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ABSTRACT Container placement (CP) is a nontrivial problem in Container as a Service (CaaS). Many works
in the literature solve it by using linear server energy-consumption models. However, the solutions of using
a linear model makes different CPs indistinguishable with regard to energy consumption in a homogeneous
host environment that has a same amount of active hosts. As such, these solutions are energy inefficient.
In this paper, we demonstrate that an energy-saving gain can be achieved by optimizing the placement of
containers under a nonlinear energy consumption model. Specifically, we leverage a strategy based on genetic
algorithm (GA) to search the optimal solution. Unfortunately, the conventional GA incurs performance
degradation when the virtual machine (VM) resource utilization is high. In order to solve this problem,
we propose an improved genetic algorithm called IGA for efficiently searching the optimal CP solution by
introducing two different exchange mutation operations and constructing a function as the control parameter
to selectively control the usage of the two operations. Extensive experiments are carried out under different
settings, and their results show that our strategy is better than the existing CP strategies, i.e., spread and
binpack, on energy efficiency target. In addition, the introduced IGA is experimentally proved to be more
effective compared with the First Fit, Particle Swarm Optimization (PSO) algorithm and conventional GA.
Moreover, the results validate that our proposed strategy can search new CP solutions with better fitness and
alleviate the performance degradation caused by the conventional GA when the VM resource utilization is

high.

INDEX TERMS CaaS, container placement, genetic algorithm, exchange mutation operation.

I. INTRODUCTION

Container, e.g., Docker [1]-[3], is an operating system-level
virtualization technology, which can be deployed either on
virtual machines (VMs) or on physical machines (PMs). It is
primarily used for providing an isolated environment for
application execution. Compared with a VM that needs to
occupy the entire operating system (OS) resources, a con-
tainer can share the same OS kernel with others. Thus,
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a container is considered to be lightweight with less resource
consumption and low bootstrap time. Nowadays, Container
as a Service (CaaS) [4], [5], e.g., Fargate [6] by Amazon and
Kubunetes [7] by Google, is widely adopted in the cloud to
provide more service options for end users. It is still a chal-
lenge to find a feasible placement with an optimum energy
consumption under the widely adopted CaaS architecture [4]
where containers are restricted to be only placed on VMs.
Basically, the CP refers to assigning containers to suitable
computational nodes to achieve an expected goal under spe-
cific resource constraints.
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FIGURE 1. Two different container placements.

As described in the Docker Docs [8], three rapid CP strate-
gies [9] (spread, binpack and random) are currently sup-
ported by the Docker Swarm scheduler, but they do not take
into account the energy efficiency. References [10] and [11]
achieve the energy-savings goal by introducing a mechanism
of container consolidation. However, they exploit a linear
server energy-consumption model in their work, which is
not accurate enough for new servers that have new hard-
ware and software upgrades in some cases [12]-[15]. In fact,
there are various server energy consumption models [16],
and different models provide different results with respect
to total energy costs. In addition, when adopting a linear
server energy consumption model in a homogeneous host
environment, the energy consumption of each server is a
linear function of its resource utilization. Therefore, the total
server energy consumption, which is the sum of all servers’
energy consumption, would be a linear function of the total
resource utilization. As a result, different CPs do not affect
the total server energy consumption since the total resource
utilization is always the same in homogeneous host environ-
ment with the same amount of actives hosts. Next, we craft
a concrete example to illustrate the difference between linear
and nonlinear models. As shown in Fig. 1, where the circles,
small grey rectangles and big white rectangles represent con-
tainers, VMs and PMs, respectively, and the normalized CPU
specification of each container is 0.0714. We have two CPs A
and B. The total workload for the servers (PMs) in both CPs is
10 containers. In A, 5 containers are placed in each PM; while,
in B, 8 containers are placed in PM 1 and two containers are
placed in PM 2. Suppose that we adopt a linear energy con-
sumption model in [17], i.e., LP;(u;) = 175+75u;, where LP;
and u; represent the energy consumption and CPU utilization
of PM i, respectively. The total energy consumption for CP
A and CP B are both 403.55. When we consider a nonlinear
energy-consumption model as in [18], i.e., NLP;(u;) = 155+
345u; — 359”1‘2 + 144ui3, the energy consumption for CP A is
477.9254 and that for CP B is 459.1345. Obviously, CP B is
better than CP A (approximately 3.93% power saving). The
two examples verify that different CPs do not affect the total
server energy consumption under the linear model, but that is
not true when considering the nonlinear model. We conclude
that utilizing different energy consumption models can affect
the energy efficiency of a CP and further energy savings can
be achieved by optimizing the CP under a nonlinear model.
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However, since the CP problem is viewed as a combi-
natorial optimization problem, it is impractical to make a
complete enumeration of all possible solutions to find the
best one. Heuristic algorithms are well suited for solving such
problems. In this paper, we opt for a heuristic algorithm,
e.g., the GA, to search a good quality solution. GA [19]-[24]
is a population-based searching method, which encodes the
possible solutions as chromosomes, also called individuals,
to form a population. The algorithm simulates the evolution-
ary mechanism of organisms by means of selection, crossover
and mutation, and updates a population for evolution in each
iteration until the termination condition is reached. We notice
that the mutation operation in a conventional GA randomly
changes an exist chromosome on one or more genes’ values to
get a new chromosome. In other words, one or more contain-
ers in the CP solution will be relocated to other VMs. Unfor-
tunately, this can easily leads to a situation where the number
of containers in a VM increases while the number decreases
in another VM. Such kind of resource deviation often makes
the mutation operation too “intense’ when the VM resource
utilization is high. Thus, it easily triggers the elimination of
new individuals due to the worse fitness or exceeding the
resource constraints, causing performance degradation.

