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ABSTRACT A color quantization technique that combines the operations of two existing methods is
proposed. The first method considered is the Greedy orthogonal bi-partitioning method. This is a very
popular technique in the color quantization field that can obtain a solution quickly. The secondmethod, called
Ant-tree for color quantization, was recently proposed and can obtain better images than some other color
quantization techniques. The solution described in this article combines both methods to obtain images with
good quality at a low computational cost. The resulting images are always better than those generated by each
method applied separately. In addition, the results also improve those obtained by other well-known color
quantization methods, such as Octree, Median-cut, Neuquant, Binary splitting or Variance-based methods.
The features of the proposed method make it suitable for real-time image processing applications, which are
related to many practical problems in diverse disciplines, such as medicine and engineering.

INDEX TERMS Artificial intelligence, clustering methods, image processing.

I. INTRODUCTION
Nowadays images are very important elements in every-
day communication. Social networks, web pages, reports,
e-books or electronic documents include many images that
must be stored, transmitted and displayed. Current devices
can display high quality images with many colors. Never-
theless, the quality of the image is a disadvantage for its
storage and transmission, since more colors mean more qual-
ity and also involve more storage space and less speed of
transmission.

Color quantization reduces the number of different colors
of an image trying to make the resulting image as similar
as possible to the original. Reducing the colors of an image
not only allows it to be displayed on low-end devices, but
also reduces the size of the image and this allows it to be
stored and transmitted more efficiently [1], [2]. Moreover,
color quantization is also related to other processes applied
to images, such as content-based image retrieval [3]–[5],
texture analysis [6]–[8], image segmentation [9]–[13] and
image watermarking [14], [15].

The associate editor coordinating the review of this article and approving
it for publication was Dezhong Peng.

The color quantization problem is complex since the
selection of the best colors to represent the image is an
NP-complete problem [16]. Therefore, different solution
approaches have been proposed for this problem. There are
solutionmethods that work on the color cube and divide it into
boxes. Some popular methods that apply this approach are
the Greedy orthogonal bi-partitioning method (GOBP) [17],
Octree [18], Median-cut [19], Binary splitting [20] and
the Variance-based method [21]. Other solutions focus on
the pixels of the image and separate them into groups.
This is the approach applied by color quantization methods
such as Neuquant [22] and Ant-tree for color quantization
(ATCQ) [23], and also by other solutions that use non-specific
methods of color quantization, such as K-means [24], Parti-
cle swarm optimization [25] and Artificial bee colony [26]
algorithms.

In general, the methods of the first group are faster, but
those of the second group can generate better images. There-
fore, when selecting a color quantization method it will nor-
mally be necessary to choose between speed and quality,
although it would be desirable to have both at the same time.

The GOBP method is a popular color quantization algo-
rithm that applies an iterative process to divide the color space
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into boxes, each of the resulting boxes defining a color of
the quantized palette [17]. This method is very fast because
the values used during the iterative process are calculated
only once before the process begins. Certainly, this method
is faster than most of the methods mentioned above.

The ATCQ method mimics the behavior of a set of ants
that build a tree that allows an image to be represented using
a reduced number of colors [23]. The ants, which represent
the pixels of the image, connect to the tree taking into account
the similarity among the colors they represent. Each subtree
defines a color of the quantized palette and that color is used
to represent all the ants of the subtree in the quantized image.
This method was compared to other well-known color quanti-
zationmethods, obtaining better images thanOctree,Median-
cut and Variance-based methods [23]. When compared to
GOBP, ATCQ only generates better images in some cases,
as reported in the article which proposed the second method.
Nevertheless, it should be taken into account that GOBP
generates better images than most of the color quantization
methods mentioned above, as shown by the computational
results included in several articles [27]–[33].

The objective of this article is to describe a method that
combines the operations of GOBP and ATCQ in order to
improve the quality of the resulting image, but without con-
suming too much time. Since both methods are applied
sequentially, the hybrid method will only consume a little
more time than ATCQ. Computational experiments show that
the new method always generates better images than GOBP
and ATCQ applied separately, although it consumes a little
more time than ATCQ. GOBP is a deterministic method that
always generates the same quantized image for each palette
size. On the other hand, ATCQ can generate different quan-
tized images depending on the values given to the parameters
of the algorithm. Therefore, the result of GOBP will be used
to define an initial solution to applyATCQ, and the operations
of this last method will be applied to improve said solution.
GOBP has been chosen as starting point for twomain reasons:
it generates good quantized images (better than ATCQ in
most cases) and is very fast. Both features allow to define
a new rapid method that considers a good quantized palette
as a starting point.

A drawback of splitting methods is that the splitting
decision at each level can not be resumed. On the other
hand, clustering-based methods are usually influenced by
the initial conditions defined for the algorithms. The new
method attempts to overcome both problems. To solve the
first problem, it allows to assign each pixel pi a color different
from the centroid of the box associated with it by GOBP.
To solve the second problem, it defines a good initial palette
to apply the clustering-based method.

The rest of the article is organized as follows. First,
the color quantization problem is defined (Section II) and
the main solution methods are described (Section III). Next,
Sections IV and V describe the two methods used to define
the solution proposed in this article, which is presented
in Section VI. After this, computational experiments are

included in Section VII and the results of the tests are dis-
cussed. Finally, the conclusions of the article are presented.

II. THE COLOR QUANTIZATION PROBLEM
Let us consider a color image represented using the RGB
color space. In this space, each pixel is defined by three
integer values between 0 and 255 that represent the amount
of red (R), green (G) and blue (B) associated with the pixel.
Therefore, this color space allows to represent 2563 =
16777216 million different colors included in the RGB color
cube (Fig. 1).

FIGURE 1. RGB color cube.

Let us consider an image with n pixels, {p1, . . . , pn}, where
pi = (Ri,Gi,Bi) represents the RGB color of a pixel, with
1 ≤ i ≤ n. The color quantization process selects q colors
to represent the pixels of the original image in such a way
that the new image represented by those colors is as similar
as possible to the original image. This process includes two
operations. First, a quantized palette which includes the set of
selected colors must be defined:P = {P1,P2, . . . ,Pq}, where
each element Pj is an RGB color, Pj = (Rj,Gj,Bj), and q is
smaller than the number of colors of the original image. Next,
this palette is used to associate a new color with each pixel of
the original image, in order to obtain the quantized image.
This last operation determines the color of each pixel p′i of
the quantized image, which corresponds to the pixel in the
same position as pi in the original image.
Therefore, the color quantization problem considers an

original image whose pixels can take values from a palette
with 2563 different colors and defines a quantized palette with
a limited number of colors, q, to represent the original image
with minimal distortion.

