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ABSTRACT This study investigates routing algorithms for automated highway systems (AHS). In AHS,
the central systemmanages decisions regarding routing for all vehicles and the distribution of traffic volume.
We define an automated highway routing problem, of which the objective is to minimize the average travel
time of vehicles through the target highway network. We propose four routing approaches considering
(1) distance, (2) current traffic conditions, (3) predicted travel time, and (4) probabilistic route selection
with predicted travel time. In the third and fourth approaches, the predicted travel time is obtained from an
empirical speed–density relationship. AnyLogic, an agent-based simulation software, is used to simulate the
behavior of individual cars. Four approaches are tested on a sample highway network and we found that the
routing approach considering the predicted travel time difference exhibits the best performance.

INDEX TERMS Automated highways, prediction algorithms, routing, simulation.

I. INTRODUCTION
Traffic congestion is one of the most important unsolved
problems of modern society. Although transportation infras-
tructure is constructed considering current and future traffic
demand, traffic congestion often occurs owing to changes
in demand and the failure of forecasting. Transportation
infrastructure, particularly highways, cannot easily respond
to changes in traffic demand. Constructing a new highway
or extending existing highway requires significant cost and
time and, in some cases, it is not feasible owing to environ-
mental and political issues. Therefore, it is important to utilize
the current infrastructure efficiently. An automated highway
system (AHS) is one tool that could be used to increase
performance of the traffic system.

In an AHS, the central system can manage decisions about
routing for all vehicles and the distribution of the traffic
volume. Once vehicles enter the AHS and specify their desti-
nation, drivers do not need to drive and select their route. The
AHS can decide the routes of vehicles and the autonomous
vehicles are operated by communicating with the AHS. The
introduction of AHS is expected to significantly improve the
highway traffic performance.

The associate editor coordinating the review of this article and approving
it for publication was Chaitanya U. Kshirsagar.

There are many studies about routing considering human
drivers and intelligent support systems, but there are few
studies that the central system controls the entire vehicle
operations (i.e., AHS). Our study focuses on this case and
proposes efficient routing algorithms for AHS. The objec-
tive of the routing algorithms is to minimize the average
travel time of vehicles through the target highway net-
work. However, to implement routing algorithms in the real
world, travel time difference between vehicles must also
be considered. If several vehicles with the same destina-
tion depart at the same time, their arrival times should
be as close as possible even if their assigned routes are
different. Thus, we consider the travel time difference
between vehicles whose origin and destinations are the same.
To evaluate the travel time difference of individual vehicles,
we use an agent-based simulation model for routing algo-
rithms. The proposed algorithms or approaches are tested
on a sample highway network and their performances are
compared.

The rest of the paper is organized as follows. Section II
reviews AHS and relevant routing studies. Section III defines
the automated highway routing problem (AHRP). Section IV
describes our proposed approaches for the AHS routing prob-
lem. Section V discusses the simulation experiment results
and Section VI concludes the paper.
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II. RELATED WORK
In this section, we review previous literature on AHS and
routing. Baskar et al. [1] summarized ongoing research on
AHS. In an AHS, vehicles and roadside infrastructure have
their own intelligence systems and communicate with each
other. An intelligent vehicle (IV) supports its driver or drives
itself using sensors and assisting systems, such as adaptive
cruise control (ACC) and route guidance systems. ACC is a
system that automatically adjusts the speed of the equipped
vehicle and distance to the car in front using sensors. Route
guidance systems provide the best route to the destination
using static information such as distance and dynamic infor-
mation such as traffic congestion and accident information.
The roadside infrastructure includes roadside sensors and
traffic management systems. They classified AHS into five
types depending on the level of automation of vehicle and
roadside infrastructure and introduced control methods and
frameworks of AHS.

