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ABSTRACT A color quantization technique that combines the operations of two existing methods is
proposed. The first method considered is the Greedy orthogonal bi-partitioning method. This is a very
popular technique in the color quantization field that can obtain a solution quickly. The second method, called
Ant-tree for color quantization, was recently proposed and can obtain better images than some other color
quantization techniques. The solution described in this article combines both methods to obtain images with
good quality at a low computational cost. The resulting images are always better than those generated by each
method applied separately. In addition, the results also improve those obtained by other well-known color
quantization methods, such as Octree, Median-cut, Neuquant, Binary splitting or Variance-based methods.
The features of the proposed method make it suitable for real-time image processing applications, which are
related to many practical problems in diverse disciplines, such as medicine and engineering.

INDEX TERMS Artificial intelligence, clustering methods, image processing.

I. INTRODUCTION

Nowadays images are very important elements in every-
day communication. Social networks, web pages, reports,
e-books or electronic documents include many images that
must be stored, transmitted and displayed. Current devices
can display high quality images with many colors. Never-
theless, the quality of the image is a disadvantage for its
storage and transmission, since more colors mean more qual-
ity and also involve more storage space and less speed of
transmission.

Color quantization reduces the number of different colors
of an image trying to make the resulting image as similar
as possible to the original. Reducing the colors of an image
not only allows it to be displayed on low-end devices, but
also reduces the size of the image and this allows it to be
stored and transmitted more efficiently [1], [2]. Moreover,
color quantization is also related to other processes applied
to images, such as content-based image retrieval [3]-[5],
texture analysis [6]-[8], image segmentation [9]-[13] and
image watermarking [14], [15].
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The color quantization problem is complex since the
selection of the best colors to represent the image is an
NP-complete problem [16]. Therefore, different solution
approaches have been proposed for this problem. There are
solution methods that work on the color cube and divide it into
boxes. Some popular methods that apply this approach are
the Greedy orthogonal bi-partitioning method (GOBP) [17],
Octree [18], Median-cut [19], Binary splitting [20] and
the Variance-based method [21]. Other solutions focus on
the pixels of the image and separate them into groups.
This is the approach applied by color quantization methods
such as Neuquant [22] and Ant-tree for color quantization
(ATCQ) [23], and also by other solutions that use non-specific
methods of color quantization, such as K-means [24], Parti-
cle swarm optimization [25] and Artificial bee colony [26]
algorithms.

In general, the methods of the first group are faster, but
those of the second group can generate better images. There-
fore, when selecting a color quantization method it will nor-
mally be necessary to choose between speed and quality,
although it would be desirable to have both at the same time.

The GOBP method is a popular color quantization algo-
rithm that applies an iterative process to divide the color space
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into boxes, each of the resulting boxes defining a color of
the quantized palette [17]. This method is very fast because
the values used during the iterative process are calculated
only once before the process begins. Certainly, this method
is faster than most of the methods mentioned above.

The ATCQ method mimics the behavior of a set of ants
that build a tree that allows an image to be represented using
a reduced number of colors [23]. The ants, which represent
the pixels of the image, connect to the tree taking into account
the similarity among the colors they represent. Each subtree
defines a color of the quantized palette and that color is used
to represent all the ants of the subtree in the quantized image.
This method was compared to other well-known color quanti-
zation methods, obtaining better images than Octree, Median-
cut and Variance-based methods [23]. When compared to
GOBP, ATCQ only generates better images in some cases,
as reported in the article which proposed the second method.
Nevertheless, it should be taken into account that GOBP
generates better images than most of the color quantization
methods mentioned above, as shown by the computational
results included in several articles [27]-[33].

The objective of this article is to describe a method that
combines the operations of GOBP and ATCQ in order to
improve the quality of the resulting image, but without con-
suming too much time. Since both methods are applied
sequentially, the hybrid method will only consume a little
more time than ATCQ. Computational experiments show that
the new method always generates better images than GOBP
and ATCQ applied separately, although it consumes a little
more time than ATCQ. GOBP is a deterministic method that
always generates the same quantized image for each palette
size. On the other hand, ATCQ can generate different quan-
tized images depending on the values given to the parameters
of the algorithm. Therefore, the result of GOBP will be used
to define an initial solution to apply ATCQ, and the operations
of this last method will be applied to improve said solution.
GOBP has been chosen as starting point for two main reasons:
it generates good quantized images (better than ATCQ in
most cases) and is very fast. Both features allow to define
a new rapid method that considers a good quantized palette
as a starting point.

A drawback of splitting methods is that the splitting
decision at each level can not be resumed. On the other
hand, clustering-based methods are usually influenced by
the initial conditions defined for the algorithms. The new
method attempts to overcome both problems. To solve the
first problem, it allows to assign each pixel p; a color different
from the centroid of the box associated with it by GOBP.
To solve the second problem, it defines a good initial palette
to apply the clustering-based method.

The rest of the article is organized as follows. First,
the color quantization problem is defined (Section II) and
the main solution methods are described (Section III). Next,
Sections IV and V describe the two methods used to define
the solution proposed in this article, which is presented
in Section VI. After this, computational experiments are
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included in Section VII and the results of the tests are dis-
cussed. Finally, the conclusions of the article are presented.

Il. THE COLOR QUANTIZATION PROBLEM

Let us consider a color image represented using the RGB
color space. In this space, each pixel is defined by three
integer values between 0 and 255 that represent the amount
of red (R), green (G) and blue (B) associated with the pixel.
Therefore, this color space allows to represent 256° =
16777216 million different colors included in the RGB color
cube (Fig. 1).

255
R
FIGURE 1. RGB color cube.

Let us consider an image with n pixels, {p1, . .., pn}, where
pi = (Ri, Gj, B;) represents the RGB color of a pixel, with
1 < i < n. The color quantization process selects g colors
to represent the pixels of the original image in such a way
that the new image represented by those colors is as similar
as possible to the original image. This process includes two
operations. First, a quantized palette which includes the set of
selected colors must be defined: P = {P1, P2, ..., P,}, where
each element P; is an RGB color, P; = (R;, G}, B)), and q is
smaller than the number of colors of the original image. Next,
this palette is used to associate a new color with each pixel of
the original image, in order to obtain the quantized image.
This last operation determines the color of each pixel p; of
the quantized image, which corresponds to the pixel in the
same position as p; in the original image.

Therefore, the color quantization problem considers an
original image whose pixels can take values from a palette
with 2563 different colors and defines a quantized palette with
a limited number of colors, g, to represent the original image
with minimal distortion.

1IlIl. OVERVIEW OF COLOR QUANTIZATION METHODS

The color quantization methods can be classified into two
groups: splitting methods and clustering-based methods.
Splitting methods apply an iterative process to divide the
color space into boxes, until g boxes are obtained. Then,
the quantized palette is defined including a representative
color of each box. On the other hand, clustering-based meth-
ods separate the pixels of the image into groups or clusters
and all the pixels in the same cluster are represented in
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the quantized image by the same color. In general, splitting
methods are faster, but clustering-based methods can obtain
better images.

Splitting methods differ basically in the box that is selected
at each iteration to split it, the splitting point and the split-
ting axis. Some popular splitting methods are Median-cut,
Variance-based method, Binary splitting, Octree and GOBP.
The last method is described in detail in the next section.

The Median-cut method selects the box that contains more
pixels and divides it along the longest axis at the median point.
Each of the resulting boxes is represented in the quantized
palette by its average color [19].

The Variance-based method selects the box with the largest
weighted variance and divides it along the axis with the
least weighted sum of projected variances at the point that
minimizes the marginal squared error [21].

The Binary splitting method considers the box with the
largest dominant eigenvalue and splits it along the principal
axis of the selected box. In this case the splitting point is the
projection of the centroid to the selected axis [20].

The approach used by the Octree method is different from
the previous methods, since it uses a tree structure to perform
the color quantization. This structure can include 8 children
per node and 8 levels as a maximum, which allows to have
88 = 16777216 million leaves. To build the tree, the pixels
of the image are processed and a leaf is included to store
each of the colors used in the image. To reduce the number
of colors to g, the algorithm selects the leaves that represent
colors that are very close in the color space; such leaves
are replaced by a single node with the average color of the
leaves [18].

Other solutions have been proposed in the literature based
on the previous methods [29], [30], [34], [35].

In general, clustering-based methods take techniques
defined to solve problems other than color quantization and
apply them to solve this specific problem. Some methods of
this type are K-means, Fuzzy c-means, neural networks and
swarm-based algorithms.

K-means is the most popular clustering method and it has
been applied to solve the color quantization problem in sev-
eral articles [27], [36]-[40]. This method considers ¢ initial
centroids and applies an iterative process to try to improve
them. When the color quantization problem is considered,
each centroid represents a color of the quantized palette. Each
iteration associates each pixel with the closest centroid and
then takes the average color of each group of pixels as the new
value of the centroid. The process can stop after a predefined
number of iterations or when a predefined error is reached.
It should be noted that this method is slow and the result is
influenced by the initial centroids.

The Fuzzy c-means method is based on the same idea
as K-means, but in this case the items are not associated
with a single group. On the contrary, each item is asso-
ciated with several clusters and a variable determines its
degree of membership to each cluster. This method attempts
to solve the problem that arises when the data includes
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overlapping clusters. Fuzzy c-means has been applied to color
quantization in [28], [41], [42].

Neuquant is a color quantization method that uses a self-
organizing neural network. This network includes g neu-
rons that are trained with the pixels of the original image,
so that the final weights of these neurons define the colors
of the quantized palette [22]. Other authors consider simi-
lar types of neural networks to solve the color quantization
problem [43]-[45].

Several swarm-based methods have been applied to color
quantization. These methods imitate the behavior of a group
of individuals who perform very simple operations separately,
but as a group they can solve complex problems. Omran et al.
applied the Particle swarm optimization method to the color
quantization problem [46]. In this case, the swarm is formed
by a set of particles that represent quantized palettes. These
particles move in the search space to improve the quality
of the palettes they represent. This solution also uses the
K-means algorithm, which is applied to each particle in a
probabilistic way. On the other hand, Ozturk ef al. applied
the Artificial bee colony algorithm to the color quantization
problem [47]. This solution simulates a swarm of bees trying
to solve the problem. There is a set of food sources that
represent quantized palettes and the operations of the bees
select the best palette. This method also applies K-means in
a probabilistic way to the food sources. The ATCQ method,
based on the behavior of natural ants, also belongs to this
family of methods and is described in Section V.