III. OVERVIEW OF COLOR QUANTIZATION METHODS
The color quantization methods can be classified into two
groups: splitting methods and clustering-based methods.
Splitting methods apply an iterative process to divide the
color space into boxes, until q boxes are obtained. Then,
the quantized palette is defined including a representative
color of each box. On the other hand, clustering-based meth-
ods separate the pixels of the image into groups or clusters
and all the pixels in the same cluster are represented in
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the quantized image by the same color. In general, splitting
methods are faster, but clustering-based methods can obtain
better images.

Splitting methods differ basically in the box that is selected
at each iteration to split it, the splitting point and the split-
ting axis. Some popular splitting methods are Median-cut,
Variance-based method, Binary splitting, Octree and GOBP.
The last method is described in detail in the next section.

The Median-cut method selects the box that contains more
pixels and divides it along the longest axis at themedian point.
Each of the resulting boxes is represented in the quantized
palette by its average color [19].

The Variance-based method selects the box with the largest
weighted variance and divides it along the axis with the
least weighted sum of projected variances at the point that
minimizes the marginal squared error [21].

The Binary splitting method considers the box with the
largest dominant eigenvalue and splits it along the principal
axis of the selected box. In this case the splitting point is the
projection of the centroid to the selected axis [20].

The approach used by the Octree method is different from
the previous methods, since it uses a tree structure to perform
the color quantization. This structure can include 8 children
per node and 8 levels as a maximum, which allows to have
88 = 16777216 million leaves. To build the tree, the pixels
of the image are processed and a leaf is included to store
each of the colors used in the image. To reduce the number
of colors to q, the algorithm selects the leaves that represent
colors that are very close in the color space; such leaves
are replaced by a single node with the average color of the
leaves [18].

Other solutions have been proposed in the literature based
on the previous methods [29], [30], [34], [35].

In general, clustering-based methods take techniques
defined to solve problems other than color quantization and
apply them to solve this specific problem. Some methods of
this type are K-means, Fuzzy c-means, neural networks and
swarm-based algorithms.

K-means is the most popular clustering method and it has
been applied to solve the color quantization problem in sev-
eral articles [27], [36]–[40]. This method considers q initial
centroids and applies an iterative process to try to improve
them. When the color quantization problem is considered,
each centroid represents a color of the quantized palette. Each
iteration associates each pixel with the closest centroid and
then takes the average color of each group of pixels as the new
value of the centroid. The process can stop after a predefined
number of iterations or when a predefined error is reached.
It should be noted that this method is slow and the result is
influenced by the initial centroids.

The Fuzzy c-means method is based on the same idea
as K-means, but in this case the items are not associated
with a single group. On the contrary, each item is asso-
ciated with several clusters and a variable determines its
degree of membership to each cluster. This method attempts
to solve the problem that arises when the data includes

overlapping clusters. Fuzzy c-means has been applied to color
quantization in [28], [41], [42].

Neuquant is a color quantization method that uses a self-
organizing neural network. This network includes q neu-
rons that are trained with the pixels of the original image,
so that the final weights of these neurons define the colors
of the quantized palette [22]. Other authors consider simi-
lar types of neural networks to solve the color quantization
problem [43]–[45].

Several swarm-based methods have been applied to color
quantization. These methods imitate the behavior of a group
of individuals who perform very simple operations separately,
but as a group they can solve complex problems. Omran et al.
applied the Particle swarm optimization method to the color
quantization problem [46]. In this case, the swarm is formed
by a set of particles that represent quantized palettes. These
particles move in the search space to improve the quality
of the palettes they represent. This solution also uses the
K-means algorithm, which is applied to each particle in a
probabilistic way. On the other hand, Ozturk et al. applied
the Artificial bee colony algorithm to the color quantization
problem [47]. This solution simulates a swarm of bees trying
to solve the problem. There is a set of food sources that
represent quantized palettes and the operations of the bees
select the best palette. This method also applies K-means in
a probabilistic way to the food sources. The ATCQ method,
based on the behavior of natural ants, also belongs to this
family of methods and is described in Section V.

Recently, three color quantizationmethods based onATCQ
have been proposed: ITATCQ [31], ATCQ + FA [32] and
BS + ATCQ [33]. ITATCQ applies the ATCQ operations
iteratively in order to improve the quality of the quantized
palette. The first iteration builds a 3-level tree by applying
the same operations as ATCQ. To apply the next iteration,
two operations are performed: first, all the ants are moved
back to the root node; next, all the ants are reconnected to the
tree by applying the ATCQ operations, but these operations
are applied to a tree that includes not only the root node
but also nodes in the second level. ATCQ + FA combines
the Firefly algorithm [48] with the ATCQ algorithm. In this
case, the position of each firefly of the swarm represents a
quantized palette. In addition, there is a tree of ants associated
with each firefly. Such tree is defined by the ATCQ algorithm
and is used to refine the position of a firefly and to compute
its quality. The initial position of each firefly is defined
by applying ATCQ. Next, an iterative process combines the
operations of ATCQ algorithm and Firefly algorithm. At each
operation, the fireflies are first moved in the search space and
then ATCQ is applied to refine the solution associated with
each firefly and to compute the quality of the new solution.
BS + ATCQ combines the Binary splitting method with the
ATCQ method. Since both methods use a tree structure, the
leaves of the binary tree defined by the first one are used
to define the nodes in the second level of the tree used by
the second one. After this, the ATCQ operations are applied
to connect all the ants to the structure.
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Algorithm 1 GOBP
1: Splitting process
2: Palette generation
3: Quantized image generation

Algorithm 2 Splitting Process – GOBP Algorithm
1: Build the histogram
2: Compute the moments
3: Set k = 1
4: repeat
5: Select the box with the largest variance, T (cl, cm]
6: Split this box into 2 boxes, T (cl, c′m] and T (c

′
l, cm],

by a plane that minimizes the sum of variances of both
sides

7: Set k = k + 1
8: until q boxes defined (k = q)

For a more detailed description of color quantization meth-
ods [49] can be consulted.

IV. THE GREEDY ORTHOGONAL
BI-PARTITIONING METHOD
GOBP is a splitting method that selects the box with the
largest weighted variance and divides it into two boxes along
the axis that minimizes the sum of the variances on both sides
of the cutting plane [17]. Algorithm 1 shows the main oper-
ations of this method. The first operation applies a splitting
process to divide the color space into q boxes. The second
operation defines the quantized palette including the average
color of each box. The last operation of the algorithm uses
this palette to define the quantized image.

