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ABSTRACT With the development of deep learning, fingerprints recognition based on neural networks is
a widely used method in indoor localization. In this paper, we build a long short-term memory (LSTM)
recurrent neuron network to make regression between fingerprints and locations in order to track the moving
target. Simulations are in a BLE5.0 based environment and we use received signal strength indication (RSSI)
as the element of fingerprints. Since the preparation of fingerprints is an inevitable and time-consuming
process in the testing phase of LSTM, we propose two methods to improve the real-time performance of
the localization without changing the structure of LSTM. A decentralized sorting algorithm is proposed to
divide the received RSSI signals into multiple parts based on the MAC address of BLE5.0 equipment and
use GPUs to sort each part. A complete fingerprint is a combination of these parts. Then, an optimization
model aimed at maximum localization accuracy and minimal time used in the testing process of LSTM is
proposed by changing the length of fingerprints. Many experiments simulated in different trajectories show
that LSTM is more accurate in localization than many other neural networks. Further results demonstrate
that using decentralized fingerprints preparation and finding an optimal fingerprint length can keep balance
between the localization accuracy and real-time performance.

INDEX TERMS Indoor localization, BLE5.0, fingerprint, received signal strength indication, long
short-term memory recurrent neuron network.

I. INTRODUCTION
Location-based Service (LBS) has received much attention
in recent years. In the outdoor environment, Global Position-
ing System (GPS) is the most famous localization technol-
ogy which has reached the accuracy of 5 meters [1]. But
in the indoor environment, because of the deep shadowing
effects [2] and higher precision requirements, indoor local-
ization is a challenging problem.

Traditional localization methods are solving a multiple
quadratic equations problem [3] in which RSSI [4], Time of
Arrival (TOA) [5], Time Difference of Arrival (TDOA) [6]
and Angle of Arrival (AOA) [7] are common features for
computation.

With the development of deep learning, indoor localization
based on fingerprints has become a popular method in many
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researches [8], [9]. Fingerprints can be seen as a combination
of features in a form of sorted vectors. Fingerprints recogni-
tion is usually conducted into two phases: off-line phase and
online phase [9]. In off-line phase, a location known mobile
user (MU) collects features from anchors and sends them to
the server. These vectors and locations are trained in server
by neural networks. In the online phase, the MU repeats
preparation process of fingerprints, and the server compares
them with the previously trained model.

Various advanced fingerprints based localization meth-
ods have been proposed in recent papers. The existing
innovation points can be divided into two categories. The
first one is designing new hardware systems which provide
some new features of the moving target. A sensor-based
algorithm is addressed in [10], which uses the features
of acceleration sensors, magnet sensors and gyroscopes
from an inertial measurement unit (IMU) sensor of smart
phone for position estimation. The IMU can be a form of
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foot-mounted [11], which attaches the IMUwith RFID equip-
ments, and analyses the moving information to track the
target. Maybe in the future, some new devices will assist
localization, but there will be a long way to reduce the cost
of these devices. The second one is designing some efficient
algorithms to improve the accuracy and the positioning relia-
bility of localization. In [12] the authors proposed a path-loss-
based localization scheme and a dual-scanned localization
scheme to overcome the fluctuation and delay of fingerprints.
Collecting fingerprints based on multiple antennas is also a
creative idea [13], which propose a feasible channel selection
when the non-line-of-sight propagation happens. [14] derived
a convolutional neural networks based algorithm to exclude
some non-line-of-sight (NLoS) channels from anchors before
localization. It is worth noting that the discussion about NLoS
and LoS is a research focus in many indoor localization
papers [15]–[17].

Most researches focuses on improving the accuracy of
positioning rather than the real-time performance, however,
the latter is also worth researching in the construction process
of an actual system. Some related works [18], [19] have con-
sidered the model of cooperation in localization to improve
the efficiency. But the preparation of fingerprints still takes
a large amount of time because elements in the fingerprint
usually come from different anchors and need to be sorted.
Therefore, it is more practical to accelerate the sorting process
or optimize the length of fingerprints to improve the system
efficiency.

Motivated by that, in this paper, a mechanism is built to sort
features from different anchors separately byGPUs according
to the MAC address of anchors. Because the length of finger-
prints affects the accuracy of localization, a utility function
is proposed to keep balance between time consumption and
localization accuracy.