The following example illustrates the performance degra-
dation problem under the condition of high VM resource uti-
lization. Provided that there exist two PMs and each PM only
hosts one VM. We assume that a placement with the maxi-
mum VM resource utilization can get the best fitness under
a certain energy consumption model. As shown in Fig. 2,
provided that (a) is the best CP solution and (b) is the current
CP, (¢) is an example of transferring one container from a
VM to the other, which simulates a conventional GA mutation
at the current CP with a one-gene mutation operation, (d) is
an example of the gene exchange plan based on an exchange
mutation operation at the current CP. (e) is the chromosome
code of (¢). (f) is the chromosome code of (d). The details
of the chromosomes encoding can be seen in Section IIL.A.
It can be easy to find that the resource utilization of VM 1 is
high in the current CP but is the maximum one in the best
CP. When a conventional GA performs one-gene mutation
operation at the current CP, each container in VM 2 cannot be
relocated to VM 1 due to exceeding the resource constraints
and each container in VM 1 also cannot be relocated to VM 2
due to its worse fitness. Therefore, such a mutation opera-
tion incurs performance degradation and makes it difficult
to obtain a new chromosome with better fitness. In order to
solve this problem, we introduce a special mutation strategy
called exchange mutation operation, the core idea of which is
changing the values on different gene positions but keeping
all the gene values and their numbers the same before and
after the change. Take Fig. 2(f) as an example, the value
on the gene position 5 is changed from 2 to 1, and the
value on the gene position 8 is changed from 1 to 2, all the
gene values and their numbers are keeping the same before
and after the change. This change is like a value exchange
between two different gene positions. Furthermore, in a view
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FIGURE 2. An example of the best placement, current placement, two
different mutation methods and their chromosome codes.

The chromosome code of (d)

of container placement, the exchange mutation operation
means exchanging the containers among some VMs but does
not change the amount of containers on each VM before
and after the exchange. Take Fig. 2(d) as an example. The
two VM nodes exchange one container. In this exchange,
container C8 is transferred from VM 1 to VM 2 and CS5 is
transferred from VM 2 to VM 1. However, the amount of
containers on each VM does no changed before and after
the exchange. Notably, after this exchange mutation operation
(i.e. (d)), the current CP (i.e. (b)) becomes the best CP (i.e.
(a)) and achieves the optimal fitness. Therefore, compared
with the “intense” adjustment, this exchange mutation oper-
ation, which plays the role of the “lightweight” adjustment,
can find more CPs that are superior to the current CP. It is
more conducive to the retention of the newly generated
placement.

In this paper, we study the energy efficient CP optimiza-
tion problem under a nonlinear energy consumption model.
Specifically, we establish an energy-efficient optimization
target model and propose a strategy based on an improved
GA, called IGA to search an optimal CP solution. Two
kinds of exchange mutation operations along with a control
parameter ¢ are proposed in IGA to improve the mutation
operation in the conventional GA. More concretely, both of
the two exchange mutation operations keep the numbers of
containers in the VMs constant, but one helps local search
optimization while the others helps jumping out of local
optimal. The control parameter, defined as a function of
the number of searching iterations, chooses which exchange
mutation operation should be performed during the whole
solution search process. Experiments simulate CPs in small,
medium and large scales under scenarios where VMs are non-
uniformly and uniformly distributed across PMs. The exper-
imental results show that our method can effectively reduce
the total server energy consumption under a nonlinear model
compared with the existing strategies. The main contributions
are summarized as follows.
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TABLE 1. Notations.