Recently, three color quantization methods based on ATCQ
have been proposed: ITATCQ [31], ATCQ + FA [32] and
BS + ATCQ [33]. ITATCQ applies the ATCQ operations
iteratively in order to improve the quality of the quantized
palette. The first iteration builds a 3-level tree by applying
the same operations as ATCQ. To apply the next iteration,
two operations are performed: first, all the ants are moved
back to the root node; next, all the ants are reconnected to the
tree by applying the ATCQ operations, but these operations
are applied to a tree that includes not only the root node
but also nodes in the second level. ATCQ + FA combines
the Firefly algorithm [48] with the ATCQ algorithm. In this
case, the position of each firefly of the swarm represents a
quantized palette. In addition, there is a tree of ants associated
with each firefly. Such tree is defined by the ATCQ algorithm
and is used to refine the position of a firefly and to compute
its quality. The initial position of each firefly is defined
by applying ATCQ. Next, an iterative process combines the
operations of ATCQ algorithm and Firefly algorithm. At each
operation, the fireflies are first moved in the search space and
then ATCQ is applied to refine the solution associated with
each firefly and to compute the quality of the new solution.
BS + ATCQ combines the Binary splitting method with the
ATCQ method. Since both methods use a tree structure, the
leaves of the binary tree defined by the first one are used
to define the nodes in the second level of the tree used by
the second one. After this, the ATCQ operations are applied
to connect all the ants to the structure.
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Algorithm 1 GOBP
1: Splitting process
2: Palette generation
3: Quantized image generation

Algorithm 2 Splitting Process — GOBP Algorithm
1: Build the histogram
: Compute the moments
: Setk =1
: repeat
Select the box with the largest variance, T (c;, ¢;,]
Split this box into 2 boxes, T(c, ¢;,] and T(c}, cml,
by a plane that minimizes the sum of variances of both
sides
7. Setk=k+1
8: until g boxes defined (k = ¢q)

For a more detailed description of color quantization meth-
ods [49] can be consulted.

IV. THE GREEDY ORTHOGONAL

BI-PARTITIONING METHOD

GOBP is a splitting method that selects the box with the
largest weighted variance and divides it into two boxes along
the axis that minimizes the sum of the variances on both sides
of the cutting plane [17]. Algorithm 1 shows the main oper-
ations of this method. The first operation applies a splitting
process to divide the color space into g boxes. The second
operation defines the quantized palette including the average
color of each box. The last operation of the algorithm uses
this palette to define the quantized image.

The first step of GOBP algorithm includes several opera-
tions that are described in Algorithm 2. The first operation
defines the histogram of the colors in the image, that is,
the number of pixels of the image whose color is the same.
Before defining the histogram, a pre-quantization is applied
to reduce the number of bits used to represent each color.
Instead of considering 8 bits per color, which defines a color

B

;

space of 28 x 28 x 28 = 256 %256 x 256, the 3 least significant
bits of each color component are discarded, so as the color
space is reduced to a cube of 27 x 2% x 25 = 32 x 32 x 32. This
operation greatly reduces the number of different colors (from
256 to 32%) and, consequently, the number of histogram
entries. Therefore, for each pixel p; of the original image,
which is represented with 8 bits per color, the corresponding
¢ value which includes only 5 bits per color is defined, where
the values R;, G; and B, that define ¢, can take integer values
between 0 and 31 (Fig. 2a). After this, the frequency of each
¢t, P(cy), is determined.

To perform the splitting process in an efficient way, the sec-
ond operation of Algorithm 2 calculates and stores several
values that will be used in subsequent operations. For each
point ¢; of the 32 x 32 x 32 cube defined in the previous
step, three moments are computed by (1), (2), and (3), where
T(cy, cp] is the rectangular box defined by the points ¢; =
(R;, G1, By) and ¢, = (R, Gy, By), With Rp < r < Ry,
G < g < Gyuand B; < b < By, (Fig. 2b), and o is areference

point such that ZceT(_oo,a] P(c) =0.
Mo(e) = Y P() (1

ceT(o,cq]
Mi(c)= Y cP() )

ceT(o,cq]
Mac) = ) TP 3)

ceT(o,cq]

Once the moments have been computed, an iterative pro-
cess is applied that selects a box and splits it into two
boxes, concluding the iterations when g boxes have been
defined. The box selected at each iteration is the one with the
maximum variance among all the boxes defined until such
moment. It should be noted that the only box existing at the
beginning of this process is the 32 x 32 x 32 cube (Fig. 2a).

To perform the splitting of the selected box at a good
position, an orthogonal cutting plane is moved along each of
the three dimensions of said box. The best cutting plane to
perform the division is the one that minimizes the sum of the
weighted variances of both sides of the plane.

0 31

T I 3L .G

31

(a) Initial box

T(c, c ]
(b) General box

T(c, c ]

(c) General box with all the vertex

FIGURE 2. (a) Initial box for the iterative process of GOBP method. (b) Box associated with points ¢; and cp. (c) All the

vertex of the box associated with points ¢; and cp.
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(c) cutting plane perpendicular to the B axis

FIGURE 3. The box T(c;, ¢m] can be split into two boxes, T(c;, ¢p,] and T(c;, cm] by a cutting
plane passing through the pixel ¢; and that is perpendicular to the R axis (a), the G axis (b) or

the B axis (c).

If T(cy, c;n] represents the selected box, three values are
computed for said box: the pixel population (4), the mean (5)
and the weighted variance (6).

wer, el = Y P(c) @
ceT (c1,cml
ceT(cr,cm cP(c)
e ] = e <P s
W(Cls Cm]
(ZCET(CIvcm] CP(C)>2
E(Cl’ cm] = Z CCTP(C) — (6)
ceT(c,cm) w(cr, cm)

The values of w, i and E can be calculated quickly from
the moments computed and stored in the previous stage of the
algorithm. With this objective, the rule of inclusion-exclusion
of combinatorics [50] is applied, obtaining (7), where f(c)
may be 1, ¢ or ccT and the 8 vertex of the box T(cy, ¢,] are
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considered as shown in Fig. 2c.

Yo f@P@©=C Y+ Y 4+ >+ >

ceT(cr,cm) ceT(o,c;y] c€T(o,cq) c€T(o,cp] c€T(0,cc]
ceT(o,cq] c€T(o,ce]l c€T(o0,cr]
- ) P )
ceT(o,cq]

To determine the position of the cutting plane used to
split the selected box, it is required to minimize E(c, c;n] +
E(c}, cm], where ¢; and ¢}, can take one of the following
values:

ec;, = (r,G,By) and ¢, = (r,Gp,By), with

R; < r <Ry, if the cutting plane is perpendicular to the
R axis (Fig. 3a).
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(Ri,g,By) and ¢, = (Rp, g By), with
G < g < Gy, if the cutting plane is perpendicular to the
G axis (Fig. 3b).

e ¢, = (R,G;b) and ¢,, = (Ru, Gy, b), with
B; < b < By, if the cutting plane is perpendicular to the
B axis (Fig. 3¢).

The expression to be minimized is given by (8).

.C; =

E(cy, €)1 + E(c), cm]

= Z czP(c)

ceT(cr.cml

B (ZceT(q,c;ﬂ] CP(C)>2 B (ZceT(c},cm] CP(C)>2 (8)

w(cr, ¢,] w(c), ¢ml

Wau indicated that minimizing (8) is equivalent to maxi-
mizing (9), which can also be calculated faster than (8) using
the previously stored moments. Therefore, (9) is computed
for each possible cutting plane and the one that generates the
maximum value is used to split the selected box. This results
in two new boxes, T'(c;, ¢;,] and T(c}, ¢,], and the current
iteration of the algorithm concludes.

2 2
(ZCET(CI,C;,,] CP(C)) " (ZCET(U;,C,,,] CP(C))

w(cy, ¢, w(c, cm)
2
(ZCET(C} .l CP(C))
B w(cr, ¢y,

2
(ZceT(e;,cm] cP(c) — ZceT(cl,c;”] CP(C))

w(cr, cm] — w(cy, ¢,

€))

Algorithm 3 Palette Generation — GOBP Algorithm
1: Setk =1
: for each box T'(cj, ¢y, of the partition do
Set Py = u(ci, cml
Set tag(c;) = kY ¢; € T(cy, ]
Setk =k +1
end for

AN

When the splitting process ends, the quantized palette is
defined (Algorithm 3). To do this, each of the boxes obtained
is processed and its average value is taken as a color of the
palette. In addition, each point ¢; of a box is associated with a
label that identifies the color of the quantized palette defined
by said box (fag(c;) = k). The last operation of the algorithm
uses these labels to define the quantized image.

To define the final image, the pixel p; of the quantized
image corresponding to each pixel p; of the original image
must be defined (Algorithm 4). To set the value of p;, it is
first necessary to determine the value ¢, associated with the
pixel p; in the color cube of size 32 x 32 x 32. Once this value
has been determined, the color assigned to p; is the color of
the quantized palette defined by the box containing c¢;, which
is identified by rag(c;).
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Algorithm 4 Quantized Image Generation — GOBP
Algorithm

1: for each pixel p; of the original image do

2:  Determine the corresponding point in the 32 x 32 x 32

color cube, ¢;

3: Setk = tag(cy)

4:  Set p; = Py

5: end for

V. THE ANT-TREE FOR COLOR QUANTIZATION METHOD
The ATCQ algorithm is a color quantization method based on
the Ant-tree algorithm [23]. It has been observed that some
species of ants can avoid obstacles or cross empty spaces
by connecting their bodies to build structures. The Ant-tree
algorithm tries to mimic this self-assembly behavior to solve
clustering problems [51], [52].

To solve the color quantization problem by ATCQ, each
pixel p; of the original image is represented by an ant A;.
The operations of the algorithm connect the ants in a tree
structure taking into account the similarity among the pixels
they represent. To define this tree, three types of nodes are
used. The root node of the tree, ay, is at the top level of the
structure and is called support. The children of the support,
{S1, ..., 84}, arein the second level of the structure. The other
levels of the structure include the ants when they connect to
the tree.

Each node S; is the root of a subtree that defines a cluster
of ants and also defines a color of the quantized palette. For
this purpose, there are three values associated with S;: the
number of ants connected to the subtree, nc;, the sum of the
RGB colors of such ants, sum;, and the sum of the similarities
between each ant /; connected to the subtree j and the color
of such subtree when the ant was included in it, ;. The color
of the subtree is calculated based on the previous values:
colorj = sumj/nc;. The three values associated with node
S; are initialized when this node is created and then they are
updated when new ants are included in the subtree j.