In this paper, LSTM [20] is used as the basic network
structure for localization. When the target is moving, LSTM
performs better than many other neural networks because
there exists temporal correlation of fingerprints. Features we
choose from BLE5.0 are RSSI, which is a common feature in
many researches [21], [22]. Our contributions can be summa-
rized as follows:

1) We model an indoor localization system and generate
fingerprints in different positions, then use LSTM to track a
moving target.

2) We make decentralized sorting of RSSI by using a GPU
based accelerated algorithm to overcome the time bottleneck
caused by limit computation capabilities of the CPU.

3) We optimize the length of fingerprints in indoor
localization.

The rest of paper is organized as follows. BLE5.0 based
localization system is introduced in Section II. Then we pro-
pose a tracking-based LSTM algorithm to make localization
in Section III. Next, we use a CPU-Accelerated sorting algo-
rithm to prepare fingerprints and keep balance between com-
putation speed and accuracy in Section IV. Finally, we give
numerical results in SectionV and conclusion in Section VI.

FIGURE 1. The architecture of BLE5.0 based indoor localization system.

II. INDOOR LOCALIZATION SYSTEM BASED ON BLE5.0
This section outlines the structure and the communication
mechanism of the BLE5.0 based indoor localization system
which uses RSSI as the element of fingerprints.

A. RSSI-BASED BROADCASTING-SCANNING SYSTEM
Similar to the RSSI-based indoor localization system men-
tioned in [23], in a BLE5.0 based indoor system, equipment
can be split into two categories on the base of their functions.
The first category includes nodes which assist the localiza-
tion, and these nodes are usually called anchors, because their
positions are fixed. The second category includes nodes need
to be localized when the anchors are deployed, and these
nodes are named as target nodes or MUs. Usually, anchors
are homogenous while MUs can be various, but for ease of
expression, in this paper, anchors and target nodes are all
BLE5.0 based equipment.

According to the characteristics of the BLE5.0 based
devices, the communication process can be divided into two
phases, which are depicted in Fig. 1a. In the first phase, all
anchors send their broadcast packages to MUs at a defined
period. In the second phase, MUs scan these package mes-
sages and exact MAC addresses with corresponding RSSI
values, then they will transmit these messages to the server
by wireless communication technology such asWIFI or Lora.
Usually, anchors and MUs are computationally restricted
devices [14], so the processes of fingerprints preparation and
localization computation are operated by the server. Central-
ized and decentralized preparations of fingerprints are shown
in Fig. 2.

B. STRUCTURE OF RSSI-BASED FINGERPRINTS
In a specific indoor localization scenario, the number of
anchors is N , and in a 3D environment, localization could be
realized only just N ∈ {4, 5, 6, . . .} [14]. Assume that there
is only one MU in this localization environment, the RSSI
received from anchor i, i ∈ {1, 2, 3, . . . ,N }, can be written
as [RSSIi−1,RSSIi−2, . . . ,RSSIi−Mi ], whereMi is the number
of RSSI from anchor i.
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FIGURE 2. Algorithms under different fingerprint preparation methods.

The server converts all RSSI messages to fingerprints on
the base of the MAC address i and the value of RSSI. The
fingerprint in a certain location (x, y) is expressed as

RSSIx,y = [RSSI1−1,RSSI1−2, . . . ,RSSI1−M1 ,

RSSI2−1,RSSI2−2, . . . ,RSSI2−M2 ,

. . . ,

RSSIN−1,RSSIN−2, . . . ,RSSIN−MN ] (1)

where we assume that MU is able to scan every anchor in the
positioning process because the number of anchors used in
this system is lower than the load limit of the target node [24].
We also set that M1 = M2 = . . . = MN = M , which
means the number of RSSI used in a fingerprint is equal for
all of the anchors. This assumption is reasonable, because in a
BLE5.0 based system, the broadcast intervals of anchors are
set to be the same and the number of RSSI been perceived are
nearly equal.

III. PROPOSED A LSTM BASED LOCALIZATION
ALGORITHM FOR A MOVING OBJECT
Usually, collecting fingerprints will take a lot of time for
researchers, because a partition criterion which traverses
almost every grid of the room is needed. But in the method
we proposed, the process of collecting fingerprints doesn’t
need lots of grids. Here a brief introduction of this process is
shown below and the sketch map is indicated in Fig. 3.
In proposed method, MU walks along a pre-designed tra-

jectory which includes specific positions for training and
when MU is moving, messages of RSSI and time-line are
also received simultaneously by the server. RSSI will be
transformed into fingerprints by the method in section III.