The first step of GOBP algorithm includes several opera-
tions that are described in Algorithm 2. The first operation
defines the histogram of the colors in the image, that is,
the number of pixels of the image whose color is the same.
Before defining the histogram, a pre-quantization is applied
to reduce the number of bits used to represent each color.
Instead of considering 8 bits per color, which defines a color

space of 28×28×28 = 256×256×256, the 3 least significant
bits of each color component are discarded, so as the color
space is reduced to a cube of 25×25×25 = 32×32×32. This
operation greatly reduces the number of different colors (from
2563 to 323) and, consequently, the number of histogram
entries. Therefore, for each pixel pi of the original image,
which is represented with 8 bits per color, the corresponding
ct value which includes only 5 bits per color is defined, where
the values Rt , Gt and Bt that define ct can take integer values
between 0 and 31 (Fig. 2a). After this, the frequency of each
ct , P(ct ), is determined.

To perform the splitting process in an efficient way, the sec-
ond operation of Algorithm 2 calculates and stores several
values that will be used in subsequent operations. For each
point ct of the 32 × 32 × 32 cube defined in the previous
step, three moments are computed by (1), (2), and (3), where
T (cl, cm] is the rectangular box defined by the points cl =
(Rl,Gl,Bl) and cm = (Rm,Gm,Bm), with Rl < r ≤ Rm,
Gl < g ≤ Gm and Bl < b ≤ Bm (Fig. 2b), and o is a reference
point such that

∑
c∈T (−∞,o] P(c) = 0.

M0(ct ) =
∑

c∈T (o,ct ]

P(c) (1)

M1(ct ) =
∑

c∈T (o,ct ]

cP(c) (2)

M2(ct ) =
∑

c∈T (o,ct ]

ccTP(c) (3)

Once the moments have been computed, an iterative pro-
cess is applied that selects a box and splits it into two
boxes, concluding the iterations when q boxes have been
defined. The box selected at each iteration is the one with the
maximum variance among all the boxes defined until such
moment. It should be noted that the only box existing at the
beginning of this process is the 32× 32× 32 cube (Fig. 2a).
To perform the splitting of the selected box at a good

position, an orthogonal cutting plane is moved along each of
the three dimensions of said box. The best cutting plane to
perform the division is the one that minimizes the sum of the
weighted variances of both sides of the plane.

FIGURE 2. (a) Initial box for the iterative process of GOBP method. (b) Box associated with points cl and cm. (c) All the
vertex of the box associated with points cl and cm.
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FIGURE 3. The box T (cl , cm] can be split into two boxes, T (cl , c ′
m] and T (c ′

l , cm] by a cutting
plane passing through the pixel c ′

l and that is perpendicular to the R axis (a), the G axis (b) or
the B axis (c).

If T (cl, cm] represents the selected box, three values are
computed for said box: the pixel population (4), the mean (5)
and the weighted variance (6).

w(cl, cm] =
∑

c∈T (cl ,cm]

P(c) (4)

µ(cl, cm] =

∑
c∈T (cl ,cm] cP(c)

w(cl, cm]
(5)

E(cl, cm] =
∑

c∈T (cl ,cm]

ccTP(c)−

(∑
c∈T (cl ,cm] cP(c)

)2
w(cl, cm]

(6)

The values of w, µ and E can be calculated quickly from
the moments computed and stored in the previous stage of the
algorithm.With this objective, the rule of inclusion-exclusion
of combinatorics [50] is applied, obtaining (7), where f (c)
may be 1, c or ccT and the 8 vertex of the box T (cl, cm] are

considered as shown in Fig. 2c.∑
c∈T (cl ,cm]

f (c)P(c) = (
∑

c∈T (o,cm]

+

∑
c∈T (o,ca]

+

∑
c∈T (o,cb]

+

∑
c∈T (o,cc]

−

∑
c∈T (o,cd ]

−

∑
c∈T (o,ce]

−

∑
c∈T (o,cf ]

−

∑
c∈T (o,cl ]

)f (c)P(c) (7)

To determine the position of the cutting plane used to
split the selected box, it is required to minimize E(cl, c′m] +
E(c′l, cm], where c

′
l and c′m can take one of the following

values:
• c′l = (r,Gl,Bl) and c′m = (r,Gm,Bm), with
Rl < r ≤ Rm, if the cutting plane is perpendicular to the
R axis (Fig. 3a).

128718 VOLUME 7, 2019



M.-L. Pérez-Delgado, J. Á. Román Gallego: Hybrid Color Quantization Algorithm That Combines the GOBP Method With Artificial Ants

• c′l = (Rl, g,Bl) and c′m = (Rm, g,Bm), with
Gl < g ≤ Gm, if the cutting plane is perpendicular to the
G axis (Fig. 3b).

• c′l = (Rl,Gl, b) and c′m = (Rm,Gm, b), with
Bl < b ≤ Bm, if the cutting plane is perpendicular to the
B axis (Fig. 3c).

The expression to be minimized is given by (8).

E(cl, c′m]+ E(c
′
l, cm]

=

∑
c∈T (cl ,cm]

c2P(c)

−

(∑
c∈T (cl ,c′m]

cP(c)
)2

w(cl, c′m]
−

(∑
c∈T (c′l ,cm]

cP(c)
)2

w(c′l, cm]
(8)

Wu indicated that minimizing (8) is equivalent to maxi-
mizing (9), which can also be calculated faster than (8) using
the previously stored moments. Therefore, (9) is computed
for each possible cutting plane and the one that generates the
maximum value is used to split the selected box. This results
in two new boxes, T (cl, c′m] and T (c

′
l, cm], and the current

iteration of the algorithm concludes.(∑
c∈T (cl ,c′m]

cP(c)
)2

w(cl, c′m]
+

(∑
c∈T (c′l ,cm]

cP(c)
)2

w(c′l, cm]

=

(∑
c∈T (cl ,c′m]

cP(c)
)2

w(cl, c′m]

+

(∑
c∈T (cl ,cm] cP(c)−

∑
c∈T (cl ,c′m]

cP(c)
)2

w(cl, cm]− w(cl, c′m]
(9)

Algorithm 3 Palette Generation – GOBP Algorithm
1: Set k = 1
2: for each box T (cl, cm] of the partition do
3: Set Pk = µ(cl, cm]
4: Set tag(ct ) = k ∀ ct ∈ T (cl, cm]
5: Set k = k + 1
6: end for

When the splitting process ends, the quantized palette is
defined (Algorithm 3). To do this, each of the boxes obtained
is processed and its average value is taken as a color of the
palette. In addition, each point ct of a box is associated with a
label that identifies the color of the quantized palette defined
by said box (tag(ct ) = k). The last operation of the algorithm
uses these labels to define the quantized image.

