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ABSTRACT The nature of recommendation is Non-IID, which has potential in improving recommendation
quality and addressing issues such as sparsity and cold start. However, existingmany state-of-the-art methods
assume users and items are independent and same distributed while ignoring complex coupling relationships
within and between users and items, resulting in limited performance improvement. To solve this issue, this
paper proposes a novel neural user-item coupling learning model, short for CoupledCF, based on non-IID
learning for collaborative filtering. CoupledCF joint learns explicit coupling with CNN and implicit coupling
with deepCF within/between users and items accompanying user/item side information for recommendation
tasks. User/item side information contains of attribute-based and feature-based. For different user/item
side information, we use different embedding methods to learn embedding representation. We conduct
comparative experiments on (1) two datasets from MovieLens1M and Tafeng with attribute-based user/item
information for Top-K recommendation. (2) two datasets from MovieLens1M and BookCrossing with
attribute-based user/item information for rating prediction. (3) two datasets from Amazon Movies and
TV (AMT) and Yelp for feature-based user/item information for Top-K item recommendation and rating
prediction tasks. Empirical results on five available real-world large datasets prove our proposed CoupledCF
model is able to obtain better recommendation accuracy compared with several mainstream approaches for
recommendation: BMF, neural matrix factorization, Google’s Wide&Deep network, DeepFM, convMF, and
A3NCF model.

INDEX TERMS Coupling Learning, convolutional neural network (CNN), collaborative filtering, deep
learning, user-item couplings.

I. INTRODUCTION
In reality, coupling learning has great potential for building
a deep understanding of the essence of business problems
and handling challenges that have not been addressed well
by existing learning theories and tools [1]. Any recommended
items and users are non-IID, which may essentially disclose
why a user likes (or dislikes) an item [2]. There exists
essential connection between users and items on attributes
or features. Accordingly, it is important to learn complex
user-item coupling relationships in deep models based on
non-IID learning.

In recommendation systems (RS), collaborative filtering
(CF) is one of the most popular approaches to predict a
new user whether to interact with an item (e.g., ratings) and
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recommend the top items which user may like by analyz-
ing the relationships between users (or items) according to
the past user behavior [3], such as ratings, reviews, click-
ing or purchasing behaviors on items. The user-item rating
matrix shows the user’s overall preference on items, in which
each entry denotes the preference of a user on an item. The
rating matrix is widely used as the main data source for
recommendation study.

In practice, often the rating matrix is very sparse, i.e., most
of its entries are absent. Therefore, it will encounter the com-
mon cold-start and low recommendation accuracy problem.
The method of dimensionality reduction has been proposed,
however, it does not fundamentally change the nature of the
problem, more and more studies have combined auxiliary
information with ratings for improving recommendation per-
formance, such as in [4], the author proposes a joint pre-
diction model that exploits both the user-item rating matrix
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and the item-based side information to build top-N recom-
mendation. In [5], a novel generic coupled matrix was pro-
posed which integrates the intra-coupled interactions within
an attribute and inter-coupled interactions among different
attributes.

The same as rating information, textual reviews con-
tain a large number of information written by users
such as user preferences and item characteristics. Several
studies [6], [7] have shown the quality of recommendation
can be improved by combining ratings and review texts, espe-
cially for the users and items with few ratings. Researchers
have paid extensive attentions to learn user/item features
from textual reviews, e.g., Latent semantic models such as
the SVD-based latent semantic analysis (LSA) [8] and the
probabilistically motivated latent dirichlet allocation (LDA)
[9]. However, these methods ignore word order existing
in reviews and require prior knowledge of the number of
topics in the corpus [10]. Word2vec method was proposed
by Google in 2013, a shallow neural network learns word
embedding vector. Word2vec considers order and semantic
information between words. We can directly average the
vector of all words when learning representative vector from
sentence or document. However, it ignores the influence of
the order between words on sentence or text information.
Doc2vec, which proposed by Le and Mikolov (2014), is an
extension of Word2vec to extend the learning of embeddings
from words to sentence, paragraph or document. It is applied
to a document as a whole rather than individual words. There-
fore, Doc2vec may be an appropriate method for embedding
learning of sentence or document, i.e., user features and
item features learned from review texts. In recent years, this
method have extensive applied on Natural Language Process-
ing (NLP) tasks, e.g., sentiment detection on the sentence-
level or document-level.

Incorporating user/item auxiliary information into recom-
mendation model has been extensive concerned in recent
years.For example, a novel matrix factorization method [11],
incorporating both rich bag-of-words typemeta-data on items
and user ratings simultaneously to enhance predictions and
handle cold start problems. In [12], a factor analysis approach
based on probabilistic matrix factorization integrates social
contextual information and user-item rating matrix to allevi-
ate the data sparsity and poor prediction accuracy problems.
Li et al. [13] exploits the rich user information including
a user’s query history, purchasing and browsing activities
to improve OCCF accuracy. In [14], the author leverages
social relationships to model user preferences for recommen-
dation. In [6], the Hidden Factors as Topics (HFT) model
combines latent factors with latent review topics for rating
prediction. Compared to several models which only use rat-
ings or reviews, this method achieves significant improve-
ments. The above work mainly involves specific user/item
auxiliary information, such as contexts, user historical activi-
ties, user demographics or reviews, or item description into
recommender system for addressing the problem of rating
shortage and the challenges such as sparsity and cold start.

However, some of the above works simply integrate
user or item side information into a recommendation model
but ignore the various coupling relationships [15] within
and between users and items and the non-IID nature of rec-
ommendation [1], [2] which may essentially disclose why
a user likes (or dislikes) an item [2]. Existing many rele-
vant approaches can only lead to limited improvement as
they assume users and items are independent and identi-
cally distributed (IID). For example, most of the previous
works regarding user/item information as IID cannot make
the best use of user/item information to improve the recom-
mendation accuracy when users/items are actually non-IID.
In [2], Non-IID learning were introduced to content with the
non-IID nature of users/items, i.e., learning couplings and
heterogeneities within/between users and items, and some
obviously achievements have been made in creating non-IID
recommendation systems, e.g., coupled user/item similarity-
based matrix factorization [5], [16] and in many other learn-
ing tasks [17]–[23].

While the above works consider the user-user and/or item-
item couplings but do not jointly model explicit and implicit
user-item couplings with their features and relationships
for CF. It is very difficult to learn explicit and implicit user-
item couplings in recommender system, as this involves high
dimensional and diverse interactions between observable and
latent user/item attributes [1]. In addition, deep neural net-
works such as convolutional neural network (CNN) has great
potential in representing abstract features especially in image
processing and natural language processing. In [24], a Deep-
CoNN model jointly learns item properties and user behav-
iors from review texts based on CNN. ConvMF [25] utilizes
CNN to learn user and item embedding and incorporates it
into probabilistic matrix factorization for rating prediction.