As shown in Fig. 3b, 100 RSSI data from Anchor 1 are
listed in each position. In a real scenario, RSSI in position
A, B, C, D couldn’t represent the exact value corresponding
positions, because when MU is moving, RSSI is fluctuant,
and the measurement result of RSSI is an average value
for a certain interval. To overcome this shortcoming, in this
paper, we introduce variable τ which means the time interval
between collection of fingerprint data. We can infer that the
value of τ affects the length of the fingerprints when the
system isworking in a normal state. According to the relation-
ship between position and time-line, the traverse route of MU
is determined, so the passing positionwithin the interval τ can
be easily got. Usually, in a BLE5.0 based indoor localization,
upload speed of RSSI is fast enough, so the position error will
not deviate so much. Finally, the position mapping the RSSI
collected in the interval τ can simply determine by choosing
the midpoint of paths in the interval τ .

A. TEMPORAL CORRELATION OF
RSSI-BASED FINGERPRINTS
Obviously, once taking the time interval τ into consideration,
there maybe some temporal correction of fingerprints in this
method. There are many ways to prove a sequence is tempo-
rally correlative [25]. Here we give an example to illustrate
temporal correlation of RSSI in this method. When the MU
is moving from B to C as shown in Fig. 3(a), we choose
τ = 0.1s and record 10 group of RSSI from anchor1 in the
moving process. For comparison and algorithm implementa-
tion, we sort these data and the result is displayed in Fig. 4.
We see that there have intersection of fingerprints in some
adjacent positions and the change of RSSI is not mutated.
If we take a smaller τ , the difference between two adjacent
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FIGURE 3. Collected RSSI from anchor 1.

FIGURE 4. Sorted RSSI sequence in 10 successive groups.

sequence will be smaller. Under the analysis above, we can
assume that the sequence of RSSI is temporally correlative,
and based on this assumption, using LSTM may be an ideal
method to make the fingerprint identification.

B. LSTM BASED LOCALIZATION
LSTM can be seen as an improved form of RNN (Recurrent
Neural Networks) [26], whose main characteristic is used
to connect priors information to the current task. However,
traditional RNN has the problem of long-term dependence,
which is not practical in many application scenarios. LSTM
uses long-term information as the default behavior in practice
so as to avoid this disadvantage. In this paper, our target is
to implement dynamic positioning based on BLE5.0, so the
output model of the LSTM in this paper is regression rather
than classification [27].

The LSTM is organized in a layered structure. Different
from other neural networks, LSTM has a state c (cell state) in
each hidden layer. Let τt denote the time interval of the cur-
rent fingerprint, and RSSIxτt ,yτt , hτt−1 and cτt are the current
network input value. The outputs are hτt and cτt , and hτt can
be expressed as:

hτt = [x̃τt , ỹτt ] (2)

where x̃τt and ỹτt are coordinate outputs at the current
time. The value of cτt is determined by forget gate(FG) and
input gate(IG) in LSTM, where FG save the information of
cτt−1 to cτt , and IG save the information of cτt to hτt . The
calculation process in FG can be expressed as:

fτt = σ (Wf · [hτt−1 ,RSSIxτt ,yτt ]+ bf ) (3)

where Wf is the weightmatrix of FG, and bf is the offset item.
Function σ is the rectified linear unit(ReLU) [28].
The calculation process in IG can be expressed as:

gτt = σ (Wg · [hτt−1 ,RSSIxτt ,yτt ]+ bg) (4)

where Wg is theweightmatrix of FG, and bg is the offset item.
Then the cell state in forward process can be expressed as:

c̃τt = tanh(Wc · [hτt−1 ,RSSIxτt ,yτt ]+ bc) (5)

cτt = fτt · cτt−1 + gτt · c̃τt (6)

where c̃τt and cτt are respectively the input and output of cell
state in τt . By the iteration process, the long-term message in
this network is built. Similar to other neural networks, there
has a output function of FG and IG, which is shown in (7):

oτt = σ (Wo · [hτt−1 ,RSSIxτt ,yτt ]+ bo) (7)

where Wo and bo are respectively the the weight matrix and
the offset item which will be calculated in training process.
The last step of forward process is calculating hτt based on
the cell state and network output:

hτt = ot · tanh(ct ) (8)

Fig. 5 shows the process of forward communication, which
makes a rough evaluation of [x̃τt , ỹτt ].
Similar to RNN, the back propagation of LSTM also needs

to calculate error term in time dimension and layer structure.
The variables to be calculated include Wf , Wg, Wc, Wo, bf ,
bg, bc and bo. The error function is shown in (9):

Eτt =
√
(xτt − x̃τt )2 + (yτt − ỹτt )2 (9)
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FIGURE 5. Froward propagation of LSTM.