The number of subtrees (clusters) defined by the algo-
rithm is equal to the value of g, with 0 < g < QOuax,
where Q4 defines the maximum number of colors in the
quantized palette. At the beginning of the algorithm, the tree
only includes the root node and g is 0. As the operations
of the algorithm progress, new subtrees are defined, so ¢
increases. When ¢ takes the value Qy,,x, no more subtrees
can be created, since the palette already includes the maxi-
mum number of colors allowed. Therefore, Q,,,, limits the
number of children of the support. Another limit, L., can
be associated with the remaining nodes of the tree, which may
be different from Q4.

Algorithm 5 shows the main operations of ATCQ. At the
beginning of the algorithm the tree only includes the root
node, where all the ants are waiting to connect to the structure.
Each iteration of the algorithm takes a moving ant 4; (that is,
an ant not yet connected to the tree) which is on some node,
denoted ayos. The operations applied to 4; depend on its
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Algorithm 5 ATCQ
1: while there are moving ants do

2 Take a moving ant, 4;, NOW 0N dp
3 if (ay05s = ap) then

4 Support case operations

50 else
6
7
8
9

Not-support case operations
end if
: end while
. for each subtree k with root in the second level do
10:  Set p; = colory V h; in the subtree
11: end for

Algorithm 6 Support Case Operations — ATCQ Algorithm
1: if (g = 0) then
2 Create a new child of ap and connect 4;
3: else
4 Select the subtree ¢ with the color most similar to 4;.
Let d;. = Sim(h;, color,)

5 if (dic < T,.) and (¢ < Qjax) then
6: Create a new child of ag and connect A;
7 else
8 Update the subtree with root in S,
9: end if
10: end if

position on the tree: if it is on the support node (apos = ao),
the operations defined in Algorithm 6 are applied, otherwise
those defined in Algorithm 7 are applied. The iterations of
ATCQ end when all the ants have been connected to the
structure and at this moment the final tree includes g subtrees.
The color of each subtree defines an element of the quan-
tized palette, P = {colory, color, ..., color,}. In addition,
the color of each subtree is used to represent in the quantized
image all the ants (pixels of the original image) included in
the subtree.

Algorithm 6 considers two situations with different
treatment:

« if the tree only includes the root node (¢ = 0), the first
child of that node is created, S, and then the selected ant
is connected as the first child of S;. This situation only
occurs when the first ant is processed.

« if the tree includes at least one subtree (¢ > 0), h; can
move to an existing subtree or to a new subtree. To make
a decision, the node S, in the second level of the tree
with the color most similar to %; is determined. Let d;.
denote the similarity between h; and color., whose value
is computed by using the Euclidean metric.

If the similarity between /; and the color of the subtree
¢ reaches a threshold T, (d;; > T.), such subtree is
updated to include the ant A;; if the similarity does
not reach the threshold, a new child of ag is created
to connect %; (if ag cannot accept more children, A; is
included in the subtree ¢). The threshold T is calculated
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by (10), where « is a parameter in (0, 1].

T, = —“qa (10)
nee

To create a new child of ap, the current value of ¢ is
incremented by 1 and then the node S, is created with the
following initial values: nc, = 1, sumy = h;, e, = 0. The
operation concludes when /; connects as the first child of S,.

To update the subtree with root in node S., the ant A; is
placed on S.. In addition, the three values associated with this
node are updated, to indicate that a new ant has been included
in the subtree: nc. = nc.+1, sum, = sum.~+h;, e, = e.+d;..

Algorithm 7 Not-Support Case Operations — ATCQ
Algorithm

1: if no child connected to a,,s then

2:  Connect h; 0 apos

3: else if two ants connected to ay,, and the second one
never disconnected then

4:  Move to ag the subtree with root in the second child of

Apos
5:  Connect h; t0 apos
6: else
7:  Select a node connected to apoy, at
8 if (Sim(h;, at)< T, ) and (apos has less than Ly
children) then
9: Connect h; to apos
10:  else
11: Move h; towards a™t
12 endif
13: end if

Algorithm 7 considers three situations with different
treatment:

o If apos has no child, the selected ant connects as its first

child.

o If apos has two children and the second one has never
been disconnected from s, tWo operations are per-
formed. First, the subtree with root in the second child
is disconnected from the structure and all the ants in this
subtree are moved back to the support. Next, #; connects
as the new second child of ay;.

« In other cases, a random child of ay,, denoted at,
is selected. If the similarity between h; and a™ reaches
the threshold 7., the selected ant moves towards
node a™; in other case, such ant must connect as a new
child of a,s. Since there is a limit to the number of chil-
dren a node can have, this connection is only possible if
apos has not reached that limit; if ay,s already has Ly
children, the connection is impossible and therefore 4;
moves towards a*.

The disconnection of ants performed in the second sit-
uation gives some ants a new opportunity to select a bet-
ter position in the tree. However, the ATCQ algorithm
can be simplified by eliminating the disconnection of ants
(removing operations from line 3 to line 5 of Algorithm 7).
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(g) Cathedrals (h) Beach (i) Headbands

FIGURE 4. Images used for the tests.

(d) Mandrill (e) Blond

(j) Landscape

Algorithm 8 WATCQ

Algorithm 9 Initial Tree Definition — WATCQ Algorithm

1: Splitting process
2: Initial tree definition
3: ATCQ

Computational results presented in [23] show that the result-
ing algorithm is faster, since each ant is processed only once,
although the quantized images may be a bit worse than those
obtained when disconnection is allowed.

VI. THE PROPOSED ALGORITHM

The method proposed in this article first applies GOBP
operations and then applies ATCQ operations. The resulting
algorithm, called WATCQ, discards some of the operations of
both methods and reduces to three main steps (Algorithm 8):

o The first step defines a partition of the color cube by
applying GOBP.

« The second step uses the result of the previous step to
define an initial tree.

« The third step applies ATCQ operations to improve the
result obtained in the first step. This operation also
includes the generation of the quantized image.

WATCQ does not require applying the GOBP operations
to generate the quantized palette or to define the quantized
image. The new algorithm only needs the partition defined by
GOBP, which is used to create initial nodes of the tree before
applying the ATCQ operations.

The first operation of WATCQ is the same as that described
for the GOBP algorithm in Section IV. As indicated in that
section, this operation applies a splitting process that divides
the color cube into g boxes and the average color of each
box defines an element of the quantized palette. The boxes
defined by GOBP are taken as the initial information to apply
the ATCQ operations.

As described in Section V, ATCQ operates on a tree that
initially only includes the root node and new nodes are
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1: Setk =1

2: for each box T'(¢;, cp] of the partition do

3:  Create a new child of the support, S

4 Set ncy = w(cy, ¢yl and sumy = u(cy, cpIw(cy, cml
5 Compute ¢; by (11)

6: Setk=k+1

7: end for

Algorithm 10 Support Case Operations — WATCQ
Algorithm
1: Select the subtree ¢ with the color most similar to 4;;. Let
d;. = Sim(h;, color,)
2: Update the subtree with root in S,

TABLE 1. Features of the test images: Name, width and height (pixels),
number of different colors.

name width  height colors
Lenna 512 512 148279
Peppers 512 512 183525
Plane 512 512 77041
Mandrill 512 512 230427
Blond 512 512 79228
Lake 512 512 168459
Cathedrals 600 450 66305
Beach 600 450 124335
Headbands 600 450 93303
Landscape 600 450 93255
Dessert 600 450 103792
Snowman 450 600 92413

included as the operations of the algorithm progress. The sec-
ond level of this tree can include Q,,,x nodes at most, and
each time a node of this level is created a new element of
the quantized palette is defined. However, when combining
ATCQ with GOBP to define the WATCQ algorithm, the initial
tree considered is different. For ATCQ operations to take
advantage of the result obtained by GOBP, this result is
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TABLE 2. MSE results for GOBP, ATCQ without disconnection of ants (ATCQn), ATCQ with disconnection of ants (ATCQd), and both variants of the proposed
method (WATCQn: Variant that considers ATCQ without disconnection of ants, WATCQd: Variant that considers ATCQ with disconnection of ants).

(g: Number of colors of the quantized palette; MSEp,: Minimum MSE; MSEq: Average MSE; dev: Standard deviation of MSE.)

GOBP ATCQn ATCQd WATCQn WATCQd
q | MSE |MSE,, MSE, dev |MSE, MSE, dev | MSE |MSE, MSE, dev
Lenna 16 | 269.75| 312.66 36542  52.70| 279.27 35747 55.99| 22346| 22251 22291 025
32| 158.61| 163.55 209.00 4594 15548 21345 40.98| 131.41| 131.07 131.27 0.11
64 | 99.16| 96.16 12883 33.08| 9123 128.88 31.56| 79.13| 78.84 78.94 0.06
128 61.79| 5887 93.05 47.16| 5894 9381 43.11 49.54| 4958 49.64 0.03
256| 39.53| 3878 8091 55.94| 38.60 7847  51.37 32.16| 3231 3234 0.01
Peppers 16 | 479.62| 556.68 1194.82 805.55| 55347 172556 1179.21| 42522 42472 425.06 0.14
32| 279.28| 334.17 421.08 79.90| 32849 74824 51548| 241.08| 240.53 240.70 0.12
64 | 16537| 188.96 27494 114.72| 173.62 28591 86.38| 142.07| 141.92 142.00 0.04
128 102.31| 114.89 224.60 152.47| 11020 213.53 120.88 88.64| 88.65 88.72 0.03
256| 66.08| 7332 20557 168.59| 72.18 187.82 140.96|  56.90| 5692 56.99 0.03
Plane 16 | 158.01| 227.03 29799 77.02| 19140 33591 OI.17| 135.70| 13553 135.74 0.10
32| 8545| 11671 17435 56.03| 104.89 184.81 70.69| 65.63| 6558 65.67 0.06
64 | 51.33| 64.15 101.61 43.03| 59.05 10147 33.80|  40.59| 40.73 40.77 0.02
128| 32.60| 3549 7845 51.40| 3477 68.63  24.65 2520 2528 2531 0.01
256| 21.66| 24.62 66.65 58.56| 2271 5256  31.90 1593 1601 16.05 0.01
Mandrill 16 | 778.41| 806.08 2242.10 3393.85| 752.73 132746 1584.32| 659.74| 65698 658.03 0.53
32 | 468.39| 538.49 2023.16 3501.72| 491.87 927.06 1059.84| 405.65| 404.58 404.84 0.16
64 | 28833 | 362.35 1913.97 3557.12| 32637 1024.81 1748.67| 249.00| 248.57 248.76 0.10
128 | 186.33| 220.56 1837.06 3597.27| 201.98 693.75 1110.63| 162.45| 162.04 162.21 0.07
256| 118.65| 147.20 1797.99 3618.27| 126.83 844.04 1741.77| 102.82| 102.75 102.83 0.03
Blond 16 | 202.06| 22443 28455 66.15| 21735 291.53 54.69| 172.02| 171.71 171.98 0.07
32| 107.55| 132.69 17737 41.44| 13874 18228 33.50|  90.68| 90.37 90.50 0.04
64 | 63.03| 9780 12036 20.77| 89.90 12074 21.64| 5146| 5142 51.49 0.04
128| 36.84| 5538 8372 3650| 48.15 8098 2822| 31.17| 3132 31.34 0.01
256| 23.59| 28.07 6928 46.94| 2666 6562  38.61 19.89 20.02  20.05 0.01
Lake 16 | 381.68| 43822 843.60 315.68| 388.27 91741 260.10| 328.01| 32742 327.67 0.10
32| 249.81| 268.93 48277 285.85| 263.78 560.76 305.89| 215.70| 21525 215.47 0.10
64 | 161.34| 18278 222.66 48.81| 180.68 228.16 40.02| 139.07| 138.80 138.97 0.05
128| 102.55| 122.82 165.14  70.85| 117.05 15195 33.79 88.50| 88.46 88.53 0.04
256| 6647| 78.16 14253 87.38| 7335 12327 5471 57.26| 5731 57.35 0.02