Among the research areas related to the AHS, platooning
is the topic that has seen the most progress. Platooning in
an AHS means that several vehicles move at the same speed
and spacing in the same lane. Hedrick et al. [2] discussed
various components and methods for realizing platooning.
Broucke and Varaiya [3] stated that platooning can increase
the total capacity of a highway by collision-free operation and
reduction of unnecessary acceleration and deceleration, and
thereby reduce harmful gas emissions by one-half.

Eskafi et al. [4] presented an AHS simulator package
called SmartPath. The simulator consists of automated lanes
and transition lanes. Whereas vehicles are automatically con-
trolled by the central system when they are in the auto-
mated lanes, vehicles in the transition lanes are controlled
manually.

There are few studies related to the routing or route
guidance problem for AHS. Baskar et al. [5] proposed two
approaches for the route selection problem for AHS. The
first approach is an approximated mixed-integer linear pro-
gramming (MILP) model for road network flows. The model
considered pre-defined link travel times, link capacities, and
waiting times in the queues at the boundary and inside of the
network. The objective function of the model is to minimize
the total time spent in the network. They compared the result
of the model with the case where each vehicle takes the
shortest distance route to its destination. The second approach
is based on METANET model, which is a second-order
macroscopic traffic flow model [6], [7]. It represents traffic
dynamics at an aggregate level using macroscopic variables
such as density, mean speed, and flow. Baskar et al. [5]
proposedmacroscopic traffic flow characteristics for platoon-
ing in AHS. The ACC-equipped IVs with platooning have
a different speed–density relationship from that of human
driving cars. They extended the METANET model using
the proposed platoon characteristics and compared the per-
formance of the three cases: uncontrolled case with human
drivers, controlled case with human drivers, and controlled
case with platoons.

Our study is similar to that of Baskar et al. [5] in that
we attempt to control the routes of all the vehicles optimally
in the AHS. However, our approach is different from theirs.
The first difference is in the level of details in the model.
Baskar et al. [5] used a mathematical model and a macro-
scopic flow model, and their decisions are flow and flow
splitting rate for each time interval. On the other hand, our
study controls individual vehicles rather than aggregated traf-
fic flow. We attempt to improve the efficiency of the highway
network as well as to minimize the travel time difference
between individual vehicles. We would like to propose a con-
trol logic that makes the arrival time as close as possible when
several vehicles with the same destination depart at the same
time, even if their selected routes are different. Macroscopic
aggregated flowmodels are not sufficient to achieve this goal.
We develop an agent-based simulation model for AHS and
test several control logics. The second difference is the pre-
diction methods used for future traffic flow. Baskar et al. [5]
solved their macroscopic flow model for a given prediction
time horizon, applied the result to the next time horizon, and
repeated the procedure. In this study, we propose a travel
time prediction method based on the empirical speed–density
relationship. This method can predict future states of the road
network for the entire time and the best route for each vehicle
can be determined based on the future states.

The routing problem for AHS is closely related to dynamic
traffic assignment (DTA) research. The inputs of the traffic
assignment problem are a description of the transportation
system and a matrix of interzonal trip movements (demands),
and the outputs of the problem are traffic volumes, traffic
times, and costs [8]. The DTA problem is a traffic assignment
problem that considers time-varying transportation system
and demands. There are two main objectives of DTA: the
user equilibrium (UE) and the system optimum (SO) objec-
tives [9]–[11]. The UE corresponds to vehicles’ behavior that
minimize their own travel time. As a result of the UE condi-
tion, the travel times of the routes used tend to be equal, while
the routes unused have equal or greater travel times. The SO,
in contrast, corresponds to social behavior that minimizes
the total cost of the entire network system (i.e., total time
spent).