To define the final image, the pixel p′i of the quantized
image corresponding to each pixel pi of the original image
must be defined (Algorithm 4). To set the value of p′i, it is
first necessary to determine the value ct associated with the
pixel pi in the color cube of size 32×32×32. Once this value
has been determined, the color assigned to p′i is the color of
the quantized palette defined by the box containing ct , which
is identified by tag(ct ).

Algorithm 4 Quantized Image Generation – GOBP
Algorithm
1: for each pixel pi of the original image do
2: Determine the corresponding point in the 32×32×32

color cube, ct
3: Set k = tag(ct )
4: Set p′i = Pk
5: end for

V. THE ANT-TREE FOR COLOR QUANTIZATION METHOD
The ATCQ algorithm is a color quantization method based on
the Ant-tree algorithm [23]. It has been observed that some
species of ants can avoid obstacles or cross empty spaces
by connecting their bodies to build structures. The Ant-tree
algorithm tries to mimic this self-assembly behavior to solve
clustering problems [51], [52].

To solve the color quantization problem by ATCQ, each
pixel pi of the original image is represented by an ant hi.
The operations of the algorithm connect the ants in a tree
structure taking into account the similarity among the pixels
they represent. To define this tree, three types of nodes are
used. The root node of the tree, a0, is at the top level of the
structure and is called support. The children of the support,
{S1, . . . , Sq}, are in the second level of the structure. The other
levels of the structure include the ants when they connect to
the tree.

Each node Sj is the root of a subtree that defines a cluster
of ants and also defines a color of the quantized palette. For
this purpose, there are three values associated with Sj: the
number of ants connected to the subtree, ncj, the sum of the
RGB colors of such ants, sumj, and the sum of the similarities
between each ant hi connected to the subtree j and the color
of such subtree when the ant was included in it, ej. The color
of the subtree is calculated based on the previous values:
colorj = sumj/ncj. The three values associated with node
Sj are initialized when this node is created and then they are
updated when new ants are included in the subtree j.

The number of subtrees (clusters) defined by the algo-
rithm is equal to the value of q, with 0 ≤ q ≤ Qmax ,
where Qmax defines the maximum number of colors in the
quantized palette. At the beginning of the algorithm, the tree
only includes the root node and q is 0. As the operations
of the algorithm progress, new subtrees are defined, so q
increases. When q takes the value Qmax , no more subtrees
can be created, since the palette already includes the maxi-
mum number of colors allowed. Therefore, Qmax limits the
number of children of the support. Another limit, Lmax , can
be associated with the remaining nodes of the tree, whichmay
be different from Qmax .
Algorithm 5 shows the main operations of ATCQ. At the

beginning of the algorithm the tree only includes the root
node, where all the ants are waiting to connect to the structure.
Each iteration of the algorithm takes a moving ant hi (that is,
an ant not yet connected to the tree) which is on some node,
denoted apos. The operations applied to hi depend on its
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Algorithm 5 ATCQ
1: while there are moving ants do
2: Take a moving ant, hi, now on apos
3: if (apos = a0) then
4: Support case operations
5: else
6: Not-support case operations
7: end if
8: end while
9: for each subtree k with root in the second level do
10: Set p′i = colork ∀ hi in the subtree
11: end for

Algorithm 6 Support Case Operations – ATCQ Algorithm
1: if (q = 0) then
2: Create a new child of a0 and connect hi
3: else
4: Select the subtree c with the color most similar to hi.

Let dic = Sim(hi, colorc)
5: if (dic < Tc) and (q < Qmax) then
6: Create a new child of a0 and connect hi
7: else
8: Update the subtree with root in Sc
9: end if
10: end if

position on the tree: if it is on the support node (apos = a0),
the operations defined in Algorithm 6 are applied, otherwise
those defined in Algorithm 7 are applied. The iterations of
ATCQ end when all the ants have been connected to the
structure and at this moment the final tree includes q subtrees.
The color of each subtree defines an element of the quan-
tized palette, P = {color1, color2, . . . , colorq}. In addition,
the color of each subtree is used to represent in the quantized
image all the ants (pixels of the original image) included in
the subtree.

Algorithm 6 considers two situations with different
treatment:
• if the tree only includes the root node (q = 0), the first
child of that node is created, S1, and then the selected ant
is connected as the first child of S1. This situation only
occurs when the first ant is processed.

• if the tree includes at least one subtree (q > 0), hi can
move to an existing subtree or to a new subtree. To make
a decision, the node Sc in the second level of the tree
with the color most similar to hi is determined. Let dic
denote the similarity between hi and colorc, whose value
is computed by using the Euclidean metric.
If the similarity between hi and the color of the subtree
c reaches a threshold Tc (dic ≥ Tc), such subtree is
updated to include the ant hi; if the similarity does
not reach the threshold, a new child of a0 is created
to connect hi (if a0 cannot accept more children, hi is
included in the subtree c). The threshold Tc is calculated

by (10), where α is a parameter in (0, 1].

Tc =
ec
ncc

α (10)

To create a new child of a0, the current value of q is
incremented by 1 and then the node Sq is created with the
following initial values: ncq = 1, sumq = hi, eq = 0. The
operation concludes when hi connects as the first child of Sq.

To update the subtree with root in node Sc, the ant hi is
placed on Sc. In addition, the three values associated with this
node are updated, to indicate that a new ant has been included
in the subtree: ncc = ncc+1, sumc = sumc+hi, ec = ec+dic.

Algorithm 7 Not-Support Case Operations – ATCQ
Algorithm
1: if no child connected to apos then
2: Connect hi to apos
3: else if two ants connected to apos and the second one

never disconnected then
4: Move to a0 the subtree with root in the second child of

apos
5: Connect hi to apos
6: else
7: Select a node connected to apos, a+

8: if (Sim(hi, a+)< Tc ) and (apos has less than Lmax
children) then

9: Connect hi to apos
10: else
11: Move hi towards a+

12: end if
13: end if

Algorithm 7 considers three situations with different
treatment:
• If apos has no child, the selected ant connects as its first
child.

• If apos has two children and the second one has never
been disconnected from apos, two operations are per-
formed. First, the subtree with root in the second child
is disconnected from the structure and all the ants in this
subtree are moved back to the support. Next, hi connects
as the new second child of apos.

• In other cases, a random child of apos, denoted a+,
is selected. If the similarity between hi and a+ reaches
the threshold Tc, the selected ant moves towards
node a+; in other case, such ant must connect as a new
child of apos. Since there is a limit to the number of chil-
dren a node can have, this connection is only possible if
apos has not reached that limit; if apos already has Lmax
children, the connection is impossible and therefore hi
moves towards a+.