Because the input of network is a combination of hτt and
RSSIxτt ,yτt ,Wf ,Wg,Wc andWo can be divided intoWfx ,Wfh,
Wgx ,Wgh,Wcx ,Wch,Wox andWoh. Here we use the derivation
of Woh as an example to show the back propagation of these
variables.

∂Eτt
∂Woh,τt

=
∂Eτt
∂neto,τt

·
∂neto,τt
∂Woh,τt

= δTo,τt · h
T
τt−1

= δTτt · tanh(cτt ) · oτt · (1− oτt ) · h
T
τt−1

(10)

where δTo,τt is the error term in time dimension of layer o under
the error function (9). δTτt is expressed in(11), which is the
combination of weight matrix in(3), (4), (5), (7).

δTτt =

τt−1∏
τ0

(δTo,τtWoh + δ
T
f ,τtWfh + δ

T
g,τtWgh + δ

T
c̃,τtWch) (11)

By setting iterations and initial weights, LSTM will build a
regression model for fingerprints in each time interval. Since
ReLU function avoids the problem of disappearing gradients,
the computational process mentioned above is convergent.
The pseudocode of LSTM based localization algorithm is
shown in Algorithm 1. Tracking-based LSTM is efficient
when MU is moving under a certain trajectory that is because
RSSI collected in this process shows a more temporal corre-
lation. Moreover, since many positions in the room have been
covered by these trajectories in the training process, LSTM is
feasible in indoor localization.

IV. IMPROVE THE EFFICIENCY OF LOCALIZATION
LSTM based localization algorithm succeeds in making more
accurate localization because of the temporal correlation of
RSSI sequences. However, the real-time performance in the
process of localization is failed to be taken into account,
which is a key factor in real applications. Two main factors
which affect the operational efficiency are described as fol-
lows:

1) The structure of fingerprints shown in (1) is a sequencer
procedure which requests the server in Fig. 2 to spend much
time in dividing and sorting RSSI according to the MAC
address. CPU in the server usually prepares fingerprints and
makes localization in a centralized model, which means if too

Algorithm 1 LSTM Based Localization
Input:

RSSIxτt ,yτt in each time slot, M
Output:

regression model based on LSTM
1: collect RSSI when MU has finished a certain trajectory,

then repeat this step until the amount of data in this
trajectory is enough.
change the track, and takemore fingerprints so as to cover
more points in the room.

2: generate fingerprints in each time slot like in Fig. 2.
3: initialize the structure of LSTM
4: train LSTM, and compute parameters such as Wf , Wg,
Wc, Wo, bf , bg, bc and bo

5: collect some fingerprints for testing, then verify the
trained model in step4

6: increase or decrease the number and structure of hidden
layers in the network, then repeat step 5,6 to achieve a
more accurate localization.

much time is cost in making fingerprints, the system will fail
to make a real-time localization.

2) Length of fingerprints or number of RSSI exacted from
each anchor is another factor which influences computation
time. In section IV, if the number of RSSI is increased,
the number of positions mapping the RSSI will be decreased.
Using a longer fingerprint sequence for positioning will
achieve a higher accuracy at the trained points, but increase
the risk of over-fitting [29]. On the contrary, using a shorter
length will cause the overlapping like in Fig. 4. As a result,
finding an optimal length is also significant.

A. ALGORITHM TO MAKE DISTRIBUTED
PREPARATION OF FINGERPRINT
In this paper, we accelerate the sorting process of RSSI by
using a splitter-based approach [30], which is powerful in
dealing with multi-sorting problem. The main characteristic
of this method is distributing tasks in GPUs and adjusting the
number of process to make full use of computing resources.

Different from the CPU based method, the decentralized
generation process of fingerprints consists four steps under
the HykSort [30] algorithm:

1) Each GPU receives RSSI from the server according to
MAC addresses and sorts them.

2) According to the number of elements in fingerprints,
each GPU makes random cutting of sorted RSSI arrays.

3) Transfer data segment (this step will be abandoned
because of the structure of the fingerprint is fixed which
means sorting sequence in each GPU does not need to inter-
weave).

4) Each process merges sorted RSSI arrays.
Based on these procedures, even the time cost of data

transfer between CPU and GPU is taken in consideration,
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GPUs have greater computation potential to make the
splitter-based sorting method be more efficient.