The approaches of DTA can be used in the routing
problem for AHS. Peeta and Ziliaskopoulos [10] classi-
fied the DTA approaches into four groups: mathemati-
cal programming, optimal control, variational inequality,
and simulation-based approaches. The first three were fur-
ther labeled as analytical approaches. Simulation-based
approaches are used to implement complex traffic dynamics
that are difficult to represent with analytical approaches. For
those approaches, various traffic simulators including CON-
TRAM [12], DYNASMART [13], and DynaMIT [14], [15]
have been used. Furthermore, to support detailed behavior,
agent-based traffic simulators such as DTALite [16] and
POLARIS [17] have been used. In our study, we also use an
agent-based simulation software, AnyLogic 7.3, to simulate
the routing behavior of an AHS. AnyLogic is an agent-based
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simulation software and it supports the road traffic library and
JAVA programming. By using this library, we develop the
components of an AHS: roadside infrastructure, intelligent
vehicles, central system, and communication systems.

There are other similar studies on solving routing or route
guidance problem in traffic systems other than AHS. How-
ever, our study is differentiated by the fact that the AHS
controls all the vehicles individually. Individual vehicle-level
route control results in a change in overall flow. We propose
travel time prediction methods and routing alternatives for
an AHS and validate them using an agent-based simulation
software.

FIGURE 1. Network structure of an example AHS.

III. PROBLEM DESCRIPTION
In an AHS, a road network such as Figure 1 is given. A road
network consists of directional links and nodes. Let Ll and
Nl be the length and number of lanes of link l, respectively.
Nodes, n1, n2, n3, n4, and n5 in the example case, are junctions
where two or more links intersect. Some nodes, n1, n2, and n3
in the example case, have toll gates and cars enter and leave
the AHS through them.

We assume that vehicles follows first-in, first-out (FIFO)
rule in the link and junction. Vehicles continuously enter
the highway system through toll gate nodes. The i th
vehicle entering the system is denoted by vi, and it has
information about the entrance time denoted by ti and its
origin–destination (OD) denoted by (oi, di). For example,
suppose that vehicle v7 enters the highway through node 3
at 9:30:45 AM and its destination is node 4. Then, t7 is
9:30:45 AM and (o7, d7) is (3, 4).

In this study, we assume that the AHS does not have inter-
sections or traffic signals. Roads are connected by junctions
without traffic signals. Each vehicle has a preferred speed and
it does not exceed this speed. If the vehicle speed is lower than
the preferred speed, the vehicle will attempt to accelerate to
the desired speed.

Let ei be the exit time from the highway of vehicle vi. Then,
τi, the travel time of vehicle vi, is (ei − ti). By assigning an
appropriate route to each vehicle, we would like to achieve
the minimization of the average travel time of vehicles on
highways. At the same time, we will consider the travel
time difference between routes. We call this problem the
automated highway routing problem (AHRP).

IV. SOLUTION APPROACHES
In this section, we propose four route control approaches for
the AHRP.

A. ROUTE CONTROL WITH SHORTEST DISTANCE
In the route control with shortest distance (RCSD) approach,
each vehicle vi always takes the shortest distance route for
its OD pair (oi, di). This approach can be considered an
uncontrolled case because it is the naivest approach.

B. ROUTE CONTROL WITH INSTANTANEOUS TRAVEL TIME
The instantaneous travel time can be defined as the travel
time of a virtual vehicle travelling along a given route fac-
ing the current traffic conditions [11]. The AHS continually
measures the current mean speed of each link. Based on
this data, the AHS can find a minimum travel time route
for a vehicle vi at entrance time ti. This route control with
instantaneous travel time (RCIT) approach assumes that the
traffic conditions at ti do not change until the vehicle exit
time ei. The Dijkstra’s algorithm [18] is used to find the
minimum instantaneous travel time route for each vehicle.

C. ROUTE CONTROL WITH TRAVEL TIME PREDICTION
If traffic conditions change rapidly or the routes are too long
to ensure the stability of traffic conditions, route control with
travel time prediction (RCTP) may perform better than the
previous two approaches. In this study, we use a vehicle
speed–density relationship for travel time prediction. Vehicle
speed is affected by the number of nearby vehicles. When
the number of vehicles is low, vehicles can travel at their
maximum speed, but the speed decreases as the number of
vehicles increases.