Symbol Description

cpuﬁé’fv‘}f The total CPU resource of the PM;

memﬁ;‘,’ﬁ; The total memory resource of the P M;

cpu}éifg The CPU utilization of PM;

mem%‘ﬁf The memory utilization of PM,;

cpuﬁ/ofv‘}j The total CPU resource of V M;

memﬁ/o}‘v‘}j The total memory resource of V M

cpu”;}lfwj The CPU utilization of V' M in the initial state

mem{ffwj The memory utilization of V' M in the initial
state

cpuq‘js]ﬁf; The CPU utilization of V M

memﬁsjﬁj‘i The memory utilization of V' M

cpub, The CPU resource requirement for the new
Cony,

memk,, The memory resource requirement for the new
Cony,

6;“, Tij, z(i) | 0— 1 variables

o We illustrate that energy-saving gain can be achieved by
optimizing the placement of containers under a nonlin-
ear energy consumption model.

o We formalize the energy-efficient CP problem in CaaS
and establish an optimization model for it.

o We present an improved genetic algorithm called IGA to
solve the performance degradation caused by the tradi-
tional GA, which makes use of two exchange mutation
operations and a control parameter.

« We perform extensive experiments and the results show
that our strategy achieves a better energy-saving goal,
compared with the two existing Docker Swarm strate-
gies. Besides, the introduced IGA is experimentally
proved to be more effective than the First Fit, PSO and
conventional GA.

The rest of this paper is organized as follows.
Section 2 introduces the objective model presented in this
study. Our method based on an improved algorithm (IGA)
is described and evaluated in Sections 3 and 4, respectively.
Section 5 discusses the related works. At last, we summarize
the whole paper and our future work.

Il. PROBLEM FORMULATION

In this section, we introduce the objective model and cor-
responding constraints for the energy-efficient CP problem
that is to be solved. For simplicity, we make the following
assumptions.

We adopt the CaaS architecture in which containers are
placed on VMs while VMs are hosted by PMs. We only
consider the situation where the existing VMs can meet
the resource requirements for all new containers. We only
focus on two kinds of resources, i.e., CPU and memory.
All PMs and VMs have the same configurations and/or
specifications.

Table 1 shows the main notations used in this paper.
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A. PROBLEM DESCRIPTION

The CP issue in this paper refers to assigning new containers
to suitable VM nodes that have limits on multidimensional
resources, and it can be described as a packing problem.
Assume that we have Cnum new containers with different
resource requirements to be placed, VMnum VMs with the
same specification and PMnum PMs with a same configu-
ration. Initially, a random number of containers are placed
on each VM and the VMs are randomly distributed across
PMs. The question is how to solve this packing problem
and achieve the goal of minimizing the total server energy
consumption. To be specific, two sub-questions need to be
solved, i.e., whether the potential target VMs have enough
available resources for the current placement and whether
such a placement will contribute to the energy-savings target.

B. RESOURCE NOTATIONS

The set of PMs is denoted as PMy, = {PM;|li =
1,---, PMnum}. We use a tuple (cpuﬁjil, memﬁﬁ’lff,‘il) to rep-
resent the resource specification of each PM;.

The set of VMs is denoted as VMy, = {VM;|j =
1,---, VMnum}. We use a tuple (cpu"j’;,‘;,l, mem"j’Z{,‘;jl) to rep-
resent the resource specification of each VM;.

The set of containers is denoted as Congy = {Conylk =
1,---, Cnum}. We use a tuple (cpu’éon, memléun) to represent

the resource specification of each Cony,.

C. PLACEMENT RELATION

We formally define the placement relationship among the
containers, VMs and PMs. The relationship between Coni
and VM; is formally expressed as follows:

ey

)1, if Cony is placed on VM;
0, others.

The relationship between VM; and PM; is formally
expressed as follows:

I
0,

Therefore, the relationship between Con; and PM,;
can be expressed as 8]’%{, where, k = 1,---, Chum;
j=1,---,VMnum;andi=1,--- , PMnum.

if VM; is placed on PM;

others.