used to define an initial tree and then ATCQ is applied.
The second step of WATCQ, whose operations are detailed
in Algorithm 9, defines this initial tree.

Algorithm 9 applies an iterative process to include g nodes
in the second level of the tree, S1, S2, .. ., Sy, and to set initial
values for the parameters ncy, sumy and ey associated with
each node Si. The values considered for these parameters are
different from those described in Section V for the general
ATCQ algorithm, because now the nodes of the second level
are initially used to store information obtained by GOBP.
A total of g iterations are performed to process all the boxes
of the partition defined by GOBP. Each iteration processes a
box T'(cy, ¢;y] of the partition and defines a new child of the
support node, Sy, where k takes values between 1 and gq.
The number of pixels associated with the subtree k is set to
the number of pixels in the box (ncy = w(cy, ¢iu]). The color
of the box T(cy, ¢i] is taken as the color of the subtree k
(colory = u(cy, ciy]) and sumy, is computed from the previous
values: sumy = colorgncy (which is equivalent to sumy =
u(cr, cmlw(cr, c]). The last parameter to be defined is e,
which represents the sum of similarities between the color of
each ant (pixel) associated with a subtree and the color of that
subtree. To compute the initial value of this parameter, (11) is
applied, where Sim represents the similarity computed using
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the Euclidean metric.

Y. Sim(cj, pler, eml)

¢eT(er.cm]

Y

e =

At this point of the WATCQ algorithm, a tree has been
defined with ¢ nodes in the second level, each representing a
color of the quantized palette defined by the GOBP algorithm.
Once the initial tree has been built, ATCQ operations are
applied to connect the ants to the tree. As in this case the
initial tree already includes in the second level the maximum
number of nodes allowed, the operations applied when the
selected ant is on the support (Algorithm 6 — Support case
operations) can be simplified. In this case new subtrees (new
elements of the quantized palette) cannot be created and this
forces to associate each ant with the most similar subtree.
Therefore, Algorithm 6 is replaced with Algorithm 10 when
WATCQ is applied.

It should be noted that the & parameter has a different effect
on WATCQ and ATCQ. When the general ATCQ algorithm
is considered, this parameter influences the decision to create
a new node in the second level of the tree, that is, a new
color of the quantized palette. Nevertheless, the initial tree
considered by WATCQ already includes the maximum num-
ber of possible nodes in the second level. Therefore, in this
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TABLE 3. MSE results for GOBP, ATCQ without disconnection of ants (ATCQn), ATCQ with disconnection of ants (ATCQd), and both variants of the proposed
method (WATCQn: Variant that considers ATCQ without disconnection of ants, WATCQd: Variant that considers ATCQ with disconnection of ants).
(g: Number of colors of the quantized palette; MSEp,: Minimum MSE; MSEq: Average MSE; dev: Standard deviation of MSE.)

GOBP ATCQn ATCQd WATCQn WATCQd
q | MSE |MSE,, MSE, dev |MSE, MSE, dev | MSE |MSE,, MSE, dev
Cathedrals 16 | 153.92| 173.81 631.01 45535| 15403 627.78 44044 | 132.54| 132.54 132.66 0.05
32| 81.90| 9329 31832 327.10| 80.46 300.96 268.99| 6325 63.17 63.24 0.04
64 | 45.28| 47.86 150.86 183.90| 45.43 146.85 163.15 3433 | 3437 3442 0.02
128 27.31| 3240 5829 30.69| 2742 5641 2695 2031 2048 20.52 0.02
256| 18.10] 19.93 51.80 36.24| 1728 4733 3224 1264 1278 12.81 0.01
Beach 16 | 332.52| 376.17 989.47 388.15| 399.57 952.98 316.83| 297.17| 296.73 297.05 0.10
32| 177.34| 268.19 632.84 387.64| 24341 598.49 321.15| 145.64| 14520 14532 0.09
64 | 101.92| 141.02 422.14 332.81| 12925 401.49 288.09 81.68| 8142 81.55 0.07
128| 59.64| 82.81 186.92 121.53| 71.83 221.86 208.35 47.07| 47.02 47.07 0.02
256| 36.33| 5391 111.05 77.20| 4271 10050 51.17| 28.47| 28.54 28.57 0.02
Headbands 16 | 246.65| 297.60 61450 327.53| 261.90 64837 283.01| 212.43| 211.67 211.89 0.14
32| 142.63| 181.41 321.72 154.63| 160.80 381.98 221.59| 120.37| 119.93 120.23 0.13
64 | 87.52| 100.66 184.64 83.56| 94.61 200.06 93.07 70.63| 7055 70.62 0.03
128| 53.42| 63.82 12144 64.60| 5747 10779 43.07| 43.05| 43.07 43.13 0.03
256| 33.83| 3452 90.06 70.18| 3423 73.02 44.05 26.17| 2625 2629 0.02
Landscape 16 | 241.33 | 267.62 584.36 35622 | 23342 69628 387.11| 211.12| 21097 211.13 0.06
32| 131.31] 124.61 287.08 216.55| 113.94 315.68 192.55| 105.55| 105.16 105.25 0.05
64 | 7220| 7041 13205 77.85| 6628 12624 57.14| 5821| 58.16 58.24 0.03
128| 4275| 4225 9370 79.52| 4196 64.55 19.12 33.37| 3344 3348 0.02
256| 25.75| 27.11 8643 84.66| 26.18 78.12 73.83 2040 2054 20.57 0.0l
Dessert 16 | 299.46| 292.00 39575 74.89| 293.07 442.49 170.83| 252.94| 25232 25259 0.13
32| 160.65| 19226 26550 64.44| 18506 23029 28.34| 130.46| 130.28 130.39 0.07
64 | 90.42| 123.10 17544 83.77| 10535 15543 37.72|  7130| 71.09 71.16 0.04
128| 52.66| 8033 133.67 103.01| 6391 10504 47.93 4251 4253 4259 0.03
256| 32.71| 4175 117.02 113.95| 3628 8745 62.53 2536| 2543 2546 0.01
Snowman 16 | 308.55| 305.38 460.54 187.23| 26057 522.39 252.03| 253.84| 25329 253.60 0.11
32| 161.12] 161.19 20038 24.02| 164.58 221.03 41.19| 124.82| 124.58 124.81 0.11
64 | 89.53| 123.10 17544 83.77| 9446 142.08 3120| 66.87| 6671 66.81 0.04
128| 49.69| 57.94 9752 59.64| 5407 97.65 43.59 3775| 37.66 3774 0.04
256| 29.85| 3541 7793 69.81| 30.61 7278 56.97| 2234| 2241 2243 001

algorithm o« only influences the operations performed at
lower levels of the tree, where it is used to compute the
threshold that determines whether an ant connects to the
structure or not.

As the ants are processed and they connect to the structure,
the parameters of the nodes in the second level of the tree
are updated. When all the ants have been connected to the
structure, the final colors of the nodes in the second level are
defined not only by the colors of the ants (pixels) associated
with each subtree, but also by the initial color assigned to
the root of each subtree taken from the partition defined
by GOBP.

The last operation of WATCQ algorithm defines the
quantized image in the same way described for ATCQ in
Section V.

Many color quantization methods combine previously
existing techniques [27]-[30], [32]-[40], [46], [47]. These
solutions take advantage of the characteristics of the methods
that combine to obtain better images or to accelerate the oper-
ations. Although it is desirable to obtain good quality images
quickly, this is difficult. Therefore, each method focuses on
one of the two objectives. The solution proposed in this article
tries to achieve the balance between quality and speed and
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this objective conditioned the methods used to define the new
algorithm.

The ATCQ operations applied to the partition defined by
GOBP improve the result of the hybrid method for two main
reasons. First, these operations are applied to the pixels of
the original image, so the distribution of these pixels in the
color space is taken into consideration. Second, the value p;
associated with each pixel p; is the most similar in the palette,
and this increases the similarity between the original and the
quantized image. In addition, ATCQ updates the values of the
initial quantized palette defined by GOBP, so that at the end
of WATCQ operations the palette no longer represents the
centroids of the boxes of the initial partition.