The disconnection of ants performed in the second sit-
uation gives some ants a new opportunity to select a bet-
ter position in the tree. However, the ATCQ algorithm
can be simplified by eliminating the disconnection of ants
(removing operations from line 3 to line 5 of Algorithm 7).
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FIGURE 4. Images used for the tests.

Algorithm 8 WATCQ
1: Splitting process
2: Initial tree definition
3: ATCQ

Computational results presented in [23] show that the result-
ing algorithm is faster, since each ant is processed only once,
although the quantized images may be a bit worse than those
obtained when disconnection is allowed.

VI. THE PROPOSED ALGORITHM
The method proposed in this article first applies GOBP
operations and then applies ATCQ operations. The resulting
algorithm, calledWATCQ, discards some of the operations of
both methods and reduces to three main steps (Algorithm 8):
• The first step defines a partition of the color cube by
applying GOBP.

• The second step uses the result of the previous step to
define an initial tree.

• The third step applies ATCQ operations to improve the
result obtained in the first step. This operation also
includes the generation of the quantized image.

WATCQ does not require applying the GOBP operations
to generate the quantized palette or to define the quantized
image. The new algorithm only needs the partition defined by
GOBP, which is used to create initial nodes of the tree before
applying the ATCQ operations.

The first operation ofWATCQ is the same as that described
for the GOBP algorithm in Section IV. As indicated in that
section, this operation applies a splitting process that divides
the color cube into q boxes and the average color of each
box defines an element of the quantized palette. The boxes
defined by GOBP are taken as the initial information to apply
the ATCQ operations.

As described in Section V, ATCQ operates on a tree that
initially only includes the root node and new nodes are

Algorithm 9 Initial Tree Definition – WATCQ Algorithm
1: Set k = 1
2: for each box T (cl, cm] of the partition do
3: Create a new child of the support, Sk
4: Set nck = w(cl, cm] and sumk = µ(cl, cm]w(cl, cm]
5: Compute ek by (11)
6: Set k = k + 1
7: end for

Algorithm 10 Support Case Operations – WATCQ
Algorithm
1: Select the subtree c with the color most similar to hij. Let
dic = Sim(hi, colorc)

2: Update the subtree with root in Sc

TABLE 1. Features of the test images: Name, width and height (pixels),
number of different colors.

included as the operations of the algorithm progress. The sec-
ond level of this tree can include Qmax nodes at most, and
each time a node of this level is created a new element of
the quantized palette is defined. However, when combining
ATCQwithGOBP to define theWATCQalgorithm, the initial
tree considered is different. For ATCQ operations to take
advantage of the result obtained by GOBP, this result is
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TABLE 2. MSE results for GOBP, ATCQ without disconnection of ants (ATCQn), ATCQ with disconnection of ants (ATCQd), and both variants of the proposed
method (WATCQn: Variant that considers ATCQ without disconnection of ants, WATCQd: Variant that considers ATCQ with disconnection of ants).
(q: Number of colors of the quantized palette; MSEm: Minimum MSE ; MSEa: Average MSE ; dev : Standard deviation of MSE .)

used to define an initial tree and then ATCQ is applied.
The second step of WATCQ, whose operations are detailed
in Algorithm 9, defines this initial tree.

Algorithm 9 applies an iterative process to include q nodes
in the second level of the tree, S1, S2, . . . , Sq, and to set initial
values for the parameters nck , sumk and ek associated with
each node Sk . The values considered for these parameters are
different from those described in Section V for the general
ATCQ algorithm, because now the nodes of the second level
are initially used to store information obtained by GOBP.
A total of q iterations are performed to process all the boxes
of the partition defined by GOBP. Each iteration processes a
box T (cl, cm] of the partition and defines a new child of the
support node, Sk , where k takes values between 1 and q.
The number of pixels associated with the subtree k is set to
the number of pixels in the box (nck = w(cl, cm]). The color
of the box T (cl, cm] is taken as the color of the subtree k
(colork = µ(cl, cm]) and sumk is computed from the previous
values: sumk = colorknck (which is equivalent to sumk =
µ(cl, cm]w(cl, cm]). The last parameter to be defined is ek ,
which represents the sum of similarities between the color of
each ant (pixel) associated with a subtree and the color of that
subtree. To compute the initial value of this parameter, (11) is
applied, where Sim represents the similarity computed using

the Euclidean metric.

ek =
∑

cj∈T (cl ,cm]

Sim(cj, µ(cl, cm]) (11)

At this point of the WATCQ algorithm, a tree has been
defined with q nodes in the second level, each representing a
color of the quantized palette defined by theGOBP algorithm.
Once the initial tree has been built, ATCQ operations are
applied to connect the ants to the tree. As in this case the
initial tree already includes in the second level the maximum
number of nodes allowed, the operations applied when the
selected ant is on the support (Algorithm 6 – Support case
operations) can be simplified. In this case new subtrees (new
elements of the quantized palette) cannot be created and this
forces to associate each ant with the most similar subtree.
Therefore, Algorithm 6 is replaced with Algorithm 10 when
WATCQ is applied.

It should be noted that the α parameter has a different effect
on WATCQ and ATCQ. When the general ATCQ algorithm
is considered, this parameter influences the decision to create
a new node in the second level of the tree, that is, a new
color of the quantized palette. Nevertheless, the initial tree
considered by WATCQ already includes the maximum num-
ber of possible nodes in the second level. Therefore, in this
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TABLE 3. MSE results for GOBP, ATCQ without disconnection of ants (ATCQn), ATCQ with disconnection of ants (ATCQd), and both variants of the proposed
method (WATCQn: Variant that considers ATCQ without disconnection of ants, WATCQd: Variant that considers ATCQ with disconnection of ants).
(q: Number of colors of the quantized palette; MSEm: Minimum MSE ; MSEa: Average MSE ; dev : Standard deviation of MSE .)

algorithm α only influences the operations performed at
lower levels of the tree, where it is used to compute the
threshold that determines whether an ant connects to the
structure or not.

As the ants are processed and they connect to the structure,
the parameters of the nodes in the second level of the tree
are updated. When all the ants have been connected to the
structure, the final colors of the nodes in the second level are
defined not only by the colors of the ants (pixels) associated
with each subtree, but also by the initial color assigned to
the root of each subtree taken from the partition defined
by GOBP.

The last operation of WATCQ algorithm defines the
quantized image in the same way described for ATCQ in
Section V.