B. ALGORITHM TO FIND OPTIMAL
FINGERPRINTS LENGTH
In LSTMbased localization algorithm, number of elements in
fingerprints determines the number of positions been located.
Total time consumption under the elements number n is
described as Cn, which is the time used from RSSI collected
in the server to the position been determined. Cn includes two
parts: fingerprint preparation time CSn and calculation time
used in neural network CNn:

Cn = CSn + CNn (12)

In each time slot τt , time for dividing and sorting is Cn,τt , and
the total time used for fingerprint preparation is given by:

CSn =
t∑

t=1

Cn,τt (13)

Number of time interval is also determined by element num-
ber of RSSI in fingerprints, which also affects the training
locations in the trajectory:

T =
M̃
NM

(14)

where M̃ is the total number of RSSI been received by
server. In Fig. 4, to simplify the model, we preset τ = 0.1s
rather than the number of element, but in real experiments,
M will be preset and the number of sampling positions is
inversely related to M .
The total utility function is:

8(M ) = λc
T∑
t=1

Cn,τt + λDEtest (15)

where λC and λD are scalar weights, which can be preset
based on system application target. Etest is the test error in
testing phase, and the optimal problem can be formulated as
follows:

min
M
8(M ) (16)

s.t.
T∑
t=1

τt = T , (16a)

∀M ∈ N+, (16b)

ptv|0 < ptv ≤ pmax , v ∈ V, (16c)

where T is the total time used in RSSI collecting. It is worth
noting that the operation of optimal process must after MU
has finished a complete trajectory. In this paper, we usually
give a smaller initial value of M and gradually increase it so
that we can go through almost all the cases of the utility func-
tion. obviously, making sorting in GPU is not contradictory to
find an optimal length of fingerprints, and in the testing phase,
this two methods can be operated simultaneously. Combined
with the LSTM based localization algorithm, the algorithm to

Algorithm 2 Accuracy-Efficiency Tradeoff Algorithm
Input:

RSSIxτt ,yτt in each time slot, N , M , T
Output:

value of utility function
1: initialize M

LSTM-based
2: training model
3: preparation for fingerprints under the distributed sorting

of RSSI
4: while 8(M ) > ξ do
5: for t = 1; t < T ; t ++ do
6: calculate Etestτt , Cn,τt ;
7: end for
8: 8(M ) = λc

∑T
t=1 Cn,τt + λDEtest

9: increase M
10: end while return 2

optimize fingerprints length is depicted inAlgorithm 2, where
ξ is the threshold value of the system target.

V. SIMULATED RESULTS
Our simulations run on MATLAB and Spyder [31] to make
fingerprints preparation and build neural network respec-
tively. We collect RSSI signals in each position of our
four anchors based localization system so as to build the
RSSI-fading model (an logarithm trend curve), and then we
add gaussian noise to these signals which will be the data for
our simulation. Since the capacity of RSSI detecting is only
efficient in a small covered area, in this paper, localization
area is limited in 4 × 4 m2. To prove the reliability of the
proposed algorithms, we also consider of the effect of non
line-of-sight (NLoS) and line-of-sight (LoS) conditions in the
RSSI fading model individually.

A. ACCURACY OF LOCALIZATION
We choose three common functions (Sigmoid, Sin, Circle)
as the trajectory of the moving target in order to prove that
the performance of LSTM in proposed method is better
than other common neural networks. Each neural network
has 1 hidden layers with 50 neural units. The input size of
neural networks is the length of fingerprints and the output
size is two-dimension. The length of fingerprints collected
in 0.2s in each sample point is original 200. The rate of
training data and testing data is 10:1, which are collected
separately in each trajectory. Since the moving distance in
each trajectory is different, the evaluation index to compare
algorithms is the average distance error after MU has finished
its work.

In Fig. 6, we first show that localization by using LSTM
is more accurate than other neural networks in these tra-
jectories. We see that RNN and BP has probability to
departure the expected trajectory while LSTM is reliable
under the hypothesis that most points in this trajectory
have been well trained. In this paper, positions for testing
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FIGURE 6. Comparison between LSTM, RNN, BP, and LSTM-NLoS in different trajectories.

are random chosen, so there has no over-fitting in our
method. We also compare the impacts of NLoS channel in
indoor localization. Results show that localization accuracy
is increased when the RSSI data are gathered from the case of
NLoS.