Various formula-based speed–density models have been
suggested, including Greenshields’ model [19], Greenberg’s
logarithm model [20], Underwood’s exponential model [21],
the Northwestern model [22], and the logistic model [23].
Each model has one or more parameters, and their values
are estimated from actual vehicle traveling data. Empirical
speed–density models can also be used. An empirical model
can directly represent the speed–density relationship as data
is gathered. In the AHS, because real-time data can be gath-
ered, and it is better to adjust the speed–density relation-
ship dynamically to estimate the travel time more accurately,
we use empirical speed–density models rather than existing
formula-based speed–density models.

We assume that each highway link has its own speed–
density relationship. Roess and Prassas [24] suggested that
the preferred speed of a multi-lane highway depends on the
number of lanes, lane width, and roadside access points.
The speed limit of highways varies from link to link. For
accurate travel time prediction, we assume that each link has
an individual speed–density relationship. The generation of
the empirical speed–density relationship and the prediction
of travel time are described in the following.
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1) DATA COLLECTION AND GENERATION OF THE
EMPIRICAL SPEED–DENSITY RELATIONSHIP
For each link (or segment, which is a division of a link), the
AHS records the following data whenever a vehicle arrives at
the end of the link: (1) the total number of vehicles on the link;
and (2) travel time of that vehicle on the link. Then, the mean
travel time is obtained for each number of vehicles on the
link. The number of vehicles can be converted into density,
and the mean travel time can also be converted into the mean
speed. As a result, the collected data can generate and update
the empirical speed–density relationship for the link in real
time.

FIGURE 2. Speed–density relationship: (a) two-lane link and (b) one-lane
junction link.

In this study, data for any link is collected in 1 km segment
units. For the junction link (which is described in detail in
Section V-A), data is collected without segmenting. Using
collected data for a straight link or junction link, the empirical
speed–density relationship is generated. An example of an
empirical speed–density relationship of our AHS simulation
model is shown in Figure 2. Figure 2(a) shows the result of
a two-lane straight link and Figure 2(b) shows the results of
a one-lane junction link. In the graph, ‘‘individual’’ denotes
the speed–density relationship of each vehicle and ‘‘mean’’
denotes the average speed at each density. In Figure 2,
as the density increases the speed of both straight links and
junction links decreases. Junction links have a lower speed
than straight links at low density.

2) PREDICTED NUMBER OF VEHICLES
The predicted number of vehiclesm(l,j),k has two indices. The
space index (l, j) indicates segment j of link l. The length of
segment j of link l is Ll,j. The time index k indicates the time
interval. The AHS continually updates and maintains m(l,j),k
data.

3) TRAVEL TIME PREDICTION AND ROUTE SEARCH
When vehicle vi enters the first segment of link l at time
index k , the predicted travel time τi,(l,1),k becomes

τi,(l,1),k =
Ll,1

U (m(l,1),k )
(1)

where U (m(l,1),k ) is speed at m(l,1),k vehicles at the link. The
density is obtained from m(l,1),k , Ll,1, and Nl . The speed is
obtained from the density and the empirical speed–density
relationship of link l. Then, the time index of entrance of
the next segment can be obtained. By repeating this process
from the first segment of link l to the last segment of link l,
τi,l,k , which is the predicted travel time of vehicle vi of link l
at entrance time index k , can be obtained. The minimum
predicted travel time route can also be obtained by Dijkstra’s
shortest path algorithm because vehicles follows FIFO rule
in the link. Whereas the instantaneous travel time is used to
calculate the shortest path route for each vehicle in RCIT,
the predicted travel time explained above is used in RCTP.

4) UPDATING THE PREDICTED NUMBER OF VEHICLES
After a route is selected,m(l,j),k values are updated. Following
the selected route, the AHS increases the m(l,j),k value by
1 following the route and the predicted travel time.