@)

D. RESOURCE UTILIZATION

For each VM, its workload consists of all containers running
on it, which include those that are already placed at the initial
state and the new ones. Thus, the respective CPU and memory
utilization cpub“/‘j“;};j and mem"‘/‘j\‘;}jd_ of a VM can be formalized

as

Cnum
used k k ini .
cpuyy; = Z 8j CPUcon + CPUY 3)
k=1
Cnum
d k k ini
mem’(fl“flj = Z 8; mem,, + meml‘%,lj. )
k=1
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While VMs run on PMs, the real workload of a PM
includes all the containers of the VMs that are hosted by the
PM. Similarly, it has two parts, i.e., the containers that are
initially hosted and the newly assigned ones. Formally,

Cnum VMnum : ..
used __ k k ini
cpuyl =) :kzl > :j:l 8 T/ cPltcon + cPUBY, (5)

.. VMnum ..
mni mr
Cpupy; = 2 :j:I T}'ICP“VMJ-» ©)
Cnum VMnum ;
used __ k k
menpy; = E ] E il 8]- rl.lmemmn
+mempy,., (N
.. VMnum ; .
mi mi
menpy, = E i1 rl.]memVMj. (8)

The first parts of formulas (5) and (7) represent the
resources that are required for the new containers, and the sec-
ond part represents the resources that are occupied by the
containers that are initially hosted.

E. SERVER ENERGY CONSUMPTION MODEL

We adopt a nonlinear server energy consumption model in
our work. Specifically, we use a polynomial model that was
proposed by [25], which precisely reflects the influence of
both CPU and memory resource utilization on the server’s
energy consumption. Moreover, when running the com-
puter performance Benchmarks on a real server, the energy-
consumption function is fitted and achieves a prediction accu-
racy more than 95%. The energy consumption of a single
server power (i) in this work is calculated as

power(i) = (375.8550 —401.0088 164.4327)
cpu!
x [ (cpuey?
(cpuls!y?
+(—30.6192 41.8946 — 19.8122)
memﬁi;
X (meml",‘iﬁll_)2
(mem’f;;j@‘ij)3
+155.0537. 9)

F. ENERGY-EFFICIENT CP MODEL
We use the following optimization model to formalize the
energy-efficient CP problem.
PMnum
Minimize Power = Z x(Dpower (i), (10)
i=1
which is subject to

cpufil < eyl j=1.....VMnum, (1)
mem%flf = memt‘%%l’ j=1...,VMnum,  (12)
0, if cpulsed = memsed =0
x(G) = if cpupyy, PM; (13)
1, others.

When x(i) = 1, it means the PM; is active, otherwise inactive.
Notably, the two type of constraints (11) and (12) guarantee
that the resource requirement of the new containers assigned
to a VM do not exceed its resource limitation.
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lll. OUR METHOD

As mentioned above, the mutation operation in the conven-
tional GA is hard to get a new chromosome that has better
fitness when the VM resource utilization is high, and it will
result in a performance degradation. Therefore, this paper
proposes an improved GA called the IGA. The improvements
primarily have two aspects. First, it optimizes the mutation
operation help to get a new chromosome that has better
fitness by introducing two exchange mutation operations and
offering a control parameter ¢ to affect the selection of the
two operations in terms of a random probability. Second,
it adds a check and correction operation to make sure that
the population is safe. It examines each generated placement
solution. If it cannot satisfy the resource constraints, i.e., it is
not a feasible solution, the algorithm derives a feasible one
by correcting the solution, and then IGA is applied to the
container scheduling scenario. The main steps of the IGA are
shown below.

A. CHROMOSOME ENCODING AND

POPULATION INITIALIZATION

1) CHROMOSOME ENCODING

Each possible CP solution in the CP problem represents a
relationship between containers and VMs. Therefore, we first
encode this placement and call it a chromosome. Because
the numbers of containers and VMs are Cnum and VMnum,
respectively, a chromosome is essentially a vector with Cnum
elements and each element is a number from 1 to VMnum. The
order of elements in the vector represents the corresponding
IDs of the containers, and the value of each element repre-
sents the ID of a VM. As shown in Fig. 3, the chromosome
encoding means that Con; is placed in VM», Cony is placed
in VM1, and container Conj3 is placed in VM3.

2) POPULATION INITIALIZATION

A population is made up of popsize individuals, and each
individual represents a possible CP solution. To ensure that
the generated CP solutions are feasible, i.e., the resource
requirements of each container to be placed can be satisfied,
We opt to use the First Fit algorithm [26], [27] to randomly
generate an initial population. The process of population
initialization is as follows. It successively selects an available
VM for each new container until all containers are placed.
The pseudocode of the population initialization is shown in
Algorithm 1. Notably, the pseudocode of the First Fit algo-
rithm is shown in Algorithm 1 from line 4 to line 11.