This work models explicit and implicit user-item cou-
plings in recommendation for collaborative filtering, which
reflects the various relationships between users and items.
This paper proposes a coupled CF model, CoupledCF,
which jointly learns and combines both explicit and implicit
user-item couplings according to both deep local features
learned by CNN and explicit global features describing
users and items. The main contributions of this work are as
follows:
• CoupledCF first learns the explicit user-item couplings
w.r.t. user attributes/features and item attributes/features
by a CNN-based user-item coupling learning network
in which user features and item features are learned
from review texts with Doc2vec model, then builds a
deep CF (DeepCF) model to learn the implicit user-
item couplings instead of traditional matrix factorization
with dot-product w.r.t user latent features and item latent
features, and finally integrates the learned explicit user-
item couplings with DeepCF to systematically repre-
sent user, item and user-item couplings. To the best
of our knowledge, CoupledCF is the first model to
joint learn both explicit and implicit user-item couplings
by CNN-based network and DeepCF.
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• The CNN-based user-item coupling learning model con-
sists of two components: a local CoupledCF which
models the explicit user-item couplings by a convolu-
tion filter-based neural network (CNN) to capture local
user-item interactions, and a global CoupledCF which
combines local CoupledCF output with the user/item
embedding product-based representation to capture the
global user-item interactions.

• We co-train two neural networks: the local/global Cou-
pledCF and DeepCF, to embed both explicit and implicit
user/item attributes/features and relations into CF to
jointly learn both explicit and implicit user-item cou-
plings towards a comprehensive representation of user-
item couplings.

• CoupledCF not only solves the cold start problems
that are common in rating information by integrat-
ing user/item side information but also significantly
improves the overall recommendation performance.

Empirical evaluation of various CoupledCF models: local
CoupledCF, global CoupledCF, DeepCF, and their combi-
nation CoupledCF are conducted on three real-life large
datasets with certain attribute-based user/item information
and two large-scale available datasets with certain feature-
besed user/item information. The results show all Cou-
pledCF models outperform the baselines in evaluation met-
rics HR@K and NDCG@K for Top-K recommendation
and RMSE and MAE for rating prediction; in particular,
(1) CoupledCF with the attribute-based user/item infor-
mation significantly beats neural MF [26] (by over 9.6%
on NDCG@10), Google’s Wide&Deep [27] network
(by over 9.7% on NDCG@10), and DeepFM [28] model
(by over 18% on HR@10) on MovieLens 1M and Tafeng
data and (by over 25.15% on RMSE) on MovieLens1M
and BookCrossing data. (2) CoupledCF with the feature-
based user/item information significantly outperforms neural
MF [26] (by over 34.68% on HR@10), convMF [25] (by over
31.32% on HR@10 and 5.97% on MAE), and A3NCF [29]
network (by over 36.71% on HR@10) on Amazon Movies
and TV (AMT) and Yelp data.

The rest of this paper are organized as follows.
Section 2 provides the related works. Section 3 describes
the CoupledCF model in detail. Experiments and Evaluation
are introduced in Section 4 to train the CoupledCF model
and demonstrate improvements compared with the state-of-
the-art methods. The conclusion and future work are given
in Section 5.

II. RELATED WORKS
In academia, deep learning has shown great success in recom-
mender systems, such as [17], [30]. Convolutional neural net-
work (CNN), a widely-used deep neural network in computer
vision [31], natural language processing [32], and abstract
feature representation [25]. CNN demonstrates high poten-
tial in effectively representing local and abstract features in
image or documents. Such as in [24] and [25], CNN is used
to learn user and item feature representation from documents.

It is critical for learning feature interactions in recom-
mendation systems. In recent years, deep neural networks
have been widely used to learn feature interactions, such
as DeepFM [28] and NCF [26], DeepFM combines the
power of factorization machines for recommendation and
deep learning for feature learning in a new neural network;
In [26], a NeuMF model including GMF which models high-
dimensional feature interaction and MLP that learns low-
dimension feature interaction was proposed for collaborative
filtering with implicit feedback. In our CoupledCF model,
we construct and integrate a CNN-based user-item coupling
learning network (local CoupledCF) and a deep CF model
(deepCF) to co-learn both explicit and implicit user-item
couplings, to the best of our knowledge, this cannot be done
by existing work.

In order to obtain better recommendation accuracy, some
methods have been involved user/item information, such as
user/item attributes or featues, into CF. In [27], Wide&Deep
learning jointly trains wide linear models which get the bene-
fit of memorization by cross-product feature transformations
and deep neural networks (DNN) for generalization of rec-
ommendation. In [33], a model based on matrix factoriza-
tion integrates hierarchical information for pages and ads for
response prediction. In [29], an A3NCF model develops a
new topic model to extract both user and item features from
reviews to guide the aspect-aware representation learning
and introduces an attention network to capture the varying
attention vectors of each specific user-item pair. In this paper,
we use user and item side information as the input of the
CNN-based learning framework to model explicit user-item
couplings.

There are various representative learning methods for cate-
gorical feature, e.g., user demographics and item genres. One-
hot encoding is a popular method that is used to transform
the categorical data to numerical representation. It encodes
each categorical feature with a one-zero vector where per
vector has value ’1’ corresponding to one value, and all the
rest of the entries are ’0’. However, one-hot encoding is
high dimensional when there exists more categorical features
and leads to data sparsity issue. Several embedding methods
have been applied to represent the categorical data, such
as [34], the author not only uses an effective embedding
approach available for categorical data, but also pays atten-
tion to value coupling relationship. In this paper, we learn
dense embedding vector for each categorical feature through
neural network embedding layer if user/item side information
is attribute-based.

Several effective embedding methods are suitable for tex-
tual data to express user/item features, such as latent seman-
tic indexing (LSI) [8], latent Dirichlet allocation (LDA)
[9], skip-gram [35], and their variants [36], [37]. However,
LSI and LDA don’t take the order between words into
account. Skip-gram method learns word-level embedding
vector. Doc2vec is a unsupervised learning algorithm that
learns vector representation of sentence or docunment, there
are two embedding learning ways: PV-DM and PV-DBOW.
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PV-DM method is similar to the continuous bag of words
method, however, in addtion to multiple target words,
PV-DM approach introduces an supernumerary document
token as input (such as the document token d represent doc-
ument vector). The hidden layer concatenates or averages,
which depends on the specific implementation, the document
token and several input word vectors. The output is a pre-
diction of specific word; PV-DBOW is simpler and trains
faster, similiar to the skip-grammodel [35], the input is a spe-
cial token representing the document without context words.
The output is target context with softmax function. In this
paper, we use the PV-DM method to learn user/item features
from review texts. By training the Doc2vec model, the doc-
ument embedding that represents user/item features will be
learned.