D. ROUTE CONTROL WITH TRAVEL TIME PREDICTION
AND RANDOM ROUTE SELECTION
The proposed route control approach in Section IV-C might
have prediction errors. In real traffic, it is difficult to pre-
dict the exact movement of all the vehicles. For example,
the travel time of two vehicles entering at the same time
may be differ by their lane allocation. As a result, the num-
ber of predicted vehicles and average predicted speed in
the prediction process can be differ from the actual arrival.
Furthermore, there might be a time delay to reflect the actual
traffic flow in the prediction model. Consequently, there is a
possibility that the selected route for a vehicle is not always
the actual minimum travel time route. Thus, it is better to
select another route for some vehicles, rather than a route
with the minimum predicted travel time but which might be
congested. To implement this idea, we propose a predicted
travel time based random route selection approach. For the
route control with travel time prediction and random route
selection (RCTPR) approach, the following probability func-
tion of route selection is used:

pi,r =
τi,max − τi,r + α(o,d)τi,min∑

r
(τi,max − τi,r + α(o,d)τi,min)

(2)
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where τi,r is the predicted travel time of route r of (o, d),
τi,max and τi,min are the maximum and theminimum predicted
travel time of routes, respectively, and α(o,d) is a weight
parameter. All the routes for (o, d) can be considered, but
in the case of a complex road network, only appropriate
routes can be pre-selected and considered. The probability
pi,r increases as τi,r decreases and vice versa. A weight
parameter α(o,d) adjusts the difference between the route
selection probabilities. When α(o,d) is zero, pi,r of the route
with the maximum predicted travel time is always zero and
pi,r of other routes is a positive value.Whenα(o,d) is a positive
value, pi,r of the route with the maximum predicted travel
time is also a positive value. The appropriateness of the value
of α(o,d) depends on the road network structures and traffic
conditions. If the travel time difference between routes is
large, α(o,d) needs a low value or to be zero. If the travel time
difference is small, α(o,d) needs a high value to reduce the
probability difference. It is difficult to find an appropriate
value of α(o,d) theoretically, but the value can be obtained
by experientially. In this study, the value is obtained from
preliminary simulation experiments.

FIGURE 3. Road network design of the case study (Baskar et al., 2013).

V. SIMULATION STUDY
A. CASE STUDY SCENARIOS
To test the route control approaches proposed in the previous
section, we consider the road network of the AHS presented
in Figure 3. The basic network structure is adopted from
Baskar et al. (2013), but the length and number of lanes of
links are adjusted to our agent-based simulation. There is one
entrance node n1, two exit nodes n5 and n6, and three junction
nodes n2, n3, and n4. The length of l1, l8, and l9 is 5 km. The
lengths of l2 to l7 are 20, 18, 12, 14, 4, and 4 km, respectively.
The number of lanes of l1 is eight, and the number of lanes
of all other links is two. Note that l1 is assumed to have
eight lanes because it is used to generate incoming traffic to
the network and many lanes are required to generate enough
cars for the simulation in AnyLogic. It is assumed that the
interarrival times of the OD pair cars (n1, n5) and (n1, n6)
follow exponential distributions.

We developed the simulation model using AnyLogic 7.3,
whose traffic library is used to model physical parts such as

FIGURE 4. Link and junction link.

the road network and vehicles and Figure 4 shows part of the
model. The links are connected to junctions. A junction is
composed of several junction links, which connect two link
lines. Logical parts such as the data collection system, data
communication system, and route controller are developed
in JAVA.

We consider the following three scenarios for the
simulation.
- Scenario 1:
OD pair (n1, n5) with 2.4 s mean interarrival time
(25 veh/min).

- Scenario 2:
OD pair (n1, n5) with 3.6 s mean interarrival time
(16.7 veh/min) and OD pair (n1, n6) with 7.2 s mean
interarrival time (8.3 veh/min).