GOBP applies a pre-quantization to reduce the number
of bits used to represent each color. This operation allows
to reduce the size of the histogram defined in the first step
of Algorithm 2 and also reduces the data set used to per-
form calculations. The operation is simple and fast, but it is
independent of the image content. Since this pre-quantization
does not take into account the distribution of colors of the
original image, it only generates good results if the colors
of the image are uniformly distributed in the RGB color
cube [49], [53], [54]. Nevertheless, this distribution is not
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TABLE 4. Execution time (milliseconds) for GOBP, ATCQ without disconnection of ants (ATCQn), ATCQ with disconnection of ants (ATCQd), and both
variants of the proposed method (WATCQn: Variant that considers ATCQ without disconnection of ants, WATCQ: Variant that considers ATCQ with

disconnection of ants). (g: Number of colors of the quantized palette.)

q GOPB ATCQn ATCQd WATCQn WATCQd GOPB ATCQn ATCQd WATCQn WATCQd
16 || Lenna 14 39 189 60 231||Cathedrals 14 36 165 59 187
32 14 61 230 94 279 14 56 204 91 239
64 14 97 285 160 344 14 83 246 163 317
128 14 151 370 277 490 14 117 305 280 484
256 15 204 476 546 786 15 158 375 533 780
16 || Peppers 14 37 179 55 214||Beach 14 36 161 61 215
32 14 60 222 89 261 14 54 190 93 254
64 14 97 278 152 332 14 84 231 158 324
128 14 150 366 276 473 14 126 307 280 478
256 15 215 481 524 729 15 170 382 532 778
16 || Plane 14 37 207 58 219 ||Headbands 14 37 174 60 221
32 14 57 241 91 265 14 54 277 91 267
64 14 87 308 153 354 14 80 336 156 351
128 14 120 414 279 525 14 119 312 280 508
256 14 151 441 525 830 15 160 392 527 832
16 ||Mandrill 14 37 181 62 223 || Landscape 14 39 178 61 208
32 14 56 220 94 260 14 60 218 93 265
64 14 83 278 147 342 14 98 279 173 350
128 15 126 327 255 494 14 139 377 283 498
256 15 179 459 453 770 15 192 518 532 819
16 || Blond 14 39 186 60 226||Dessert 14 38 180 60 205
32 14 62 226 91 267 14 58 217 92 251
64 14 94 283 156 341 14 93 272 156 317
128 14 141 365 278 508 14 137 352 287 482
256 14 191 441 527 846 15 200 464 537 814
16 Lake 14 39 170 60 197|| Snowman 14 39 175 61 215
32 14 64 209 93 239 14 63 214 92 264
64 14 104 306 157 320 14 94 283 158 342
128 14 167 398 284 469 14 157 378 283 496
256 15 228 517 514 799 15 218 493 535 794

common in real images. On the contrary, there are many
images whose color distribution includes regions of the
color space with many points and other regions not repre-
sented. When the pre-quantization is applied to these images,
the interesting colors may not be sampled with sufficient
density.

When WATCQ applies the ATCQ operations, they do not
use the pre-quantized information but use all the pixels of
the original image. In this way, the final part of the WATCQ
algorithm takes into account the distribution of colors of the
original image and this improves the result [49], [53], [54].

The color quantization methods apply two different strate-
gies to associate a color of the quantized palette to each
pixel of the image, in order to generate the quantized image.
One strategy uses the centroid of each box or cluster to
represent all the colors in that box or cluster. The other
strategy associates each pixel of the original image with the
closest color in the quantized palette. The first strategy is
faster, but the second generates better images. GOBP applies
the first strategy, so that each pixel p; of the original image
is mapped to the centroid of the box containing the value
obtained after applying the pre-quantization operation to p;.
Therefore, p; could be represented by a color of the quantized
palette that is not the most appropriate.
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ATCQ operations does not compute the colors of the
palette as the centroids of the subtrees. It can be considered
that they compute pseudo-centroids, since the values are
computed as the iterations of the algorithm progress and take
into account not only the color of all the ants connected to
each subtree (even the color of the ants that were disconnected
from the subtree) but also the centroid of a box of the partition
defined by GOBP.

VII. RESULTS AND DISCUSSION

The effectiveness of the proposed model has been analyzed
by applying it to two sets of color images, which are included
in Fig. 4. The first set (images from (a) to (f)) includes
images commonly used to analyze color quantization meth-
ods, available at [55], whereas the second set includes six
images proposed by the authors of this article, which can be
downloaded from [56]. Table 1 shows the features of all the
images.

To determine the quality of the quantized image, the mean
squared error (MSE) has been considered, since it is a mea-
sure commonly used in the color quantization literature. This
error measure is computed by (12), where p; represents the
RGB color of a pixel of the original image and p| repre-
sents the color of the pixel in the same position, but in the
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FIGURE 5. Percentage of error reduction obtained by WATCQd compared to GOBP, ATCQ without disconnection of ants (ATCQn)
and ATCQ with disconnection of ants (ATCQd). (g: number of colors of the quantized palette.)

quantized image.

1 & )
MSE = ;;npi —pil
1=
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Five palette sizes were used in the tests: ¢ = {16, 32,
64, 128, 256}. To apply the operations of the ATCQ algo-

12

rithm, the values considered for the o parameter were those
proposed in [23]: @ =

{0.25,0.30, 0.35, 0.40, 0.45, 0.50}.
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TABLE 5. MSE and execution time (T) (milliseconds) for several color quantization methods: Variance-based method (VB), Median-cut (MC), Octree (OC),
Binary splitting (BS), BS + ATCQ, Neuquant (NQ) and LBG. (g: Number of colors of the quantized palette.)

VB MC OoC BS BS+ATCQ NQ LBG
g |MSE T | MSE T| MSE T |MSE T |MSE T |MSE T |MSE T
Lenna 16 |358.13 215| 462.65 13| 681.44 170|258.29 144 |226.22 192 |322.05 101|239.93 309
32 1203.07 251 | 425.85 13| 482.03 174 |138.44 178 |123.82 263 |152.13 152|128.81 501
64 | 135.86 317 | 362.61 13| 21292 183 | 82.44 233 | 7535 395 | 85.60 227 | 78.46 848
128 | 94.68 358 | 276.33 13| 140.53 182 | 53.04 284 | 48.10 595 | 53.73 345| 50.42 1447
256 | 69.41 418| 19325 14| 74.12 187 | 3528 367| 31.59 929 | 34.88 567 | 35.42 2184
Peppers 16 |751.90 247|1034.24 14 |1593.03 171 |531.57 153 |468.58 196 |556.86 106 |456.79 294
32 |451.10 321 | 866.55 14| 777.14 167 |311.66 175|254.22 269 |283.69 167 |276.69 490
64 |304.21 395| 771.03 14| 49551 172|173.75 223 |145.66 486 |166.37 273 |152.75 836
128 | 212.68 467 | 58541 13| 308.76 176|106.85 283 | 91.29 580 | 95.69 357| 97.97 1525
256 | 147.18 507 | 397.29 15| 156.24 188 | 68.72 349| 58.38 926 | 63.08 591 | 64.28 2579
Plane 16 |187.84 193 | 50991 13| 39523 169|174.72 130 |141.22 173 |311.72 96 |173.45 280
32 | 123.56 223 | 37470 13| 34223 166 | 83.12 144 | 68.10 229 |123.70 143 | 86.98 456
64 | 80.73 275| 237.93 13| 22598 170| 46.22 199 | 3930 349 | 57.57 207| 45.68 740
128 | 52.60 318| 187.93 13| 133.59 177 | 28.06 249 | 2424 535 | 29.71 302| 27.26 1278
256 | 36.85 381 | 147.53 13 5231 181 | 18.42 332| 15.77 1045| 21.09 566 | 18.01 1950
Mandrill 16 |924.59 270 | 1292.35 15|1579.16 171|738.08 158 |656.39 200 |847.77 103 |694.49 369
32 |531.03 342 | 984.05 16|1094.11 172 |441.30 194|397.18 283 |456.13 163 |425.54 517
64 |346.58 426 881.29 17| 576.19 175|286.93 238 |248.82 413 |272.25 24226297 761
128 |248.02 503 | 776.65 17| 357.13 179 |183.51 298|160.71 613 |168.22 350 |171.28 1166
256 | 181.94 616| 676.87 18| 195.82 182 |117.85 377|103.18 977 |109.34 679 |112.76 1934
Blond 16 42538 128 | 549.85 12| 50245 17621236 144 |171.18 180 |265.53 95|243.08 269
32 123243 134 374.69 13| 477.64 169|111.28 185| 9520 270 |123.89 152| 9527 436
64 |129.43 164 | 217.55 13| 163.08 178 | 63.07 227 | 51.89 399 | 66.32 222 | 5350 752
128 | 82.22 171 | 185.81 13 89.86 185| 38.46 286 | 32.04 597 | 3830 355| 33.93 1336
256 | 5442 206| 123.57 13 50.79 186 | 23.65 389 | 1945 952 | 23.86 562 | 21.40 2418
Lake 16 |507.32 292 |1317.94 14| 957.66 169 |365.21 152|336.54 203 |436.04 100 |367.02 275
32 |357.26 379 |1208.87 14| 922.04 167 |245.65 170|218.92 272 |274.45 17325222 409
64 |251.70 471 | 984.62 15| 466.14 170|162.89 224 |140.32 389 |164.26 238 |169.43 643
128 | 170.97 559 | 692.56 15| 198.49 182|107.00 277 | 90.70 612 | 100.88 355|103.41 1280
256 | 120.10 682| 523.09 16| 159.21 179 | 68.36 358 | 57.65 966 | 65.70 572| 69.86 2043

To compare the results of the new method with those obtained
by GOBP and ATCQ applied independently, both methods
were applied to the same images. ATCQ was tested with the
same « values previously indicated and both variants of this
method were considered: the general algorithm that allows
the disconnection of ants was labeled ATCQd, whereas the
variant without disconnection of ants was labeled ATCQn.
The proposed method was combined with both variants of
ATCQ and the labels WATCQd and WATCQn were used
to identify which variant of ATCQ was considered in each
case. Tables 2 to 4 show the results of GOBP, ATCQ and
WATCQ corresponding to 20 independent tests performed for
each image and palette size. The tests were executed on a
PC running Linux operating system, with an AMD Ryzen 7
1800X Turbo processor (4.0 GHz) and 8 GBytes of RAM.
Since GOBP and WATCQn generate the same quantized
image for each palette size in all the tests, only one error
value is provided; for the other methods, the minimum MSE,
the average value and the standard deviation are provided
(Tables 2 and 3). The execution time reported in Table 4 is
measured in milliseconds.

It is clearly observed that the proposed method always
obtains better images than GOBP and ATCQ applied sepa-
rately. Obviously, when the execution time is compared, it is
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larger for the proposed method. However, the improvement
obtained in the image quality should be taken into account to
determine if this increase in the execution time is worthwhile.