Non-independent and identical distribution (non-IID)
essentially explains the reason that user preference on items.
Some pioneering works have been introduced about learning
the non-IIDness in recommendation [38], such as in CF [5],
[16], [20], [39], and by statistical learning [22]. This paper
integrates explicit coupling with CNN and implicit coupling
with deepCF to propose user-item coupling model which
builds on non-IID.

III. THE COUPLEDANCF MODEL
A. PRELIMINARIES
Suppose there are M users and N items in systems. Let U =
{u1, u2, . . . , uM } and V = {v1, v2, . . . , vN } denote the user
set and item set respectively. We construct user-item rating
matrix RM×N in which each entry rij ∈ RM×N reflects the
user i specific preferences on item j. In this paper, we con-
duct Top-K recommendation and rating prediction based on
the rating matrix. For Top-K recommendation, we transform
the explicit rating rij = {1, 2, . . . , 5} into interaction score
rij = 1 and add negative samples where rij = 0. It is
formulated as:

rij =

{
1, if user i interacts with item j;
0, otherwise.

(1)

The value of rij is 1 shows that user i interacts with item j,
vice versa. In addition to above rating matrix RM×N , we also
introduce the user/item side information, w.r.t (1) user/item
attributes such as user demographics and item description.
(2) user/item features learning from review texts, in the Cou-
pledCF model.

Below, we demonstrate the explicit user-item coupling
learning networkwith CNN in Section 3.2. Section 3.3 presents
the deepCF model which models the implicit user-item cou-
plings. Section 3.4 describes the framework of CoupledCF in
detail. Section 3.5 shows the embedding learning method for
attribute-based user/item information. Section 3.6 introduces
the embedding learning method for feature-based user/item
information. The user/item features are learned from review
texts. The mathematical notations used in this paper are
summarized in Table 1.

TABLE 1. Mathematical notations.

FIGURE 1. CNN-based local and global explicit user-item coupling
learning by introducing user/item information.

B. CNN-BASED EXPLICIT USER-ITEM COUPLING
LEARNING
Fig. 1 shows the user-item explicit coupling learning by
introducing user auxiliary information containing user demo-
graphics and features which learns from review texts and
item side information including item description and item
features learning from review texts. User demographics and
item description information are embed as dense vector by
neural network embedding layer (as explained in section 3.5)
and user/item features are embed as dense vector by Doc2vec
model (as demonstrated in section 3.6). We uniformly repre-
sent the user/item dense vector as uc = {uc1, uc2, . . . , ucm}
and vc = {vc1, vc2, . . . , vcm} respectively, in which uci(vci)
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represents the ith element. The m is the dimension of uc
and vc. For dense vector uc and vc, we construct the user-
item coupling matrix Xc by the coupling function, e.g.,
fθ (uc vc) that learns the coupling relationships between uc
and vc. Each xij ∈ Xc reflects the couplings between element
uci of vector uc and element vcj of vector vc. For coupling
matrix Xc, we first feed it into convolutional neural network
(CNN) to learn local user-item explicit couplings, forming
the local CoupledCF model as shown in left box in Fig. 1,
and output a local vector el and then flatten the coupling
matrix Xc to global vector eg, representing the global user-
item couplings as shown in right box in Fig. 1. CNN includes
convolution layer and pooling layer. The convolution layer
learns abstract feature representation and it is formulated as:

ac = g(W ∗ Xc + b) (2)

where W and b are convolution filters and corresponding
bias vector. g is the non-linear activation function, in our
CoupledCF model, we use Rectified Linear Units (ReLU)
[40] as activation function, as it’s calculation simple and
convergence speed significantly outperforms other activation
functions, such as sigmoid and tanh.

The pooling layer reduces the feature dimensionality, com-
pressing the number of the parameters, reducing over-fitting,
and improves the robustness of the model. It contains max-
pooling and average-pooling. In this work, we adopt max-
pooling, which extracts the maximum value as the feature
corresponding to this particular convolutional filter. The max
pooling operator is a non-linear subsampling function that
returns the maximum of a set of values [41]. It reduces the
dimension of the features and learns more abstract coupling
feature vectors. The max pooling is performed as:

ap = fp(ac) (3)

where fp is the max-pooling function and ac is the output of
convolution layer.

C. DEEPCF FOR IMPLICIT USER-ITEM COUPLING
LEARNING
In this section, we model the user-item implicit couplings by
constructing a deep collaborative filtering (deepCF) model,
shown in Fig. 2. First, this model maps the latent user and
item factors in the same embedding space according to user
past rating behaviours [3]. The latent item factorsmay explain
the explicit characteristics such as a movie’s genre and/or the
hidden features of items. The latent user factors reflect the
degree that a user likes an item in terms of the corresponding
latent factors. For example, a user likes a movie containing
latent factors such as comedy and love, if a movie has these
latent factors then the model will recommend this movie to
the user. We encode the user and item identifies into one-
hot vector ou and ov respectively. For example, suppose we
have the user identifies: {0, 1, 2, . . . , 9}, we transform these
into one-hot matrix O10×10, each vector oi ∈ O10 denotes
the ith user with length 10. For user 0, the corresponding one-
hot encoding vector o0 can be represented as [10000000000],

FIGURE 2. DeepCF: Learning implicit user-item couplings.

in which the number of the valid location is 1, others are 0.
Similar to Skip-Gram [35]model, wemap the one-hot vectors
of both users and items ou and ov into lower-dimension
dense vectors by using a neural fully-connected layer as the
embedding layer, denoted as p and q respectively. The process
of embedding learning is performed as:

p = W T
u ou

q = W T
v ov (4)

where Wu ∈ Rk×|U | and Wv ∈ Rk×|V | are weight matrices
between the input fully connected layer and embedding layer.

Then, DeepCF maps both users and items to a common
latent factor space with the same dimensionality k . Further,
the embedding vectors p and q are fed into a multiplication
fully-connected layer which conducts the element-wise prod-
uct of p and q. It then outputs a linear interaction vector y
which represents the linear user-item interactions. We formu-
late it as:

y = p⊗ q = (p1q1, p2q2, . . . , pkqk ) (5)

We use multi-layer fully-connected neural network to replace
traditional inner-products used in Matrix Factorization meth-
ods. The capacity and nonlinearity of deep neural network can
learn better complex mapping relationships between users
and items. Then, the user-item interaction vector y is fed into
a multi-layer fully-connected neural network to deeply learn
the high-level abstract user-item interactions. After training
DeepCF by stochastic gradient descent algorithm, matrices
Wu andWv represent the latent factors for all users and items.
With the one-hot encoded representation of users and items,
each column of Wu and Wv represents a certain user or item
latent factors p and q respectively. For a given item v, each
dimension of v measures the extent to which the item has
these factors. For a given user u, each dimension of u mea-
sures the extent of interest the user has in the corresponding
factors of the item. Accordingly, the output vector y of the ele-
ment product layer captures the linear interactions between
users and items. The fully-connected layers further transform
the output to represent the non-linear interactions between
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FIGURE 3. CoupledCF: Jointly learning explicit and implicit user-item couplings.

users and items. We formulate it as:

a1 = ReLU (W T
1 y+ b1)

a2 = ReLU (W T
2 a1 + b2)

. . .

aL = ReLU (W T
L aL−1 + bL) (6)

where L is the number of layers, W1,W2, . . . ,WL and
b1, b2, . . . , bL denote the weight matrices and bias vectors of
each layer, and a1, a2, . . . , aL denote the output of each layer
activated by the ReLU function.

