) and DNCNN (2.16%) but
not as much as the one of frequency-based models. The mod-
est increases for TICNN (the first 4 scenarios even decrease)
and DNCNN (first 2 decrease) can mainly be attributed to the
phase shift in simulated time signals caused by DSR. Specif-
ically, in a relatively easy transferring scenario (i.e. A->B for
DNCNN, B->A for TICNN) the unexpected deformation in
the corresponding simulated time signals may result in errors
in models’ generalization process, which leads a decline on
performance. But when it comes to more difficult scenarios
(i.e. C->A), the vicinal examples generated by DSR can also
contribute to models’ generalization ability.

In addition, an experiment for few-shot learning scenarios
is also conducted, where for the most extreme case, there
are only 5 samples for each class utilized for training mod-
els. In this experiment, based on the few-shot training set
(5/class), we use DSR to simulate vicinal examples to expand
it to 2, 5 and 10 times bigger for comparison. The result is
shown in TABLE 4, where we present the average accuracy
on 6 few-shot diagnosis scenarios under 10 replicate trials.

The calculation in TABLE 4 strikingly shows the effective-
ness of DSR for frequency domain based diagnosis models,
where, for example, the accuracies of using DSR to expand
the training set for 10 times (simulate 9 vicinal examples from
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TABLE 4. Average classification accuracy ± average standard deviation on 6 few-shot diagnosis scenarios.

1 original example) overweigh the ones of directly adding
extra 45 original examples per class.

As for time domain-based models, DSR can marginally
improve the models’ generalization performance with limited
training examples (5 + 5 (DSR) → 10/class). However,
the overuse of the simulated virtual examples in the time
domain, especially for few-shot cases, can have an adverse
impact on models’ generalization performance. It is obvi-
ous that the accuracies of models decline gradually as the
number of simulated signals increases. Inversely, adding raw
training samples (if we have) is much more effective than
using DSR. This phenomenon can be mainly owed to the
following 3 reasons: a) first, the unexpected pattern brought
in by the deformation may mislead the network to optimize in
a wrong direction; b) second, as illustrated in Fig.7 (also
in Fig.6), the distribution of a simulated signal along time axis
resembles its corresponding original one. With more similar
vicinal examples fed into deep models, severer overfitting
occurs; and c) third, for signals under the same class, their
representation in time domain can differ greatly with different
time slot for segmentation; with more extra different time
segmentations fed for optimization, deep models with plenty
of parameters get better generalization performances.

C. ABLATION STUDIES
As a data augmentation algorithm, DSR mainly consists of
three parts: main resampling procedures for different rotat-
ing speeds simulation, load influence simulation and noise
injection. To compare the effect of each part, we conduct
an experiment containing adding noise, multiplied by load
coefficient, resampling as well as their combinations. Except
noise injection [28] (as one part of DSR), we also utilize
Mixup [15] as a comparison data augmentation method.
Besides, we further discuss the combinations of Mixup and
our proposed DSR.

Specifically, the parameters for resampling, noise injec-
tion, and load influence are set the same as the first exper-
iment. For Mixup, we follow [15] and set its parameter
a=0.2 for Beta distribution. We have two modes for the com-
bination of Mixup and DSR: a) for the Mode-1, we directly

calculate the convex combination between random pair of an
original training example and a simulated vicinal example
(after DSR), where:{

xinput = λx
(origin)
i + (1− λ) x(DSR)j

yinput = λy
(origin)
i + (1− λ) y(DSR)j

(8)

and b) for Mode-2, we first concatenate the original exam-
ples and simulated vicinal examples, and then compute the
convex combination between random pair of examples after
concatenation, where:{

xinput = λx
(concat)
i + (1− λ)x(concat)j

yinput = λy
(concat)
i + (1− λ)y(concat)j

(9)

The experiment result is presented in TABLE 5.
From the ablation study experiment, we have the following

observations. First, in the comparison of each part of DSR and
their combination, resampling is the core part, where themain
contribution of performance improvement of models owes to
it. And by combined with noise injection and load influence,
DSR can improve the stability of diagnosis models.

Second, in the comparison with noise injection andMixup,
DSR performs the best while the other two may cause gen-
eralization performance decline (expect of DNCNN with
Mixup, an increase of 6.75%) under working condition trans-
ferring diagnosis scenarios, which verifies the adaptability
and effectiveness of DSR as a specific data augmentation
algorithm for periodic signal based diagnosis.

Third, the combination of DSR and Mixup can effectively
improve the generalization ability and stability ofmodels. But
for TICNN and DNCNN, whose inputs are 1-D time signals,
the direct convex combination of a random pair of a vicinal
example (DSR) and an original example can cause a dramatic
decline of model performance. This may be caused by the
domain shift pattern and the unexpected deformation, which
make the model hard to be optimized with the direct convex
combination.

D. EFFECTIVENESS VISUALIZATION
Here we aim to demonstrate the effectiveness of the vicinal
distribution formulated by the proposed DSR. Andwe choose

125142 VOLUME 7, 2019



T. Hu et al.: DSR—A Practical Data Augmentation Algorithm for Periodical Signal Analysis-Based Fault Diagnosis

TABLE 5. Average classification accuracy ± average standard deviation for ablation studies.

FIGURE 8. PCA visualization of the frequency spectrum of source domain signals, target domain signals and simulated signals based on source domain
signals. The area in the ellipse box cites the distribution shift of the same fault in different domains.

the C->A diagnosis scenario, which is the hardest working
condition transferring scenario, to conduct the experiment,
and the parameters of DSR are set the same as the first
experiment. Principle Component Analysis (PCA) is utilized
to visualize the distributions of the training domain (C: 3HP),
the vicinal domain (DSR) and the testing domain (A: 1HP).

The left-top parts Fig.8 (a) and (b) show the marginal
distributions of three domains, and the residual parts show
their condition distributions. From the figure, we can observe
that comparedwith the distribution of the training domain. the
vicinal distribution is a better estimation for the distribution
of the testing domain. For example, in the ellipse boxes,
the condition vicinal distribution is closer to the one of the
testing domain, where there are more intersection regions

between the two distributions. This phenomenon indicates the
effectiveness of our proposed DSR as a data augmentation
algorithm based on Vicinal Risk Minimization.

V. CONCLUSION
We mainly focus on the data augmentation for inadequate
and incomplete training set for fault diagnosis, which is
mainly caused by various working conditions and imbalanced
distribution of industrial data. This leads us to study a spe-
cific augmentation algorithm for periodical signals. And in
this paper, we have proposed DSR and its main procedures,
and shown that DSR is a form of vicinal risk minimiza-
tion, where the vicinal examples simulated by it are utilized
for training. Throughout an extensive evaluation, we have
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verified that DSR improves the generalization performance
of diagnosis models, especially for frequency domain based
models, on the benchmarkCWRUdatabase. Besides, we have
further discussed the effect of combining DSR with other
data-agnostic augmentation algorithms like Mixup.

The main shortcoming of DSR lies at the limited improve-
ment for time domain based models, which has been sum-
marized in Section.III.F: a) the unexpected pattern caused by
phase shift, b) the similar distribution along the time axis,
c) high speed ratio r can result in a loss of the resolution
precision of the simulated signals and d) prior knowledge
about fluctuation range, signal-noise ratio, etc., are required.
We do not yet find a practical solution to these problems.

In the future, we expect to study practical generalization
mechanisms in diagnosis models, which can be combined
with DSR and be utilized for online diagnosis under imbal-
anced circumstance.
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