To better analyze the improvement obtained by the pro-
posed method, Fig. 5 shows the percentage of error reduction
obtained when comparing WATCQd to GOBP, ATCQn and
ATCQd (only one variant of WATCQ is compared to simplify
the graphic representation). Since the average MSE results
of both variants of ATCQ are very large in some cases, this
figure compares the minimum MSE'. It is clearly observed that
the improvement obtained is greater when WATCQd is com-
pared to ATCQ than when compared to GOBP. The percent-
age of error reduction ranges in the interval [10.8%, 29.4%]
when GOBP is compared, in [13.6%, 47.4%] when ATCQn is
compared and in [2.8%, 42.8%] when ATCQd is compared.
Although in the last case the lower limit of the interval
is very small, only 3 values lower than 10% are obtained
when WATCQd is compared to ATCQd. The analysis of the
previous results indicates that the increase in execution time
results in a significant improvement in the quality of the final
image.

As indicated in the previous paragraph, the average MSE
value of ATCQd and ATCQn is very large in some cases.
This is because the o values used for the tests have not been
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TABLE 6. MSE and execution time (T) (milliseconds) for several color quantization methods. Variance-based method (VB), Median-cut (MC), Octree (OC),
Binary splitting (BS), BS + ATCQ, Neuquant (NQ) and LBG. (g: Number of colors of the quantized palette.)

VB MC oC BS BS+ATCQ NQ LBG
q |MSE T | MSE T| MSE T |[MSE T |MSE T |MSE T |MSE T
Cathedrals 16 |222.35 216| 375.78 12|1603.25 173 |159.02 145 |133.13 174 |210.52 87| 146.30 334
32 | 105.84 267 | 28429 12| 316.46 175| 7242 164| 64.48 259 | 93.72 136| 66.00 507
64 | 61.50 318 | 169.33 12| 109.02 183 | 38.57 207 | 34.11 362 | 48.67 202 | 3555 826
128 | 40.15 370| 142.12 15 69.79 183 | 22.43 245| 19.69 561 | 2433 375| 21.85 1407
256 | 26.16 424| 99.17 13 45.83 190 | 13.29 319| 11.88 887 | 15.28 565| 13.65 2475
Beach 16 |357.80 260 | 800.00 13|1164.78 179|358.98 143 |219.73 208 |501.48 101 |287.01 323
32 |211.50 341 | 671.30 13| 446.43 174 |179.49 177|150.04 265 |178.32 147 |146.48 507
64 | 123.49 421 | 557.04 13| 309.23 180| 93.22 210| 79.09 366 | 91.86 216| 82.12 850
128 | 81.50 536| 446.84 13| 13436 182 | 5230 265| 45.78 558 | 52.71 349 | 49.59 1426
256 | 5292 649 | 29227 14| 81.77 189 | 31.89 330| 28.11 865 | 3295 539 | 31.28 2581
Headbands 16 |299.81 228 | 1517.76 13| 909.26 171|245.61 152|213.98 206 |360.14 95]|232.36 265
32 | 184.82 304 | 1195.51 13| 430.86 176 |149.52 186|124.51 284 |188.99 160 |126.61 445
64 | 12349 412| 87894 13| 192.74 180 | 84.86 232| 71.23 412 | 9949 238 | 79.05 663
128 | 79.90 474| 519.00 14| 128.22 182 | 51.30 288 | 43.06 629 | 52.12 361 | 45.67 1249
256 | 53.29 440| 314.55 14| 53.17 189 | 31.28 363 | 25.76 1006| 30.77 585 | 27.58 2284
Landscape 16 |261.31 212 | 625.54 13| 925.61 175|226.07 167 |204.33 225 |253.21 99|232.66 282
32 | 164.35 238 | 419.37 13| 576.99 174|129.18 208|107.72 305 |139.03 166 | 109.57 556
64 | 113.61 281 | 352.09 13| 185.19 179| 66.61 259| 57.59 434 | 70.13 225| 60.76 768
128 | 84.46 335| 257.61 13| 14946 182 | 36.48 313| 32.69 659 | 37.17 365| 36.92 1163
256 | 61.90 380| 18522 13 53.17 191 | 22.18 400 | 19.87 1057 | 23.75 569 | 23.21 1953
Dessert 16 | 337.47 226 | 563.62 13|1096.19 170|283.86 159 |259.94 210 |349.16 85|277.04 288
32 | 191.72 262 | 451.64 13| 42695 170|152.16 189|133.40 289 |176.26 143 |147.28 465
64 | 118.69 315| 31191 13| 203.65 175| 8529 233| 70.66 414 | 90.70 205| 78.13 786
128 | 82.38 383 | 233.09 13| 11832 182 | 4850 289| 41.77 624 | 51.09 316 | 47.18 1381
256 | 56.92 441 | 17245 14| 6732 185| 2942 372| 24.83 1014 | 30.21 539 | 28.65 2514
Snowman 16 |349.10 231 | 452.85 13| 719.26 168 |289.76 156|245.36 206 |388.00 94(291.60 259
32 121635 295| 366.86 13| 559.57 171|163.63 192|134.07 285 |202.14 152 |161.02 445
64 | 118.13 383 | 305.82 13| 334.53 175| 87.54 245| 68.77 428 | 90.05 219 | 7335 878
128 | 70.03 466| 212.60 14| 13431 181 | 46.97 300| 38.09 641 | 4423 349 | 44.98 1483
256 | 43.68 541 | 16597 14| 84.45 183 | 2748 395| 2233 1045| 27.51 601 | 27.21 2558

adjusted based on the palette size. The effect is especially
evident for the Mandrill image, with a very large average error
and standard deviation because the smallest o values generate
quantized palettes with very few colors (only 6 colors in the
worst case). As described in [23], the best result of ATCQ is
obtained, in general, for the lowest « value that generates a
palette with Q,,4x colors. Such article also shows that the «
value should be larger as the palette size increases, in order
to obtain quantized images with the number of desired colors.
This recommendation has not been taken into consideration
in the tests performed, since the same « set has been used to
test WATCQ and ATCQ for all the palette sizes. The average
error and the standard deviation obtained for both methods
indicate that the o parameter has little influence on WATCQ;
for this reason, the same set of « values has been used for all
the palette sizes.

The execution time of GOBP is independent of the palette
size, but this is not true for ATCQ. Therefore, the execution
time of WATCQ is also influenced by the palette size. Obvi-
ously, WATCQn is faster than WATCQd because ATCQn is
faster than ATCQd. Nevertheless, it is observed that the exe-
cution time of WATCQ is not approximately equal to the sum
of the execution time of GOBP and ATCQ methods, as might
be expected. This is due to the effect of the o value in ATCQ.

VOLUME 7, 2019

As previously discussed, when a small value is considered for
the o parameter, the final palette obtained by ATCQ includes
less than Qyuqy colors. Nevertheless, WATCQ always gener-
ates a final palette that includes g colors. Moreover, ATCQ
progressively includes the subtrees as the iterations progress,
but when ATCQ is applied in WATCQ the initial tree always
includes g subtrees. Therefore, WATCQ consumes more time
than ATCQ to select the best subtree for an ant, since in the
first case more subtrees must be analyzed.

When comparing both variants of the proposed method,
the best option is WATCQn, because it consumes less
time than WATCQd and can generate quantized images
with similar quality. WATCQd consumes a maximum of
846 milliseconds to generate an image with 256 colors, and
this value reduces to 546 milliseconds when WATCQn is con-
sidered. It is also observed that the differences in execution
time are greater for the smallest palettes.

To complement the results presented in the article,
the quantized images obtained by GOBP, ATCQ and WATCQ
for some of the test images are included as supplementary
material.

Some of the color quantization methods described in
Section III were applied to the test images, in order to
compare their results with those obtained by WATCQ.
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TABLE 7. Results for several color quantization methods: K-means (KM), PSO, ATCQ + FA and ITATCQ. (g: Number of colors of the quantized palette;
MSEm: Minimum MSE; MSEq: Average MSE; dev: Standard deviation of MSE; T: Execution time (milliseconds).)

KM PSO

ATCQ+FA ITATCQ

q |[MSE,, MSE, dev T |MSFE,, MSFE, dev

T |MSE,, MSE, dev T |MSE,, MSE, dev T

Lenna 16 | 227.35
126.60
77.55
50.79
33.93

24791 142 830
14045 8.7 1604
8491 3.4 3048
5290 1.6 5996
34.86 0.7 11864

211.01
121.84
75.56
49.21
3221

216.41
124.17
76.72
50.47
33.00

4.5
2.7
1.2

1.0 105978
0.5 223187

15049| 251.85
28770| 139.72
55587 80.29
50.68
33.04

253.70 1.5 1067
140.92 0.8 1680
81.10 0.5 2671
51.62 0.5 4074
33.39 0.2 5989

257.05
143.03
82.23
51.45
33.04

293.99 212 179
167.46 27.6 277
96.53 15.1 495
56.13 6.5 866
34.18 1.9 1563

462.00 21.0 817
282.09 17.3 1553
160.80 7.9 3016
99.39 5.1 6332
63.03 2.6 11860

419.07
258.20
141.82
90.90
60.47

404.31
231.50
136.91
86.93
57.61

417.91
236.70
140.77
88.46
58.29

6.0
32
2.2

Peppers 16

1.4 124997
0.7 231727

508.56
294.43
160.88
97.31
62.55

15574
31922
60356

501.35
291.78
159.97
97.05
62.59

503.33 1.5 958
294.61 1.4 1602
161.36 0.8 2718
98.27 0.6 4144
63.38 0.5 5972

1137.89 797.5 162
362.83 84.2 275
181.35 20.7 472
103.71 83 877

64.63 1.9 1621

Plane 16 | 201.91
128.02
48.05
39.29

24.43

283.79 67.8 825
184.21 58.9 1602
94.89 27.2 3015
47.02 10.5 5978
29.42 6.9 12153

162.27
72.90
46.43
29.73
19.99

176.64
104.40
52.36
33.60
22.29

10.3
19.0
5.1

1.8 120023
1.2 248386

15795
30094
64354

160.79
100.24
47.26
27.36
17.93

164.73 2.1 1009
101.27 0.7 1573
47.99 0.3 2565
27.89 0.3 3637
18.20 0.1 4862

166.94
100.35
47.44
27.34
17.58

201.91 34.7 164
121.31 21.5 268
65.51 18.9 474
38.87 15.8 855
18.12 0.8 1527

Mandrill 16 | 655.16
397.44
253.28
161.49

103.60

709.48 51.9 820
412.12 13.0 1602
259.23 5.3 3173
164.24 1.8 5941
106.64 1.7 12219