For Top-K recommendation, as CF models do not involve
negative examples, we sample some negative examples by a
negative sampling strategy, which is inspired by NCF [26],
to make DeepCF discriminative. In our experiments, we sam-
ple negative examples from the unobserved interactions in
the rating matrix RM×N by a uniform negative sampling
strategy. DeepCF further predicts the probability of user-
item interactions (e.g., rating or not) by a logistic Sigmoid
function to squash the model output into the interval [0, 1],
where 1 indicates a user favors an item, otherwise 0, by con-
verting the multi-scale ratings to binary. It interprets a user-
item interaction prediction w.r.t. a probability:

P2(y = 1|u, v) (7)

where2 is the neural network weights.We use ŷ as the output
of model.

ŷ = g(W T
0 ∗ aL + b0) (8)

where g is the non-linear activation function w.r.t Sigmoid
function for Top-K recommendation, W0 and b0 indicate the
weight matrix and bias of the last layer.

For rating prediction problem, the model output a score
ŷ ∈ [0, 5] which shows the user’s overall preference on item.

For an example in the training dataset D = {(u(i),
v(i)), y(i) } and the corresponding predicted output ŷ(i)

(here i denotes the ith example and i ∈{1, 2, 3, . . . , |D|}. For
Top-K recommendation, the loss function is:

ζ (ŷ(i), y(i)) = −y(i) log(ŷ(i))− (1− y(i)) log(1− ŷ(i)) (9)

For rating prediction, the loss function is:

ζ (ŷ(i), y(i)) =
∑

(ŷ(i) − y(i))2 (10)

We then learn the network parameters 2 per the follow-
ing cost function by performing stochastic gradient descent
algorithm with back propagation:

J =
1
m

m∑
i=1

ζ (ŷ(i), y(i)) (11)

D. COUPLEDCF: INTEGRATING EXPLICIT AND IMPLICIT
USER-ITEM COUPLING LEARNING
In this section, we combine the CNN-based local/global
explicit user-item coupling learning with the implicit user-
item coupling learner DeepCF to build a comprehensive
coupled CF model: CoupledCF. The left network in Fig. 3
implements the CNN-based user-item coupling learning,
the user/item information dense vectors uc and vc are fed
into the coupling layer. In our experiments, to simplify the
learning, we define a user-item coupling calculation function
below:

fij = uci ∗ vcj (12)

Accordingly, the user-item coupling matrix Xc can be
viewed as the cross-product of uc and vc. We execute two
processes on the user-item coupling matrix Xc. First, Xc is
fed into the CNN components to learn the local user-item
coupling vector. Second, Xc is flattened as a vector to learn
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the global user-item couplings. The local and global vectors
are concatenated and then fed into a multilayer perceptron
(MLP) network to learn highly abstract representation.

We further integrate the CNN-based local/global explicit
user-item coupling learning with the DeepCF-based implicit
user-item coupling learning by concatenating the output
of these two networks. The concatenated vector (denoted
as r) is processed by a fully-connected layer to generate
the final user-item coupling vector. The integration of two
neural networks generates the CoupledCF model. For Top-K
recommendation, CoupledCF model finally outputs a user-
item interaction score ŷ ∈ [0, 1] by a Sigmoid non-linear
activation function. The Sigmoid function is usually used as
binary classification problem for logistic regression model.
It squashes the output vector of the last neural layer to the
range [0, 1]. The Sigmoid function is formulated as:

Sigmoid(x) =
1

1+ e−x
(13)

For rating prediction, CoupledCF model finally outputs a
user-item interaction score ŷ ∈ [0, 5].

Hence, the training dataset of CoupledCF can be repre-
sented as D = {(u(i), v(i), u(i)c , v

(i)
c ), yi}, i ∈ {1, 2, . . . , |D|},

the |D| denotes the number of examples of training datasets,
the objective of CoupledCF for Top-K recommendation is
implemented by predicting the probability P2:

P2(y = 1|u, v, uc, vc) (14)

The final output ŷ of coupledCF is formulated as:

ŷ = Sigmoid(W TReLU (W T
0 ∗ r + b0)+ b) (15)

For rating prediction the final output is performed as:

ŷ = W TReLU (W T
0 ∗ r + b0)+ b (16)

where W and b are the weight matrix and bias vector of
the last layer of CoupledCF. The cost function in Eq.9 and
Eq.10 are used to train CoupledCF.

E. THE EMBEDDING LEARNING METHOD FOR
ATTRIBUTE-BASED USER/ITEM INFORMATION
For the attribute-based user/item information, such as user
demographic information and item attributes, we use different
methods to learn the embedding features for the categorical
features and numerical features. For one categorical feature xi
which represented as an one-hot vector oi, as shown in Fig. 4,
we use a neural network fully-connected layer as the embed-
ding layer to learn the dense real-valued embedding vector.
The embedding vectors are initialized randomly and then the
values are updated by training the CoupledCF model.

The embedding learning process is formulated as:

ci = Wi
T
∗ oi (17)

where Wi ∈ RM×N is the weight matrix between input
and embedding layer where M and N represent dimensions
of embedding vector and one-hot vector respectively. For
numerical features, We normalize the features then concate-
nate them with the categorical features’ embeddings.

FIGURE 4. The embedding learning of one categrical feature xi .

F. THE EMBEDDING LEARNING METHOD FOR
REVIEW-BASED USER/ITEM INFORMATION
For review-based user/item information, we learn user/item
embedding features using PV-DMmethod ofDoc2vecmodel.
Let D = {du1 , du2 , . . . , dum , dv1 , dv2 , . . . , dvn} be the input
document set, where dui is the document included the reviews
to all items written by user ui, and dvj is the document
included all the reviews to item vj written by all users.

1) Word2vec
Word2vec is an unsupervised learning method, which maps
words into distributed vectors by a mapping function f . It for-
mulates as:

Rm = f (w) (18)

where w represents the word of dictionary, and Rm represents
the m-dimensional distributed vector. The objective function
of Word2vec is to maximise the log probability of context
word (wO) given its input word (wI ), i.e., log P(wO|wI ) [42].
The parameters are constantly updated by training model.
W matrix learned from Word2vec represents word
embedding matrix, each column of W shows a word
embedding.