- Scenario 3:
OD pair (n1, n5) with 2.4 s mean interarrival time
(25 veh/min) and OD pair (n1, n6) with 4.8 s mean inter-
arrival time (12.5 veh/min).
For all the scenarios, it is assumed that the length of a vehi-

cle is 5 m and the preferred speed of the vehicles is 120 km/h.
The total simulation time horizon is 6 h. The simulation for
each scenario is conducted 10 times.

B. SIMULATION RESULTS
1) SCENARIO 1
In Scenario 1, there are four possible routes to choose:
l1 − l2 − l8 (from now on, only numbers are used as,
e.g., 1–2–8), 1–3–8, 1–4–7–8, and 1–5–7–8. Figure 5 shows
the results of the four approaches proposed in Section IV.
In the graph, (x, y) of each point indicates (departure time
of vehicle vi at the entrance node, total travel time of vi). The
travel times of the vehicles that do not arrive at the destination
node until simulation end time (6 h) are not shown.

In the RCSD approach, because all the vehicles consider
their shortest distance route, the vehicles with the same OD
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FIGURE 5. Simulation results of Scenario 1.

TABLE 1. Simulation results of Scenario 1 (average of 10 simulations).

pair select the same route. When the flow exceeds the capac-
ity of the links, as shown in Figure 5(a), the vehicles are
congested, and their travel time continuously increases. Note
that Figure 5(a) has a larger vertical scale than the other
graphs.

In the RCIT approach, the shortest distance route is used
initially as in the RCSD approach. However, if congestion
occurs and the instantaneous travel time of the previously
used route is greater than the other route, the AHS selects
the route with the minimum instantaneous travel time for the
next incoming vehicle. Figure 5(b) shows the result of the
approach. It is clearly better than Figure 5(a), but we can
observe another problem. Figure 5(b) shows that the routes
being used are distinct by time intervals. This means that
the shortest travel time route is not changed for a while and
the same route is chosen continuously for incoming vehicles.
This happens because the vehicles entering a road link do
not immediately affect the driving time of the road, and
there is a time delay between the entering of vehicles and

recognizing their effects. The instantaneous travel time on a
road link reflects the road condition at the moment when a
vehicle enters at the origin node. However, when the vehicle
arrives at a road link on the route, the road conditions have
changed from the observed conditions at the origin node. The
instantaneous travel time of that road link is updated by these
vehicles and the update occurs later as the road link is farther
away from the origin node. Such time delay causes the delay
in route change.

The RCTP approach is proposed to overcome the time
delay problem of the RCIT approach. Using the RCTP
approach, the duration of using only one route is reduced
and the average travel time of vehicles decreases signifi-
cantly as listed in Table 1. Furthermore, the RCTPR approach
shows better results than the RCTP approach. In Table 1, the
Max–Min row, which lists the travel time difference between
maximum and minimum travel time routes, shows that RCTP
and RCTPR approaches are also effective for the minimiza-
tion of the travel time difference between routes.
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FIGURE 6. Simulation results of Scenario 2: OD pair (n1, n5).

FIGURE 7. Simulation results of Scenario 2: OD pair (n1, n6).

The main difference between the results of the RCTP
and RCTPR approaches is the usage ratio of (1–4–7–8) and
(1–5–7–8) routes. These two routes share link l7 and the total

number of vehicles traveling through both routes is similar
in the two approaches. However, the usage ratio of the two
routes is very different. Whereas the usage ratio of the RCTP
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TABLE 2. Simulation results of Scenario 2 (average of 10 simulations).

FIGURE 8. Simulation results of Scenario 3: OD pair (n1, n5).

result is 20:1, that of the RCTPR result is 3:2. Note that in the
RCTPR approach, the weight parameter α(1,5) is set to 0.028.
The value was obtained from preliminary simulation exper-
iments with all the possible values between 0 and 0.040 at
0.002 intervals. In other scenarios, each α(o,d) is also obtained
in a similar manner.