632.37
378.81
240.57
154.67

99.84

638.89
382.53
242.03
156.22
100.84

5.0
23
1.0

1.0 106722
0.8 220198

14655
27590
55524

713.18
405.78
260.22
168.67
111.98

717.87 2.1 1027
409.85 1.8 1547
270.12 4.9 2418
171.72 1.8 3592
112.52 0.3 5252

710.27
409.44
280.69
175.17
114.14

737.61 27.1 189
44271 20.7 290
308.99 20.1 503
189.85 18.1 878
118.38 4.8 1601

Blond 16| 202.08
113.74
55.92
34.48

22.69

262.1045.6 817
149.64 25.5 1631
84.61 153 3152
50.03 14.1 6194
26.21 5.5 12000

158.08
85.49
51.48
31.34
20.07

167.67
87.13
52.53
32.78
20.97

11.5
1.4
0.6

1.0 130423
0.7 248912

15962
30336
62289

191.85
101.88
59.23
37.30
21.82

194.43 1.5 1066
103.96 1.5 1684
60.20 1.1 2698
38.30 0.5 4148
22.25 0.2 5727

197.48
106.44
68.89
38.88
21.68

231.60 32.1 172
139.98 32.5 281
8224 17.8 478
4091 1.5 861
22.85 36.5 1636

Lake 16 | 332.02
220.68
144.43

95.08

63.25

371.94 325 821
235.44 10.1 1569
155.96 8.0 3078
101.34 3.8 6087
66.07 1.9 11946

315.25
206.08
133.77
88.94
58.46

322.39
207.87
135.72
90.21
59.63

3.7
1.5
1.6

0.8 112275
0.8 137699

15292
29006
55110

35541
221.81
155.04
102.39

63.29

358.24 1.4 1006
223.89 1.0 1658
155.95 0.7 2779
103.00 0.3 4328
63.94 0.3 6439

365.52
229.40
156.88
103.32

64.36

698.08 261.1 169
362.30 207.0 278
173.74 15.5 485
107.64 6.0 862

65.74 1.4 1598

The following methods were considered: Variance-based
method [21], Median-cut [19], Octree [18], Binary split-
ting [20], BS + ATCQ [33], Neuquant [22], LBG [57],
K-means [24], Particle swarm optimization (PSO) [46],
ATCQ + FA [32], and ITATCQ [31]. LBG is based on
the vector quantization method proposed in [57], which has
also been applied to color quantization. This method applies
the same operations as K-means to define the clusters, but
it uses a splitting process to obtain the initial centroids.
Some of these methods use parameters whose values were
defined as follows. The sampling factor of Neuquant was
set to 1, since this value allows the method to generate
the best quantized images. As will be shown in the results
of the tests, K-means and PSO consume much more time
than the other methods. For this reason, only 5 iterations of
these methods were executed. To perform a fair compari-
son, the same number of iterations was considered for the
other iterative methods (ITATCQ and ATCQ + FA). The
values used for the other PSO parameters were: cognitive and
social parameters equal to 1.49, inertia equal to 0.72, range
for the velocity of the particles: [—5, 5] and probability of
application of K-means equal to 0.1 (as proposed in [46]),
5 particles and 5 iterations of K-means when this method
must be applied to a particle. The three methods based on
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ATCQ (BS + ATCQ, ATCQ + FF and ITATCQ), were
applied considering the ATCQ variant without disconnection
of ants, since it consumes less time. In addition, BS + ATCQ
and ITATCQ were executed with the six « values proposed
to test WATCQ. ATCQ + FA was executed considering the
same number of individuals as PSO (5 fireflies) and five
a values were selected: {0.25, 0.30, 0.35, 0.40, 0.45}. The
results of 20 independent tests are reported in Tables 5 to 8.
WATCQ clearly obtains better images than all the methods
reported in Tables 5 and 6, except BS + ATCQ. The improve-
ment is more evident for the Median-cut and Octree methods,
whereas the smallest differences appear when WATCQ is
compared to Binary splitting and LBG. As the palette size
increases, the differences in the MSE error also increase
when WATCQ is compared to Median-cut and Variance-
based methods; however, for Neuquant the opposite occurs.
This can be clearly observed in Fig. 6, which shows the
percentage of error reduction obtained when the average MSE
of WATCQd is compared to the error obtained by Variance-
based, Median-cut, Octree, Binary splitting and Neuquant
methods. When the execution time is compared, the results
of the analysis are different for both variants of the pro-
posed method. WATCQn consumes less time than the five
methods in many cases, but WATCQd consumes more time.
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TABLE 8. Results for several color quantization methods. K-means (KM), PSO, ATCQ + FA and ITATCQ. (g: Number of colors of the quantized palette;
MSEm: Minimum MSE; MSEq: Average MSE; dev: Standard deviation of MSE; T: Execution time (milliseconds).)

KM PSO ATCQ+FA ITATCQ
q |MSE,, MSE, dev T |MSE,, MSE, dev T |MSFE,, MSE,dev T |MSE,, MSE, dev T
Cathedrals 16 | 143.17 176.69 30.1 845| 124.34 127.93 2.4 14726| 13596 137.90 1.4 986| 140.80 314.80 157.7 171
321 69.89 84.0512.0 1597| 62.87 6434 1.0 29812 75.65 77.47 131592 77.15 167.84 132.4 268
64| 39.63 4486 2.6 3102 35.19 36.66 1.0 56207| 40.40 41.41 0.52578| 40.22 101.02 117.2 471
128| 24.13 26.72 1.8 6106| 21.74 2224 0.5 115725 2299 23.87 0.7 3826| 2396 27.50 4.7 810
256 1590 16.88 0.7 12393| 13.89 14.76 0.4 220688 14.00 14.43 0.2 5416/ 14.18 14.75 0.6 1479
Beach 16 | 292.16 324.05 24.3  845| 270.75 27490 4.8 14867| 335.75 338.63 1.8 1022| 335.66 746.50 272.8 168
32| 149.28 165.65 14.8 1630| 14091 146.27 4.4 29037 186.49 188.89 1.7 1584| 193.57 424.36 2449 270
64| 8294 9101 58 3169 76.43 80.06 2.4 57533| 102.69 105.55 1.6 2733| 108.31 285.59 230.8 457
128| 48.77 52.15 2.4 6034| 47.74 48.57 0.7 112493 56.14 57.15 0.7 4215| 57.68 149.51 139.3 843
256 30.89 3297 1.4 12249 2991 30.81 0.7 204101| 33.40 34.01 0.3 6139 34.00 4791 154 1548
Headbands 16 | 235.52 302.86 69.0 884| 201.19 205.47 3.1 15540| 238.84 240.10 0.9 1045| 237.73 391.24 148.4 172
32| 142.46 180.87 63.1 1600| 118.06 123.72 3.5 30664| 136.55 138.78 1.4 1650 139.48 220.65 106.1 278
64| 81.35 108.19 10.2 3083| 73.77 76.78 2.4 59336| 85.64 86.50 0.52729| 85.16 123.58 44.6 491
128| 5726 65.05 6.8 6082| 44.27 48.38 2.4 115355| 48.08 48.68 0.3 4066| 48.44 6441 25.6 874
256/ 33.40 38.86 2.9 12401 29.52 30.33 0.6 220748 27.95 28.31 0.1 5814 27.39 30.72 4.2 1558
Landscape 16| 191.02 220.75 16.3  864| 189.04 195.20 4.1 15087| 216.48 219.96 1.2 1015 220.24 451.90 251.8 170
32 11046 12451 11.1 1626 99.60 104.72 3.7 31439| 110.51 111.94 0.9 1575| 110.25 230.25 171.0 283
64| 6136 7295 82 3215 5695 5933 1.5 55458| 61.96 62.89 0.4 2630/ 61.80 86.15 42.7 490
128 37.28 42.14 3.0 6220| 35.54 36.74 0.9 116756] 36.83 37.24 0.3 3918| 36.80 41.03 6.6 922
256| 24.22 2585 0.8 12206| 22.38 23.27 0.5230704| 2292 2326 0.2 5095| 22.85 2294 28.6 1638
Dessert 16 | 24529 313.2147.0 833] 241.24 246.93 5.1 15365| 255.11 259.81 1.8 1002| 260.38 33542 61.5 168
32| 131.54 15434 18.4 1603| 121.23 125.41 2.2 28863| 142.15 144.25 1.0 1597| 145.27 19791 43.1 279
64| 7793 8553 52 3090 69.39 7096 1.5 55837| 80.65 82.38 1.02722| 81.30 100.79 16.6 497
128| 47.00 52.05 2.9 6205| 42.85 43.84 1.1 106298 51.89 52.62 0.4 4194| 51.92 5754 4.0 884
256 29.81 32.12 1.4 12381 25.82 26.81 0.5222618| 30.31 31.10 0.6 6182 30.39 32.48 2.1 1578
Snowman 16| 256.49 302.3532.7 848| 229.52 238.17 7.8 14579| 252.38 255.58 1.7 1022| 264.72 383.22 133.7 171
32| 13330 17426 27.2 1644| 118.33 124.55 5.2 29816| 135.80 137.54 0.8 1664| 136.09 163.84 18.2 277
64| 7472 89.7410.5 3148 65.07 69.63 3.0 57066| 66.56 67.10 0.4 2687| 68.28 9521 22.6 482
128| 43.76 50.66 2.7 6186| 39.92 40.83 0.5 110831] 41.65 42.15 0.2 4270| 41.76 5236 16.4 932
256 27.73 30.85 2.4 12368| 25.57 25.51 0.6 223735| 25.19 25.67 0.4 6414| 2479 26.69 2.3 1632

WATCQn always consumes less time than Neuquant; on the
contrary, it always consumes more time than Median-cut.
Moreover, WATCQn is faster than Binary splitting, Octree
and Variance-based methods for all the images when g < 64,
and it is also faster than Binary splitting and Variance-based
methods for some cases (8 and 15 cases out of 24, respec-
tively) when ¢ > 64. On the other hand, WATCQd always
consumes more time than Median-cut, Neuquant, Octree and
Binary splitting. Nevertheless, it consumes less time than the
Variance-based method for 27 out of 60 cases, corresponding
to the palettes with fewer colors.