2) Doc2vec
Slightly different from Word2vec, Doc2vec is a document-
level embedding method, it adds a token besides word vec-
tors, which is a unique, randomly initialized numerical vector,
representing the document. The token is updated by training
Doc2vec model. Ultimately, it can describe the topic of the
document.

We use Doc2vec algorithm to learn user/item review
embeddings (vector for representation of document) con-
taining two stages: (1) Add unique token di, i represent the
ith document in the corpus, for each document dui or dvj,
because the document token is shared between all the
words/contexts sampled in the document and the word vec-
tors are shared among all the documents these words appear
on, which can be considered as a memory function [10].
(2) We get matrixD by training the Doc2vec model, each col-
umn ofD denotes a document vector representing user or item
features. The matrix D is updated by adopting stochastic
gradient descent algorithmwith back propagation. The imple-
mentation of the Doc2vec model uses the Gensim Python
package [43].
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TABLE 2. Statistics of the datasets on MovieLens1M, Tafeng and
BookCrossing.

IV. EXPERIMENTS AND EVALUATION
Here, we perform Top-K item recommendation and rating
prediction on five available datasets and conduct a series of
experiments to evaluate our proposed CoupledCF model and
it’s variations.

A. EXPERIMENTAL SETTINGS
1) DATASETS WITH ATTRIBUTE-BASED USER/ITEM
INFORMATION
Three publicly large-scale datasets MovieLens1M1, Tafeng2

and BookCrossing3 with consistent ratings and attribute-
based user/item information.

2) MovieLens1M
It consists of 1M transactions from 6,040 users and
3,952 items, where each user has at least 20 interactions with
items. User demographics contain Gender, Age, Occupation,
and Zip code. Item attributes include movie’s Genres.

3) TAFENG
It includes 817,741 ratings (from 1-5) with 32,266 users and
23,812 items. User demographics include Customer ID, Age,
and Region. Item attributes contain Original ID, Sub class,
Amount, Asset, and Price.

4) BOOKCROSSING
It contains 1,149,780 integer ratings (from 0-10) with
271,379 books and 278,858 users. User demographics
include location and age. Item attributes contain book title,
book author, the year of publication, and publisher.

For BookCrossing dataset, we first clear the user-item pairs
where the rating is equal to 0 and then filter the dataset in the
same way withMovieLens1Mwhich has at least 20 user-item
interactions. Finally, the subset remains 133,699 ratings with
3,704 users and 10,000 books.

The basic statistics of these datasets are shown in Table 2.

5) DATASETS WITH REVIEW-BASED USER/ITEM
INFORMATION
Two available real-world datasets Amazon4 and Yelp5 review
datasets, which include user reviews and ratings.

1https://grouplens.org/datasets/movielens/
2http://www.bigdatalab.ac.cn/benchmark/bm/dd?data=Ta-Feng
3https://grouplens.org/datasets/book-crossing/
4http://jmcauley.ucsd.edu/data/amazon/
5https://www.kaggle.com/yelp-dataset/

TABLE 3. The information of datasets on Amazon Movies and TV (AMT)
and Yelp.

6) AMAZON MOVIES AND TV (AMT)
The dataset has been widely used in content-based or hybrid
recommendation. It includes 4,607,047 product reviews and
ratings with 61,743 users and 155,459 items from Ama-
zon website which spanning May 1996 - July 2014. The
dataset has been removed the duplicate user-item pairs by the
provider.

7) YELP
Yelp review dataset contains 4,700,000 reviews and ratings
with 200,000 users and 156,000 items on kaggle website. The
data spans 11 metropolitan areas.

For AMT and Yelp datasets, we extracted ‘‘userID’’,
‘‘itemID’’, ‘‘rating (1 to 5 rating stars)’’, and ‘‘review texts’’
for experiments. We merge all the reviews written by a
user u to all items as a document which represents the user
review and merge the reviews to item v written by all users
as a document which represents the item review. We remove
punctuation, stopwords, and infrequent times appearing less
than 10 for each user/item review. Besides, we preprocess
the datasets by keeping every user/item review with at least
50 words. We make per user has at least 5 ratings. Finally,
the AMT dataset remains 217,568 reviews with 23,982 users
and 98,593 items and Yelp dataset keeps 509,218 reviews
with 192,056 users and 139,188 items. The basic statistics
of these datasets are summarized in Table 3.

For Top-K recommendation, similar to [26], [44], we
binarize the ratings in four datasets (MovieLens1M, Tafeng,
AMT, and Yelp) to create implicit feedback for evaluation.
Accordingly, we transform the original rating matrix scaled
from R̃ ∈ {1, 2, . . . , 5} into a binarized preference matrix
R ∈ {0, 1}, in which each rating element is expressed as
either 0 or 1, where 1 indicates an interaction between a user
and an item; otherwise 0. After transforming the datasets to
the implicit version, we uniform-randomly sample 4 negative
instances for each positive instance.

8) BASELINE METHODS
Our CoupledCF model is customized to four variants below
to learn various types of user-item couplings:

• DeepCF: only learns the user-item interactions based on
latent user/item factors by deep neural network (Fig. 2);

• lCoupledCF: the lCoupledCF learns the local explicit
user-item couplings by CNN-based neural framework
and outputs a local representation vector. (the model
with the local vector locates in left box in Fig. 1);

• gCoupledCF: the gCoupledCF model includes the
global user-item coupling learning component without
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TABLE 4. The baseline methods for Top-K and rating prediction.

the CNN component (the model with the global vector
lies in the right box in Fig. 1);

• CoupledCF: the CoupledCF consists of the local vector,
global vector, and DeepCF vector.

The following relevant and representative state-of-the-
art methods (shown as Table 4) are used as the base-
lines to evaluate our methods. For Top-K recommendation,
NeuMF, Wide&Deep, and DeepFM are used to attribute-
based user/item information. NeuMF, convMF, and A3NCF
are used to review-based user/item information. For rat-
ing prediction, BMF, DeepFM are used to attribute-based
user/item information. BMF, convMF are used to feature-
based user/item information.
• BMF [3]: a basic matrix factorization model, which
maps both users and items to a joint latent factor space
with the same dimensionality, the user-item interactions
are modeled as inner products.

• NeuMF [26]: a CF method with implicit feedback
embedded into a neural network. It confirms our method
incorporating user/item side information performs bet-
ter than the basic neural CF without user/item side
information.

• Wide&Deep [27]: a benchmark Google’s wide&deep
neural network co-training wide linear models and
deep neural networks, and combining the advantages
of memorization and generalization for recommen-
dation. The deep neural network can generalize to
previously unseen feature interactions through low-
dimensional embeddings while wide network can mem-
orize sparse feature interactions using cross-product fea-
ture transformations. To be fair, we convert the relevant
user/item side information such as user/item attributes
into cross-product features, which are then entered
together with the raw features into the Wide&Deep
model. We compare the performance of our model
embedded with explicit/implicit user/item information
to this Wide&Deep model that uses refined cross-
product features.