Many color quantization methods combine previously
existing techniques [27]–[30], [32]–[40], [46], [47]. These
solutions take advantage of the characteristics of the methods
that combine to obtain better images or to accelerate the oper-
ations. Although it is desirable to obtain good quality images
quickly, this is difficult. Therefore, each method focuses on
one of the two objectives. The solution proposed in this article
tries to achieve the balance between quality and speed and

this objective conditioned the methods used to define the new
algorithm.

The ATCQ operations applied to the partition defined by
GOBP improve the result of the hybrid method for two main
reasons. First, these operations are applied to the pixels of
the original image, so the distribution of these pixels in the
color space is taken into consideration. Second, the value p′i
associated with each pixel pi is the most similar in the palette,
and this increases the similarity between the original and the
quantized image. In addition, ATCQ updates the values of the
initial quantized palette defined by GOBP, so that at the end
of WATCQ operations the palette no longer represents the
centroids of the boxes of the initial partition.

GOBP applies a pre-quantization to reduce the number
of bits used to represent each color. This operation allows
to reduce the size of the histogram defined in the first step
of Algorithm 2 and also reduces the data set used to per-
form calculations. The operation is simple and fast, but it is
independent of the image content. Since this pre-quantization
does not take into account the distribution of colors of the
original image, it only generates good results if the colors
of the image are uniformly distributed in the RGB color
cube [49], [53], [54]. Nevertheless, this distribution is not
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TABLE 4. Execution time (milliseconds) for GOBP, ATCQ without disconnection of ants (ATCQn), ATCQ with disconnection of ants (ATCQd), and both
variants of the proposed method (WATCQn: Variant that considers ATCQ without disconnection of ants, WATCQd: Variant that considers ATCQ with
disconnection of ants). (q: Number of colors of the quantized palette.)

common in real images. On the contrary, there are many
images whose color distribution includes regions of the
color space with many points and other regions not repre-
sented. When the pre-quantization is applied to these images,
the interesting colors may not be sampled with sufficient
density.

When WATCQ applies the ATCQ operations, they do not
use the pre-quantized information but use all the pixels of
the original image. In this way, the final part of the WATCQ
algorithm takes into account the distribution of colors of the
original image and this improves the result [49], [53], [54].

The color quantization methods apply two different strate-
gies to associate a color of the quantized palette to each
pixel of the image, in order to generate the quantized image.
One strategy uses the centroid of each box or cluster to
represent all the colors in that box or cluster. The other
strategy associates each pixel of the original image with the
closest color in the quantized palette. The first strategy is
faster, but the second generates better images. GOBP applies
the first strategy, so that each pixel pi of the original image
is mapped to the centroid of the box containing the value
obtained after applying the pre-quantization operation to pi.
Therefore, pi could be represented by a color of the quantized
palette that is not the most appropriate.

ATCQ operations does not compute the colors of the
palette as the centroids of the subtrees. It can be considered
that they compute pseudo-centroids, since the values are
computed as the iterations of the algorithm progress and take
into account not only the color of all the ants connected to
each subtree (even the color of the ants that were disconnected
from the subtree) but also the centroid of a box of the partition
defined by GOBP.

VII. RESULTS AND DISCUSSION
The effectiveness of the proposed model has been analyzed
by applying it to two sets of color images, which are included
in Fig. 4. The first set (images from (a) to (f)) includes
images commonly used to analyze color quantization meth-
ods, available at [55], whereas the second set includes six
images proposed by the authors of this article, which can be
downloaded from [56]. Table 1 shows the features of all the
images.

To determine the quality of the quantized image, the mean
squared error (MSE) has been considered, since it is a mea-
sure commonly used in the color quantization literature. This
error measure is computed by (12), where pi represents the
RGB color of a pixel of the original image and p′i repre-
sents the color of the pixel in the same position, but in the

128724 VOLUME 7, 2019



M.-L. Pérez-Delgado, J. Á. Román Gallego: Hybrid Color Quantization Algorithm That Combines the GOBP Method With Artificial Ants

FIGURE 5. Percentage of error reduction obtained by WATCQd compared to GOBP, ATCQ without disconnection of ants (ATCQn)
and ATCQ with disconnection of ants (ATCQd). (q: number of colors of the quantized palette.)

quantized image.

MSE =
1
n

n∑
i=1

||pi − p′i||
2 (12)

Five palette sizes were used in the tests: q = {16, 32,
64, 128, 256}. To apply the operations of the ATCQ algo-
rithm, the values considered for the α parameter were those
proposed in [23]: α = {0.25, 0.30, 0.35, 0.40, 0.45, 0.50}.
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TABLE 5. MSE and execution time (T ) (milliseconds) for several color quantization methods: Variance-based method (VB), Median-cut (MC), Octree (OC),
Binary splitting (BS), BS + ATCQ, Neuquant (NQ) and LBG. (q: Number of colors of the quantized palette.)

To compare the results of the newmethod with those obtained
by GOBP and ATCQ applied independently, both methods
were applied to the same images. ATCQ was tested with the
same α values previously indicated and both variants of this
method were considered: the general algorithm that allows
the disconnection of ants was labeled ATCQd, whereas the
variant without disconnection of ants was labeled ATCQn.
The proposed method was combined with both variants of
ATCQ and the labels WATCQd and WATCQn were used
to identify which variant of ATCQ was considered in each
case. Tables 2 to 4 show the results of GOBP, ATCQ and
WATCQ corresponding to 20 independent tests performed for
each image and palette size. The tests were executed on a
PC running Linux operating system, with an AMD Ryzen 7
1800X Turbo processor (4.0 GHz) and 8 GBytes of RAM.
Since GOBP and WATCQn generate the same quantized
image for each palette size in all the tests, only one error
value is provided; for the other methods, the minimumMSE ,
the average value and the standard deviation are provided
(Tables 2 and 3). The execution time reported in Table 4 is
measured in milliseconds.

It is clearly observed that the proposed method always
obtains better images than GOBP and ATCQ applied sepa-
rately. Obviously, when the execution time is compared, it is

larger for the proposed method. However, the improvement
obtained in the image quality should be taken into account to
determine if this increase in the execution time is worthwhile.