2) SCENARIO 2
Scenario 2 is obtained by changing the OD pair of some
vehicles to OD pair (n1, n6) from Scenario 1. The total vehicle
flow rate is the same as Scenario 1, but one-third of the
vehicles are assigned to OD pair (n1, n6). Figure 6 shows the
results of the OD pair (n1, n5) and Figure 7 shows the results
of the OD pair (n1, n6). Table 2 lists the summary. For OD
pair (n1, n6) vehicles, only (1–4–9) and (1–5–9) routes are
considered. Although both (1–2–6–9) and (1–3–6–9) routes
are also possible, they are not considered as appropriate

routes because their total distances are significantly longer
than (1–4–9) and (1–5–9) routes.

As a result of the decrease in the vehicles of OD pair
(n1, n5), there was no serious congestion even though only
one route was used in the RCSD approach (Figure 6(a)). The
results of the RCIT, the RCTP, and the RCTPR approach
(Figure 6(b), (c), and (d)) are similar to Scenario 1 but the
average travel time has decreased compared with Scenario 1.
The results of the OD pair (n1, n6) are similar to the OD pair
(n1, n5) case, except for the available routes (Figure 7). The
weight parameters α(1,5) and α(1,6) in the RCTPR approach
are set to 0.006 and 0.010.

3) SCENARIO 3
Scenario 3 is obtained by adding the flow for OD pair (n1, n6)
from Scenario 1. The ratio of flow rate of two OD pairs is
the same as the ratio in Scenario 2. Figures 8 and 9 and
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FIGURE 9. Simulation results of Scenario 3: OD pair (n1, n6).

TABLE 3. Simulation results of Scenario 3 (average of 10 simulations).

Table 3 display the results. The results of the OD pair (n1, n5)
are similar to the results of Scenario 1. However, except
in the RCSD approach, average travel times have increased
because the vehicles of the OD pair (n1, n6) that share link
l4 and l5 are added. The results of the OD pair (n1, n6)
are similar to the OD pair (n1, n6) of Scenario 2. As the
traffic flow rate of Scenario 3 is greater than Scenario 2,
average travel times of the OD pair (n1, n6) have increased;
in the RCSD approach, heavy congestion occurs as shown
in Figure 9(a), and this is similar with OD pair (n1, n5) in
Figure 8(a).

Although the flow has increased, the RCTP approach
shows significantly better results than the RCIT approach,
and the RCTPR approach also shows better results than the
RCTP approach (Table 3). The weight parameters α(1,5) and
α(1,6) in the RCTPR approach are set to 0.014 and 0.010.

VI. CONCLUSION
This study has investigated the routing algorithm for an AHS.
We defined the AHRP and suggested four approaches:
RCSD, RCIT, RCTP, and RCTPR. The RCSD approach,
which takes the shortest distance route, corresponds to an
uncontrolled case. The RCIT approach corresponds to a non-
prediction case. It measures the current mean speed and
takes the minimum travel time route. Both the RCTP and
the RCTPR approaches consider predicted travel time, but
the RCTP approach considers only the minimum predicted
travel time route and the RCTPR approach considers the
predicted travel time of all routes and selects routes with
probability. We have developed an AHS model using an
agent-based simulator and applied the suggested approaches.
The experimental results show that the RCTPR approach is
the best among the four.
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Note that if the relevant traffic information is collected
and appropriately shared and the human drivers follow the
guidelines (suggested route selection) generated by the algo-
rithm, the proposed approaches can be applied to even today’s
highway networks.

This research can be extended in many directions. First,
the RCTPR approach requires an efficient and automatic
parameter setting method for α(o,d). In the current RCTPR
approach, we tested various values through preliminary simu-
lations, and then selected the best value among them. To apply
the approach to dynamic traffic demand and various road
networks, the parameters should be determined automati-
cally. We plan to use machine learning techniques such as
reinforcement learning for the automatic parameter setting.
Second, the proposed approaches need to be validated on
much larger road network models with more complicated OD
pairs.
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