• DeepFM [28]: an extension ofWide&Deep, which com-
bines the power of factorization machines for recom-
mendation and deep learning for feature learning in a
new neural network architecture. It emphasizes both low
and high-order feature interactions and has a shared
input to its ‘‘wide’’ and ‘‘deep’’ parts, with no need
of feature engineering besides raw features compared
to Wide&Deep. We compare the performance of Cou-
pledCF which jointly learns implicit and explicit feature
interactions to DeepFM model that learns low-order

feature interactions like FM and models high-order fea-
ture interactions like DNN.

• convMF [25]: a novel context-aware recommendation
model, convolutional matrix factorization (convMF) that
integrates convolutional neural network (CNN) into
probabilistic matrix factorization (PMF). It indicates our
model which learns feature interactions by deep neural
network (CNN and DNN) outperforms the con-
vMF model which learns feature interaction by inner
products.

• A3NCF [29]: a benchmark deep neural network com-
bining ratings and reviews for rating prediction, which
extracts user preferences and item characteristics from
review texts with topic model. It shows how well our
CoupledCF model embedded with user/item features
learning from review texts by trainingDoc2vec performs
compared to A3NCF model embedded with user/item
features extracted from topic model.

For convMF and A3NCF model in Top-K item recommen-
dation, existing several methods rarely use both ratings and
reviews to predict user-item interactions, therefore we change
the explicit rating prediction to a binary classification task to
predict the probability of user-item interaction.

For DeepFM model in rating prediction, we transform the
binary classification problem with sigmoid activation func-
tion to regression problem without activation function.

B. MODELING SETTINGS
We implemented CoupledCF model using Python based on
the Keras framework. All the baseline methods used in our
paper are implemented following their Github experiment
configuration. All the experiments are performed in a 3.5GHz
NVidia Geforce 1080Ti GPU with 32GB memory. We ran-
domly divide each dataset in Table 2 and Table 3 into training,
validation, and testing sets and tune hyper-parameters of
CoupledCF and baselines on validation data. By optimizing
the loss of Eqs. 9 and 10, we get the optimal hyper-parameter
settings of CoupledCF model. The hyper-parameters of Cou-
pledCF on Top-K recommendation mainly include:
• The dimensionality of the embedding layers of the
DeepCF model: We evaluate the number of embedding
layers w.r.t {8, 16, 32, 64}, and obtain the best results
when the number is 32 for four datasets (MovieLens1M,
Tafeng, AMT, Yelp).

• The number of the embedding layers of the CNN-based
user-item explicit coupling learning network: We eval-
uate it w.r.t. {8, 16, 32, 64, 128, 256}, and get the best
performance on the model with 8 embedding layers for

123952 VOLUME 7, 2019



Q. Zhang et al.: Generic Framework for Learning Explicit and Implicit User-Item Couplings in Recommendation

TABLE 5. The interpretation of hyper-parameter in Doc2vec.

MovieLens1M and Tafeng datasets and 64 embedding
layers for Amazon Movies and TV (AMT) and Yelp
review datasets.

• We construct two CNN layers, set the filter as (3, 3)
and the channel as 8 for MovieLens1M and Tafeng
datasets and set the filter as (3, 3) and the channel as
64 for Amazon Movies and TV (AMT) and Yelp review
datasets.

• The dimensionality of the hidden layers before the last
output layer of CoupledCF model: We evaluate it w.r.t.
{8, 16, 32, 64, 128, 256}, and get the best performance
on the model with 64 fully-connected layers for Movie-
Lens1M and Tafeng datasets and 32 fully-connected
layers for Amazon Movies and TV (AMT) and Yelp
review datasets.

• The learning rate: We set it as 0.001 for MovieLens1M,
0.005 for Tafeng, 0.00001 for Amazon Movies and
TV (AMT) and Yelp review datasets.

• The activation function of fully-connected layer: we use
ReLU as the activation function for each fully-connected
layer, The activation function is Sigmoid for the last
layer of DeepCF and CoupledCF.

• The batch-size: We assess batch-size w.r.t {32, 64, 128,
256}, and get the best performance on the model with
256 for four datasets.

• The epochs: We set 100 for four datasets, how-
ever, model performance gets the best result in 30th

epoch approximately for MovieLens1M and Tafeng
and around 10th epoch for Amazon Movies and TV
(AMT) and Yelp datasets. Although the training loss
keeps degrading, model performance has been bad.
At this time, model may result in overfitting, we ultilize
earlystopping or dropout strategy to prevent it.

• We adopt batchnormalization and dropout strategy to
prevent overfitting with the dropout ratio is 0.5.

• The hyper-parameter settings of Doc2vec: we set the
vector_size is 100, the epochs is 100, window_size is
5, min_count is 10. The interpretation of these hyper-
parameter is shown in Table 5.

Similar to Top-K recommendation, we test various hyper-
parameters and show the best performance of CoupledCF
model in Table 6 for rating prediction.

We use Adam as the optimizer for our model. Adam opti-
mizer is an adaptive learning rate approach, which makes the
parameters of model stable, and implements simply, calcu-
lates efficiently and memory requirements is low. For param-
eter initialization, we initialize the embedding matrix of user
and item identifies with a random normal distributionwith the

mean and standard deviation are 0 and 0.01 respectively, and
use glorot-uniform as the initializer for the fully-connected
layers. All biases in this model are initialized with zero.
In our proposed model, we use Batch Normalization after the
Dense layers as it possesses following advantages: (1) it can
improve the speed of model and effectively avoid the gradient
disappearance and explosion by adopting high learning rate.
(2) it is equivalent to dropout strategy to prevent overfitting.

1) TOP-K RECOMMENDATION EVALUATION METRICS
We use the widely-used leave-one-out performance valida-
tion to evaluate all the comparison methods for implicit
feedback-based recommendation as in [45]. Similar to [46],
we randomly sample one item with user-item interactions
as the test item for each user and the remaining items with
interactions as the training data.We randomly sample another
99 items which are not in the user’s interacted item set to form
the user’s test data together with the above selected test item.
We let each model to rank these 100 items for each user, and
then evaluate the performance. We take the top-K Hit Ratio
(HR@K), which measures whether the test item appears on
Top-K list, and Normalized Discounted Cumulative Gain
(NDCG) [26], which takes up the position of the hit by
allocating higher scores to hits with top ranks, as evaluation
metrics.We calculate evaluationmetrics for each test user and
inform the average score.

• HR@K: a recall-based measure, as,

HR@K =
#hits@K
|GT |

(19)

• NDCG: is a ranking-based measure, as,

NDCG@K = Zk
K∑
i=1

2reli − 1
log2(i+ 1)

(20)

whereGT denotes the test list set, reli is the graded relevance
value of the item at position i and ZK is the normalization.
In our experiments, we set reli ∈ {0, 1}, which depends on
whether i is in the test dataset.