In fig.7, we calculate the time costs in the testing processes.
When the length of the fingerprint is the same, time cost
for testing makes no difference in these neural networks.
Testing process is based on the the weight matrix and off-
set item from training, so the Spyder can calculate them
quickly.

Then we research the time costs in training processes as
seen in Fig. 8. Although there has only 1 hidden layer for
these networks, LSTM and RNN convergence faster than
that in BP. We can infer that using LSTM can also save the
waiting time in the training process. From what we have
analysed, using LSTM as the instrument is an ideal choice
for localization. It is worth noting that time cost we have
researched in this section is only in neural network without
fingerprint preparation, and in next section, we will inves-
tigate the influence of fingerprint length and time cost in
preparation of fingerprints, which makes a difference in a real
system.

FIGURE 7. Testing time used by LSTM, RNN, and BP.

B. IMPROVE THE EFFICIENCY OF LOCALIZATION
In this section we change the length of the fingerprint into
50, 100, 200, 300 and record the time used for the preparation
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FIGURE 8. Training time used by LSTM, RNN, and BP.

FIGURE 9. Time used by centralized fingerprint preparation.

of fingerprints. In the centralized preparation, when the server
receives the RSSI fromMU, it will choose to divide the RSSI
based on the MAC address of anchors and sort each parts.
However, testing fingerprints after they have been prepared
is not realistic in a centralized model because of the limited
computation capabilities and the loss of high RSSI stream.
In a centralized model, we record the time used for finger-
print preparation after MU has finished its work. As shown
in Fig. 9, if we choose a small length such as 50 and 100, there
will be more sampled points in the trace and more circulation
for the server to find these interval of points. We also find
that when the length is increased to 200 and 300, the time for
sorting is not a key factor for time cost, that is because many
efficient sorting algorithms have been integrated in the server.

We also investigate the performance of decentralized
preparation of fingerprints. Similar to the centralized method,

FIGURE 10. Time used by distributed fingerprint preparation.

FIGURE 11. Mean errors in length of 50, 100, 200, 300.

we compare the time of fingerprints preparation by different
length in Fig. 10.

In decentralized calculation, GPU sorts RSSI in different
threads, and there has another thread to finish the testing pro-
cess. We repeated the experiment many times and recorded
the time cost. Simulation results depict that although there
hardly have a specific rules to compare the time cost with
increased length in distributed method, using decentralized
algorithm is more efficient than centralized preparation.

The accuracy of localization is truly influenced by the
length as shown in Fig. 11. In the training process of LSTM,
if use a short length of fingerprints such as 50, there will
have the possibility to cover more overlapping areas between
adjacent fingerprints like in Fig. 4, which has negative impact
on the LSTM. When the length increases to 200 or 300,
although the training model is perfect, trained locations is so
sparse, which means once the tested position is not trained,
the system will not give an accurate localization.
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FIGURE 12. Mean errors in length of 175, 200, 225.

FIGURE 13. Centralized time used in length of 200 and 225.

As mentioned in algorithm2, the length of fingerprints we
choose is increased. Since we find 200 is a better length in
current schemes, we also investigate adjacent length such as
225 and 185 in Fig. 12.

C. JOINT OPTIMIZATION OF ACCURACY AND EFFICIENCY
Scalar weight λc and λD in (15) reflect the preference between
accuracy and efficiency of localization. When using decen-
tralized preparation of fingerprint, because there is no dif-
ference in time cost, length nearly 200 is an ideal strategy
for us and λc = 1, λD = 0. When it comes to centralized
localization, the curve of time cost will tend to flatten out
with the increase of length. Since the irregularity of time in
decentralized preparation, in this section, joint optimization
is in centralized computation. In Fig. 13, we find that length
of 255 will be optimal if add the value of λD because of its
advantages in time cost. As a result, in a BLE5.0 based sys-
tem, length of the fingerprints should be controlled according
to the personal preference.

VI. CONCLUSION
This paper promotes a learning model which is practical in
indoor localization. When the target is moving, there will

have highly temporal correlation of RSSI, which means
LSTM is a better method to make regression between loca-
tions and fingerprint. We consider time cost in fingerprints
preparation is amain losswhichwill affect the real-time of the
system, then we use GPUs to make fingerprints preparation
according to the MAC address of anchors, and combine them
into a whole fingerprint. Specially, our results show that
the trend of localization accuracy is convex with the length
of fingerprints and show that a decentralized GPUs based
acceleration algorithmwill improve the efficiency of a indoor
localization system.
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