To better analyze the improvement obtained by the pro-
posed method, Fig. 5 shows the percentage of error reduction
obtained when comparing WATCQd to GOBP, ATCQn and
ATCQd (only one variant of WATCQ is compared to simplify
the graphic representation). Since the average MSE results
of both variants of ATCQ are very large in some cases, this
figure compares theminimumMSE . It is clearly observed that
the improvement obtained is greater when WATCQd is com-
pared to ATCQ than when compared to GOBP. The percent-
age of error reduction ranges in the interval [10.8%, 29.4%]
whenGOBP is compared, in [13.6%, 47.4%]whenATCQn is
compared and in [2.8%, 42.8%] when ATCQd is compared.
Although in the last case the lower limit of the interval
is very small, only 3 values lower than 10% are obtained
when WATCQd is compared to ATCQd. The analysis of the
previous results indicates that the increase in execution time
results in a significant improvement in the quality of the final
image.

As indicated in the previous paragraph, the average MSE
value of ATCQd and ATCQn is very large in some cases.
This is because the α values used for the tests have not been
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TABLE 6. MSE and execution time (T ) (milliseconds) for several color quantization methods. Variance-based method (VB), Median-cut (MC), Octree (OC),
Binary splitting (BS), BS + ATCQ, Neuquant (NQ) and LBG. (q: Number of colors of the quantized palette.)

adjusted based on the palette size. The effect is especially
evident for theMandrill image, with a very large average error
and standard deviation because the smallest α values generate
quantized palettes with very few colors (only 6 colors in the
worst case). As described in [23], the best result of ATCQ is
obtained, in general, for the lowest α value that generates a
palette with Qmax colors. Such article also shows that the α
value should be larger as the palette size increases, in order
to obtain quantized images with the number of desired colors.
This recommendation has not been taken into consideration
in the tests performed, since the same α set has been used to
test WATCQ and ATCQ for all the palette sizes. The average
error and the standard deviation obtained for both methods
indicate that the α parameter has little influence on WATCQ;
for this reason, the same set of α values has been used for all
the palette sizes.

The execution time of GOBP is independent of the palette
size, but this is not true for ATCQ. Therefore, the execution
time of WATCQ is also influenced by the palette size. Obvi-
ously, WATCQn is faster than WATCQd because ATCQn is
faster than ATCQd. Nevertheless, it is observed that the exe-
cution time of WATCQ is not approximately equal to the sum
of the execution time of GOBP and ATCQmethods, as might
be expected. This is due to the effect of the α value in ATCQ.

As previously discussed, when a small value is considered for
the α parameter, the final palette obtained by ATCQ includes
less than Qmax colors. Nevertheless, WATCQ always gener-
ates a final palette that includes q colors. Moreover, ATCQ
progressively includes the subtrees as the iterations progress,
but when ATCQ is applied in WATCQ the initial tree always
includes q subtrees. Therefore, WATCQ consumes more time
than ATCQ to select the best subtree for an ant, since in the
first case more subtrees must be analyzed.

When comparing both variants of the proposed method,
the best option is WATCQn, because it consumes less
time than WATCQd and can generate quantized images
with similar quality. WATCQd consumes a maximum of
846 milliseconds to generate an image with 256 colors, and
this value reduces to 546milliseconds whenWATCQn is con-
sidered. It is also observed that the differences in execution
time are greater for the smallest palettes.

To complement the results presented in the article,
the quantized images obtained by GOBP, ATCQ andWATCQ
for some of the test images are included as supplementary
material.

Some of the color quantization methods described in
Section III were applied to the test images, in order to
compare their results with those obtained by WATCQ.
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TABLE 7. Results for several color quantization methods: K-means (KM), PSO, ATCQ + FA and ITATCQ. (q: Number of colors of the quantized palette;
MSEm: Minimum MSE ; MSEa: Average MSE ; dev : Standard deviation of MSE ; T : Execution time (milliseconds).)

The following methods were considered: Variance-based
method [21], Median-cut [19], Octree [18], Binary split-
ting [20], BS + ATCQ [33], Neuquant [22], LBG [57],
K-means [24], Particle swarm optimization (PSO) [46],
ATCQ + FA [32], and ITATCQ [31]. LBG is based on
the vector quantization method proposed in [57], which has
also been applied to color quantization. This method applies
the same operations as K-means to define the clusters, but
it uses a splitting process to obtain the initial centroids.
Some of these methods use parameters whose values were
defined as follows. The sampling factor of Neuquant was
set to 1, since this value allows the method to generate
the best quantized images. As will be shown in the results
of the tests, K-means and PSO consume much more time
than the other methods. For this reason, only 5 iterations of
these methods were executed. To perform a fair compari-
son, the same number of iterations was considered for the
other iterative methods (ITATCQ and ATCQ + FA). The
values used for the other PSO parameters were: cognitive and
social parameters equal to 1.49, inertia equal to 0.72, range
for the velocity of the particles: [−5, 5] and probability of
application of K-means equal to 0.1 (as proposed in [46]),
5 particles and 5 iterations of K-means when this method
must be applied to a particle. The three methods based on

ATCQ (BS + ATCQ, ATCQ + FF and ITATCQ), were
applied considering the ATCQ variant without disconnection
of ants, since it consumes less time. In addition, BS+ ATCQ
and ITATCQ were executed with the six α values proposed
to test WATCQ. ATCQ + FA was executed considering the
same number of individuals as PSO (5 fireflies) and five
α values were selected: {0.25, 0.30, 0.35, 0.40, 0.45}. The
results of 20 independent tests are reported in Tables 5 to 8.

WATCQ clearly obtains better images than all the methods
reported in Tables 5 and 6, except BS+ATCQ. The improve-
ment is more evident for the Median-cut and Octree methods,
whereas the smallest differences appear when WATCQ is
compared to Binary splitting and LBG. As the palette size
increases, the differences in the MSE error also increase
when WATCQ is compared to Median-cut and Variance-
based methods; however, for Neuquant the opposite occurs.
This can be clearly observed in Fig. 6, which shows the
percentage of error reduction obtainedwhen the averageMSE
of WATCQd is compared to the error obtained by Variance-
based, Median-cut, Octree, Binary splitting and Neuquant
methods. When the execution time is compared, the results
of the analysis are different for both variants of the pro-
posed method. WATCQn consumes less time than the five
methods in many cases, but WATCQd consumes more time.
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TABLE 8. Results for several color quantization methods. K-means (KM), PSO, ATCQ + FA and ITATCQ. (q: Number of colors of the quantized palette;
MSEm: Minimum MSE ; MSEa: Average MSE ; dev : Standard deviation of MSE ; T : Execution time (milliseconds).)

WATCQn always consumes less time than Neuquant; on the
contrary, it always consumes more time than Median-cut.
Moreover, WATCQn is faster than Binary splitting, Octree
and Variance-based methods for all the images when q ≤ 64,
and it is also faster than Binary splitting and Variance-based
methods for some cases (8 and 15 cases out of 24, respec-
tively) when q > 64. On the other hand, WATCQd always
consumes more time than Median-cut, Neuquant, Octree and
Binary splitting. Nevertheless, it consumes less time than the
Variance-based method for 27 out of 60 cases, corresponding
to the palettes with fewer colors.