2) RATING PREDICTION EVALUATION METRICS
Similar tomost collaborative prediction algorithms [25], [39],
we use widely-used for rating prediction in recommendation
systems root mean squared error (RMSE) and mean abso-
lute error (MAE) to evaluate the performance of CoupledCF
model. The slower RMSE and MAE represent better perfor-
mance of model.

RMSE =

√√√√ 1
N

N∑
i=1

( ˆy(i) − y(i))2 (21)

MAE =
1
N

N∑
i=1

| ˆy(i) − y(i)| (22)

where N denotes the number of test examples.
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TABLE 6. The optimal settings of hyper-parameter in rating prediction.

TABLE 7. HR@10 and NDCG@10 for Top-10 item recommendation for
MovieLens1M and Tafeng.

TABLE 8. HR@10 and NDCG@10 for Top-10 item recommendation for
Amazon Movies and TV (AMT) and Yelp.

C. RESULTS AND ANALYSIS FOR TOP-K
RECOMMENDATION
1) TOP-K ITEM RECOMMENDATION RESULTS
The evaluation results with HR@10 and NDCG@10 of
our model and other baselines are summarized in Table 7
and Table 8. We also test the Top-K (K = 1, 2, . . . , 10)
item recommendations in Fig. 5, Fig. 6, Fig. 7, and Fig. 8.
CoupledCF is compared with it’s variants containing local
CoupledCF (lCoupledCF for short), global CoupledCF
(gCoupledCF), and DeepCF as well as all the baseline meth-
ods. According to these figures, we can know the models
get the best performance when the K is 10. The experi-
mental results show that CoupledCF significantly improves
recommendation performance, e.g., up to 12.68% improve-
ment over NeuMF (HR@2), up to 15.27% improvement
over Wide&Deep (HR@4), and up to 27.74% improve-
ment over DeepFM (HR@6), and averaged 6.91% improve-
ment over NeuMF, averaged 7.94% over Wide&Deep, and
11.78% over DeepFMonMovieLens1M and Tafeng datasets;
up to 40.25% improvement over NeuMF (HR@2), up to
32.16% improvement over convMF (HR@7), and 35.03%
improvement over A3NCF (HR@3), and averaged 22.84%
improvement over NeuMF, averaged 18.21% over convMF,

FIGURE 5. HR@K results of Top-K item recommendation on MovieLens1M
and Tafeng.

FIGURE 6. NDCG@K results of Top-K item recommendation on
MovieLens1M and Tafeng.

and averaged 17.74% over A3NCF on Amazon Movies and
TV (AMT) and Yelp review datasets.

2) COMPARISON WITH BASELINES
First, compared to neural MF model NeuMF, as shown
in Table 7 and Table 8, CoupledCF beats NeuMF by 9.42%
on MovieLens1M, 4.34% on Tafeng, 14.38% on Amazon
Movies and TV (AMT) as well as 34.68% on Yelp w.r.t. on
HR@10; and 9.60% on MovieLens1M, 2.94% on Tafeng,
10.13% on Amazon Movies and TV (AMT) and 29.94% on
Yelp w.r.t. NDCG@10. It demonstrates our proposed Cou-
pledCF model introducing user/item auxiliary information
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FIGURE 7. HR@K results of Top-K item recommendation on Yelp and
Amazon Movies and TV (AMT).

FIGURE 8. NDCG@K results of Top-K item recommendation on Yelp and
Amazon Movies and TV (AMT).

significantly beats the NeuMF model without considering
side information.

Second, compared to the Google benchmark Wide&Deep
model, CoupledCF beats it by 9.52% on MovieLens1M
and 5.33% on Tafeng w.r.t. on HR@10; and 9.70% on
MovieLens1M and 1.01% on Tafeng w.r.t. NDCG@10. This
shows the learning way of CoupledCF and incorporating
explicit/implicit user-item coupling relationships performs
well than the feature engineering-based Wide&Deep’s.

Third, compared to the DeepFM model, CoupledCF beats
it by 20.28% on MovieLens1M and 1.32% on Tafeng w.r.t
HR@10; and 19.26% onMovieLens1M and 1.01% on Tafeng
w.r.t NDCG@10. It shows the way of CoupledCF feature
interaction (coupling learning) with CNN surpasses the way
of DeepFM low and high-order feature interactions by a large
margin.

Fourth, compared to theA3NCFmodel, CoupledCF beats it
by 14.08% on Amazon Movies and TV (AMT) and 36.71%
on Yelp w.r.t. on HR@10; and 10.04% on Amazon Movies
and TV (AMT) and 30.48% on Yelp w.r.t. NDCG@10.
It indicates the way of CoupledCF learning and integrating
explicit/implicit user-item interactions outperforms the fea-
ture Topic-based A3NCF’s.

3) TESTING THE CoupledCF EFFECTIVENESS
We further evaluate the working mechanism of CoupledCF
in terms of different components embedded in the model.
DeepCF, lCoupledCF, gCoupledCF are the variants of Cou-
pledCF. As shown in Table 7 and Table 8 and Fig. 5, Fig. 6,
Fig. 7, and Fig. 8, CoupledCF generally beats other variants
for Top-K recommendations on four large available datasets.

By comparison, local CoupledCF beats DeepCF and global
CoupledCF in all cases. For example, for Top-10 item recom-
mendations, local CoupledCF beats DeepCF up to 10.65%
improvement and surpasses global CoupledCF by 3.86% on
Movielens1M, 2.92% and 1.55% on Tafeng w.r.t HR@10;
local CoupledCF outperforms DeepCF by 10.96% and beats
global CoupledCF by 1.56% on MovieLens1M, 3.78% and
4.95% on Tafeng w.r.t NDCG@10; local CoupledCF out-
performs DeepCF by 16.79% and beats global CoupledCF
by 11.11% on Amazon Movies and TV (AMT), 30.19%
and 28.84% on Yelp w.r.t HR@10; local CoupledCF out-
performs DeepCF by 10.67% and beats global CoupledCF
by 4.48% on Amazon Movies and TV (AMT), 29.09% and
19.92% on Yelp w.r.t NDCG@10. This shows local Cou-
pledCF which captures CNN-based explicit user-item cou-
pling learning outperforms the implicit user-item coupling
neural network (DeepCF) and indicates local CoupledCF
learns feature interaction by CNN-based learning network
outperforms the global CoupledCF that flattens the coupling
matrix as global vector.

From the Fig. 5, Fig. 6, Fig. 7, and Fig. 8 which show
the Top-K recommendation results on four datasets where
K = {1, 2, 3, . . . , 10}, we can observe that both the local
CNN-based component and the global coupling learning
component contribute to improve the recommendation per-
formance, while the comprehensive CoupledCF model inte-
grating local/global attribute-based/review-based user-item
couplings and implicit user-item couplings generally gains
the best performance. It once again proved the deep neural
network CNN could model complex interactions between
users and items to effectively improve the recommendation
accuracy.