LBG consumes more time than the two variants of WATCQ
and obtains worse images than the new method in almost
all the cases (except in 3 cases). The percentage of error
reduction obtained by LBG for these three cases is 3.4% at
most. On the contrary, the reduction of the error obtained
by WATCQd for the other 57 cases varies in [0.7%, 29.3%]
and exceeds 5% for 47 cases. The percentages are shown
in Fig. 7, which shows the percentage of error reduction
obtained when the average MSE of WATCQd is compared
to the error obtained by other methods.

ATCQ + FA and ITATCQ consume more time than
WATCQ, even though only 5 iterations of these methods
were executed. In addition, the MSE results of both methods
are always improved by WATCQ, as can be observed in Fig. 7.
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It is also observed that the MSE results of BS + ATCQ are
similar to those of WATCQ, although the new method con-
sumes less time. WATCQ obtains better images for 30 out of
60 cases. For the other cases, the percentage of error reduction
obtained by BS 4+ ATCQ compared to WATCQd ranges in
[0.2%, 7.3%], although the percentage exceeds 4% for only
5 cases. WATCQn consumes less time than BS + ATCQ for
all the palette sizes; the percentage of time reduction obtained
in this case varies in between 39% and 73%. On the other
hand, WATCQd consumes more time than BS + ATCQ only
in 12 cases corresponding to small palette sizes.

When comparing PSO and WATCQ, the first aspect to
highlight is that the execution time of both methods is very
different. Although PSO can obtain images with better aver-
age MSE than WATCQ for 28 out of 60 cases, the percentage
of error reduction is 8.2% at most and only in 5 cases this
value exceed 5%. Most of the remaining 32 cases improved
by WATCQ correspond to palettes with 128 and 256 colors.
It can also be observed that WATCQ obtains better results
than PSO for all the palettes when the Plane image is consid-
ered, with a percentage of error reduction that exceeds 22%
in all the cases. Therefore, although PSO can obtain better
images than WATCQ for the smallest palettes, the improve-
ment is very small and requires a lot of computing time, which
can reduce the utility of such improvement.
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FIGURE 6. Percentage of error reduction obtained by WATCQd compared to Variance-based (VB), Median-cut (MC), Octree (OC),
Binary splitting (BS) and Neuquant (NQ). (g: Number of colors of the quantized palette.)

When K-means results are analyzed, it is observed that of 60 cases, corresponding mainly to palettes with 16 and
WATCQ obtains better average errors for all the cases. 32 colors. On the other hand, it is observed that the execution
When comparing the minimum MSE errors, K-means obtains time of K-means is much greater than that of WATCQ, even
better values than both variants of WATCQ for only 10 out though only 5 iterations of K-means have been executed.
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FIGURE 7. Percentage of error reduction obtained by WATCQd compared to BS + ATCQ, PSO, ATCQ + FA, ITATCQ, K-means (KM)
and LBG. (q: Number of colors of the quantized palette.)

The K-means method can be applied to random initial
centroids, as was done in the tests reported in Tables 7 and
8, but it can also be applied to selected centroids. For this
reason, new tests were performed taking as initial centroids
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the values of the palette generated by GOBP. Table 9 shows
the results of these tests at iterations 1, 3, and 5. This table
clearly shows that iteration 1 of K-means generates worse
results than both variants of WATCQ: K-means is slower and
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TABLE 9. MSE and execution time (milliseconds) of K-means applied to the palette generated by GOBP. (g: Number of colors of the quantized palette.)

iter. 1 iter. 3 iter. 5 iter. 1 iter. 3 iter. 5
q | MSE T |MSE T |MSE T q | MSE T |MSE T |MSE T
Lenna 16 [226.03 233[217.06 570(213.80 898 Cathedrals 16 | 133.81 237[130.83 567|129.49 904
32 |132.29 377|127.74 1013 |125.69 1643 32| 64.13 413| 62.16 1076| 61.57 1726
64 | 80.25 675| 76.33 1936| 75.04 3169 64 | 35,56 716| 33.99 2018| 33.53 3300
128 | 50.55 1308 | 48.89 3731| 48.44 6193 128 | 21.35 1382| 20.18 3909 | 19.82 6409
256 | 33.24 2525| 32.08 7379| 31.68 12170 256 | 13.79 2594 12.92 7590| 12.63 12530
Peppers 16 [426.01 233[413.34 557[409.19 905 Beach 16 [298.51 239[288.68 572[276.60 932
32 |241.41 407|235.54 1055|233.90 1684 32 | 146.20 396|142.05 1063 |140.84 1726
64 [142.99 700|140.05 1943|138.99 3217 64 | 82.53 704| 78.53 1982| 76.86 3244
128 | 89.54 1338 | 87.39 3804 | 86.50 6233 128 | 48.07 1359 | 45.82 3866| 44.99 6351
256 57.99 2532| 56.13 7323 | 55.41 12128 256 | 29.48 2574 28.19 7588 | 27.75 12507
Plane 16 [135.94 233[132.23 561[130.64 890 Headbands 16 [213.73 239[206.56 585[205.09 937
32 | 66.61 382| 65.12 1026| 64.45 1654 32 |121.72 398 |117.58 1055|116.24 1707
64 | 41.39 695| 39.85 1942| 39.26 3177 64 | 71.78 717| 68.55 1995| 67.50 3267
128 | 26.45 1302| 25.11 3760| 24.63 6200 128 | 44.21 1336| 42.20 3883 | 41.44 6436
256 | 17.35 2503 | 16.26 7380| 15.97 12187 256 | 27.52 2620| 25.69 7626| 25.16 12611
Mandrill 16 [658.42 237[643.30 566(638.24 903 Landscape 16 [211.75 240(207.94 568(205.26 905
32 1406.55 403|394.13 1057 |388.18 1690 32 1105.98 398 |101.52 1084 |100.24 1741
64 [249.90 687|243.61 1947|241.00 3179 64 | 59.28 710| 57.54 1988 | 56.74 3259
128 163.51 1297 |158.64 3704 |156.73 6135 128 | 34.65 1368 | 33.03 3883 | 32.47 6408
256|103.73 2512|101.19 7355| 99.98 12119 256 21.40 2611| 20.54 7634 | 20.30 12579
Blond 16 [173.64 235]169.09 580[166.64 927 Dessert 16 [252.86 237[246.20 571[243.37 940
32 | 91.52 400| 87.36 1043 | 86.57 1692 32 | 131.47 389|125.81 1097 |124.47 1807
64 | 52.63 716| 50.57 1967| 49.96 3223 64 | 7234 710| 69.54 2016| 68.67 3294
128 | 32.21 1420| 31.07 4039| 30.72 6631 128 | 43.54 1349| 41.19 3872| 40.38 6395
256 | 2091 2586| 19.91 7461| 19.55 12303 256 | 26.41 2651 | 24.88 7678 | 24.34 12607
Lake 16 [327.83 240(319.52 569(317.44 900 Snowman 16 [254.60 243[244.26 594|236.17 941
32 1216.59 391(209.92 1040 |207.74 1682 32 112497 409|119.56 1064 |118.34 1715
64 |140.19 734|136.08 2066 |134.78 3392 64 | 67.66 719| 64.38 1989 | 63.42 3299
128 | 89.58 1310| 87.28 3790| 86.48 6241 128 | 38.75 1329| 36.70 3852| 35.78 6363
256 58.35 2513 | 56.67 7392| 55.88 12192 256 | 23.50 2601 | 22.06 7560 | 21.59 12483

generates worse images in almost all the cases (except in 3
cases when WATCQn is compared). In contrast, the results
of iterations 3 and 5 correspond to better images that those
obtained by WATCQ in almost all the cases. The reduction
in the error obtained by the results of K-means at iteration
5 is 7% at most and exceeds 5% for very few cases (7 and
9 cases when compared to WATCQd and WATCQn, respec-
tively). Therefore, although K-means applied to the results of
GOBP can generate images a little better than WATCQ, it also
requires much more computational effort. The execution time
of K-means is only comparable to that of WATCQd for
images with 16 colors if iteration 1 is considered, but in this
case K-means always generates worse images than WATCQd.

As a summary of the previous analysis, it can be concluded
that WATCQ can obtain better results than the other methods
analyzed, since it obtains better images than most of these
methods and only obtains worse images when compared with
much slower methods.

VIil. CONCLUSION

This article presents a color quantization method, called
WATCQ, that combines the operations of GOBP and ATCQ
methods in order to improve the quality of the resulting
image but with low computational cost. GOBP is a well-
known splitting method that can generate a quantized image
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quickly, while ATCQ is a recently proposed clustering-based
method that can generate better images than some other color
quantization techniques.

GOBP is a deterministic method that always generates the
same quantized image for a given palette size, whereas the
parameters of ATCQ allow it to generate several quantized
images for each palette size. For this reason, the proposed
method uses the result of GOBP as a starting point to apply
ATCQ. Two variants of ATCQ can be considered, depend-
ing on whether the disconnection of ants is allowed or not.
Therefore, two variants of WATCQ have been considered,
labeled WATCQd and WATCQn, each of which uses a variant
of ATCQ.

Computational experiments show that the combined
method always improves the quality of the quantized images
generated by GOBP and ATCQ methods applied separately.
In addition, the execution time is less than 846 milliseconds
for all the images and palette sizes analyzed, and it is reduced
to approximately 60 milliseconds when the palette size is 16.
It is also observed that WATCQn is faster than WATCQd and
the quality of the quantized images obtained by both variants
is very similar. When WATCQn is considered, the execution
time reduces to 537 milliseconds for the largest palette.

The proposed method has also been compared to other
color quantization methods, generating better images than
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some well-known techniques, such as Binary splitting,
Neuquant, Octree, Median-cut and Variance-based methods.
Moreover, in many cases WATCQn consumes less time than
these methods for the smallest palette sizes, except when
comparing Median-cut. Although Median-cut is very fast
compared to WATCQ, it generates images much worse than
WATCQ. Other clustering-based methods analyzed can gen-
erate better images than WATCQ in some cases, but the
execution time required to obtain such images makes these
methods not competitive with WATCQ.

Since the proposed method is fast, future research lines
related to this method include real-time image processing
applications. For example, these applications include the
quality management systems for food production chains,
where the analysis of food images must be carried out quickly.
Certainly, this is the first practical application of the proposed
method that we are currently testing.
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