LBG consumesmore time than the two variants ofWATCQ
and obtains worse images than the new method in almost
all the cases (except in 3 cases). The percentage of error
reduction obtained by LBG for these three cases is 3.4% at
most. On the contrary, the reduction of the error obtained
by WATCQd for the other 57 cases varies in [0.7%, 29.3%]
and exceeds 5% for 47 cases. The percentages are shown
in Fig. 7, which shows the percentage of error reduction
obtained when the average MSE of WATCQd is compared
to the error obtained by other methods.

ATCQ + FA and ITATCQ consume more time than
WATCQ, even though only 5 iterations of these methods
were executed. In addition, the MSE results of both methods
are always improved byWATCQ, as can be observed in Fig. 7.

It is also observed that theMSE results of BS+ ATCQ are
similar to those of WATCQ, although the new method con-
sumes less time. WATCQ obtains better images for 30 out of
60 cases. For the other cases, the percentage of error reduction
obtained by BS + ATCQ compared to WATCQd ranges in
[0.2%, 7.3%], although the percentage exceeds 4% for only
5 cases. WATCQn consumes less time than BS + ATCQ for
all the palette sizes; the percentage of time reduction obtained
in this case varies in between 39% and 73%. On the other
hand, WATCQd consumes more time than BS + ATCQ only
in 12 cases corresponding to small palette sizes.

When comparing PSO and WATCQ, the first aspect to
highlight is that the execution time of both methods is very
different. Although PSO can obtain images with better aver-
ageMSE than WATCQ for 28 out of 60 cases, the percentage
of error reduction is 8.2% at most and only in 5 cases this
value exceed 5%. Most of the remaining 32 cases improved
by WATCQ correspond to palettes with 128 and 256 colors.
It can also be observed that WATCQ obtains better results
than PSO for all the palettes when the Plane image is consid-
ered, with a percentage of error reduction that exceeds 22%
in all the cases. Therefore, although PSO can obtain better
images than WATCQ for the smallest palettes, the improve-
ment is very small and requires a lot of computing time, which
can reduce the utility of such improvement.
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FIGURE 6. Percentage of error reduction obtained by WATCQd compared to Variance-based (VB), Median-cut (MC), Octree (OC),
Binary splitting (BS) and Neuquant (NQ). (q: Number of colors of the quantized palette.)

When K-means results are analyzed, it is observed that
WATCQ obtains better average errors for all the cases.
When comparing the minimumMSE errors, K-means obtains
better values than both variants of WATCQ for only 10 out

of 60 cases, corresponding mainly to palettes with 16 and
32 colors. On the other hand, it is observed that the execution
time of K-means is much greater than that of WATCQ, even
though only 5 iterations of K-means have been executed.
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FIGURE 7. Percentage of error reduction obtained by WATCQd compared to BS + ATCQ, PSO, ATCQ + FA, ITATCQ, K-means (KM)
and LBG. (q: Number of colors of the quantized palette.)

The K-means method can be applied to random initial
centroids, as was done in the tests reported in Tables 7 and
8, but it can also be applied to selected centroids. For this
reason, new tests were performed taking as initial centroids

the values of the palette generated by GOBP. Table 9 shows
the results of these tests at iterations 1, 3, and 5. This table
clearly shows that iteration 1 of K-means generates worse
results than both variants of WATCQ: K-means is slower and
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TABLE 9. MSE and execution time (milliseconds) of K-means applied to the palette generated by GOBP. (q: Number of colors of the quantized palette.)

generates worse images in almost all the cases (except in 3
cases when WATCQn is compared). In contrast, the results
of iterations 3 and 5 correspond to better images that those
obtained by WATCQ in almost all the cases. The reduction
in the error obtained by the results of K-means at iteration
5 is 7% at most and exceeds 5% for very few cases (7 and
9 cases when compared to WATCQd and WATCQn, respec-
tively). Therefore, although K-means applied to the results of
GOBP can generate images a little better thanWATCQ, it also
requires much more computational effort. The execution time
of K-means is only comparable to that of WATCQd for
images with 16 colors if iteration 1 is considered, but in this
case K-means always generates worse images thanWATCQd.

As a summary of the previous analysis, it can be concluded
that WATCQ can obtain better results than the other methods
analyzed, since it obtains better images than most of these
methods and only obtains worse images when compared with
much slower methods.

VIII. CONCLUSION
This article presents a color quantization method, called
WATCQ, that combines the operations of GOBP and ATCQ
methods in order to improve the quality of the resulting
image but with low computational cost. GOBP is a well-
known splitting method that can generate a quantized image

quickly, while ATCQ is a recently proposed clustering-based
method that can generate better images than some other color
quantization techniques.

GOBP is a deterministic method that always generates the
same quantized image for a given palette size, whereas the
parameters of ATCQ allow it to generate several quantized
images for each palette size. For this reason, the proposed
method uses the result of GOBP as a starting point to apply
ATCQ. Two variants of ATCQ can be considered, depend-
ing on whether the disconnection of ants is allowed or not.
Therefore, two variants of WATCQ have been considered,
labeledWATCQd andWATCQn, each of which uses a variant
of ATCQ.

Computational experiments show that the combined
method always improves the quality of the quantized images
generated by GOBP and ATCQ methods applied separately.
In addition, the execution time is less than 846 milliseconds
for all the images and palette sizes analyzed, and it is reduced
to approximately 60 milliseconds when the palette size is 16.
It is also observed that WATCQn is faster than WATCQd and
the quality of the quantized images obtained by both variants
is very similar. When WATCQn is considered, the execution
time reduces to 537 milliseconds for the largest palette.

The proposed method has also been compared to other
color quantization methods, generating better images than
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some well-known techniques, such as Binary splitting,
Neuquant, Octree, Median-cut and Variance-based methods.
Moreover, in many cases WATCQn consumes less time than
these methods for the smallest palette sizes, except when
comparing Median-cut. Although Median-cut is very fast
compared to WATCQ, it generates images much worse than
WATCQ. Other clustering-based methods analyzed can gen-
erate better images than WATCQ in some cases, but the
execution time required to obtain such images makes these
methods not competitive with WATCQ.

Since the proposed method is fast, future research lines
related to this method include real-time image processing
applications. For example, these applications include the
quality management systems for food production chains,
where the analysis of food imagesmust be carried out quickly.
Certainly, this is the first practical application of the proposed
method that we are currently testing.
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