As shown in Fig. 9 and Fig. 10, we observe that the
best performance on HR@10 and NDCG@10 in around 30th

epoch on MovieLens1M and Tafeng datasets, and in 10th

iteration roughly on Amazon Movies and TV (AMT) and
Yelp datasets. More training times may cause model overfit-
ting, we can take earlystopping method to prevent it when
validation loss starts to rise.

D. RESULTS AND ANALYSIS FOR RATING PREDICTION
The rating prediction results of our CoupledCF model and
other baseline methods on four datasets are given in Table 9
and Table 10.

From the above results we can observe that:
First, compared to BMF model which only uses the user-

item rating matrix as input without considering side informa-
tion, our CoupledCF model integrating review texts performs
better than it by 16.8% on AMT and 28.54% on Yelp w.r.t
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FIGURE 9. HR@10 and NDCG@10 performance w.r.t. the number of epoch
on MovieLens1M and Tafeng datasets.

FIGURE 10. HR@10 and NDCG@10 performance w.r.t. the number of
epoch on Yelp and Amazon Movies and TV(AMT) datasets.

TABLE 9. RMSE and MAE for rating prediction on MovieLens1M and
BookCrossing datasets.

TABLE 10. RMSE and MAE for rating prediction on Amazon Movies and
TV (AMT) and Yelp datasets.

RMSE, and 12.93% on AMT and 38.12% on Yelp w.r.t MAE,
and integrating attribute information beats it by 20.39% on
MovieLens1M and 32.78% on BookCrossing w.r.t RMSE,
and 6.44% on MovieLens1M and 30.17% on BookCrossing
w.r.t MAE. This is not surprising, as side information (review
texts and attribute information) are able to complement the
missing values in the rating information. It can solve cold-
start and data sparsity issue and learn better user and item
features to improve prediction accuracy.

TABLE 11. Case study for recommendation list given a user on
MovieLens1M.

TABLE 12. Case study for recommendation list given a user on Yelp.

Second, compared to BMFmodel which utilizes traditional
matrix factorization techniques, CoupledCF and DeepFM
that use deep learning collaborative filtering (CF) perform
better than it. It shows the popular deep learning CF algorithm
has been far beyond the traditional MF methods. As deep
learning could model users and items in a no-linear way and
deep neural network, e.g., CNN has shown huge potential in
representing abstract features [24], and deep neural network
can automatically learn the parameters of the network through
the random gradient descent algorithm.

Third, compared to DeepFM model which models low
and high-dimensional feature interactions, our model that
joint learns explicit-implicit feature interactions outperforms
it by 2.09% on MovieLens1M and 25.15% on BookCross-
ing w.r.t RMSE, and 1.67% on MovieLens1M and 19.06%
on BookCrossing w.r.t MAE. This shows our model learn-
ing explicit-implicit feature interactions outperforms the
DeepFM that only learns the explicit feature interactions.

Fourth, compared to convMF which utilizes CNN to
extract item features from review texts, our CoupledCF that
learns user and item features with Doc2vec model exceeds
it by 2.69% on AMT and 5.93% on Yelp w.r.t RMSE, and
5.97% on AMT and 4.69% on Yelp w.r.t MAE, although
they all use review texts, the performance of model mainly
depends on the embedding learning way.

E. ILLUSTRATIVE EXAMPLES
Here, we demonstrate the illustrative examples of our recom-
mendation model. The attribute-based user/item information
is shown in Table 11 and review-based user/item information
is shown in Table 12.

To be simply, we only show the first three items of the rec-
ommendation list. For each item, we demonstrate the attribute
information such as item genre and item description and show
textual reviews that is the most frequent words. We can see
that the attributes and features learning from reviews can
better describe the characteristics of the items. For example,
for most of movies, we can get many available information
from their genre. By reading the movie genre, we know that
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TABLE 13. The comparison of conference and journal.

somemovies are interesting Animation and some are relaxing
music.

Through above two cases, we can see that our CoupledCF
model successfully captures the user preferences and pro-
vides reasonable recommendations. Specifically, from the
three movies that user likes, we speculate the user likes
animation and romantic music, our model recommend three
related movies which accords with user preferences. The
same reason, for yelp restaurant, we can know the user likes
drink and sweets from the three examples that user interacts
and recommendations reflect the user’s taste.

Finally, the illustrative examples confirm the effective-
ness of our proposed model which joint learns the user-item
explicit and implicit couplings via incorporating the user/item
side information into CF.

V. CONCLUSION AND FUTURE WORK
The nature of recommendation is non-IID. This work joint
learns explicit and implicit user-item interactions for recom-
mendation: user/item attribute-based or feature-based user-
item interactions by CNN, implicit user-item interactions
by MLP, and their integration. We propose a coupled
deep collaborative filter: CoupledCF to learn and combine
the above user-item interactions. The experimental results
indicate the effectiveness of CoupledCF model compared to
several state-of-the-art neural baselines on five available real-
world datasets. In this work, we only use the user information
included user demographic information and user reviews and
item information contained limited item attributes and item
reviews, while the real-life data may obtain all user/item
attributes. We are working on finding real-life business data
with rich user/item attributes to test the CoupledCF model
and exploring other deep architectures for representing hier-
archical and heterogeneous user-item coupling relationships.

In this paper, to simply the coupling learning, we define
a user-item coupling function as shown in Eq. 12. In future
work, first, we will investigate the more effective coupling
interaction way to learn user-item coupling relationships and
we will introduce social relationships between users as user
information, and we will study the better embedding learning
method for extracting user and item features. In addition,
we are interested in involving multimodal information as

user/item information, such as images and videos, include
more abundant visual information [47], that can better express
user interest and item characteristics.

VI. EXPLANATION
This paper is an extension of the conference version
appeared in IJCAI 2018 (Quangui Zhang, Longbing Cao,
Chengzhang Zhu, Zhiqiang Li, Jinguang Sun. CoupledCF:
Learning Explicit and Implicit User-item Couplings in Rec-
ommendation for Deep Collaborative Filtering. IJCAI. 2018:
3662-3668.). This manuscript contains, among others,
the following new materials: (1) Add review texts as the side
information and use Doc2vec model to learn user and item
features from review texts (Section 3.6), which can improve
model’s recommendation accuracy. (2) Add rating predic-
tion experiments on four available datasets including Movie-
Lens1M, BookCrossing, Amazon Movies and TV (AMT),
and Yelp review datasets (Section 3.4, Section 4). (3) Add
several comparison methods including attribute-based and
review-based which show the effectiveness of our model
(Section 4). (4) Add more detail descriptions and analysis
in experiment part (Section 4). The detailed descriptions are
shown in Table 13.
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