B. SELECTION AND CROSSOVER OPERATIONS

Simulating the crossover and mutation in biological
evolution, the IGA relies on a population evolutionary strat-
egy to search the optimal solution. Notably, new individuals
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Algorithm 1 Population Initialization

Input:CList,VMList,popsize; Resources.
Output:Population

1 for index=1:popsize

2 ResourcesO<«— Resources
3 newVMList<« Prearrange the sequence of VMList
4 for =1 to length(Clist) do
5 for j = 1:length(newVMList) do
6 if VM has enough resource for the placement
of Con do
7 Population(index, i)= j;
8 Resources0 update;
9 break
10 end if
11 end for
12 end for
13 end for

14 return Population

(children) are created by mating individuals (parents) from
the last generation.

1) SELECTION OPERATION

In order to generate each new individual, we first need to
select its parents for mating. Here we adopt a random selec-
tion strategy, which selects two different individuals (denoted
by Chromosomes A and B) at random. The random selection
strategy fairly selects two parents at random, and thus can
obtain various combinations of parents. In this way, it will
reserve some potential good parents that have good genetic
segments but bad fitness, and can effectively avoid the pre-
mature convergence problem caused by over-copying a high
fitness parent.

2) CROSSOVER OPERATION

The crossover operation is a mating mechanism, which gener-
ates a new individual by combining two chromosome pieces
from their parents. We opt for one-point crossover oper-
ation in this paper. More concretely, a random number r
is generated as a crossover site, the value of which is set
between 1 and the element number of a chromosome sub-
tracting 1. Then, a new chromosome is created by gluing
the genome before that crossover site of a chromosome with
the genome after that crossover site of another chromosome,
as shown in Fig. 4. Such an operation simulates the evolu-
tionary behavior of preserving the excellent genomes from
different individual and reserves some mapping relationship
between containers and virtual machines in different CPs.
On the other hand, the conventional GA provides a crossover
probability threshold pcorssover to determine whether to
carry out the crossover operation or just directly copy the ith
individual in the previous generation population to the new
one as its ith individual. In a nutshell, it compares a randomly
generated value ranging from 0 to 1 with the pcorssover.
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FIGURE 4. An example of the crossover operation.

If and only if the random value is less than the pcorssover,
the crossover operation will be performed. We remark that a
bigger crossover probability threshold can result in a bigger
probability to perform the crossover operation, more new
individuals, as well as faster searching speed of the algorithm.
To obtain as many new individuals as possible, we set the
crossover probability threshold pcorssover as 1 in the IGA.
Another reason to do so is that the CP problem is a container-
based combinatorial optimization problem, and an optimal
solution may have many different matches between contain-
ers and VMs (i.e., chromosome code). Therefore, the chro-
mosome code of the optimal CP solution may not be unique,
and the more new individuals are generated, the better the
optimal CP solution will be searched.

C. EXCHANGE MUTATION OPERATION

The mutation operator operates on a single chromosome;
it changes the value(s) in one or more gene positions of
the chromosome, which is an effective way to enhance the
diversity of the population and helps the algorithm itself to
jump out of the local optimum. However, as discussed in
Section I, the mutation operation in the conventional GA
often changes the number of containers in a VM. When
the resource utilization of VMs is high, such changes will
make it easy to eliminate a newly generated individual and
hard to enhance the diversity. A potential solution is to just
exchange containers between VMs, such that the number of
containers in each VM keeps constant. To achieve such a
goal, we introduce two exchange mutation operations, i.e., the
two-point exchange mutation operation (TPEMO) and the
two-segment exchange mutation operation (TSEMO). Our
experimental tests in Section I'V also proves that this is a much
better way.

1) TPEMO

As Fig. 5(a) shows, the TPEMO randomly selects two dif-
ferent positions from a chromosome for exchange, which
simulates a lightweight adjustment (mutation) for two con-
tainers in a placement. The newly derived individual has
little difference from its origin. This helps to find the optimal
solution near the native individual.

2) TSEMO

By comparison, TSEMO randomly selects two adjacent
genome segments for the position exchange (see Fig. 5(b)).
It simulates an adjustment to a portion of containers, which
is a stronger level adjustment than TPEMO. Generally,
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the newly derived individual has a significant distinction from
the original one. This makes a key contribution to jumping out
of a local optimum.

The two types of mutation exchange operations have their
own advantages, and we need a strategy to control the number
of individuals performing the two mutation exchange opera-
tions to guide the evolution of the population.

3) CONTROL PARAMETER
The conventional GA exploits a mutation probability thresh-
old pmutation to determine whether or not to perform the
mutation operation. In a nutshell, it compares a randomly
generated value, ranging from O to 1, with the pmutation.
If the random value is less than pmutation, the mutation
operation will be performed; otherwise, it will not. If the
probability is too small, the number of individuals perform-
ing the mutation operation will be small, which makes it
hard to generate new individuals. However, as analyzed in
Section III.B, the more new individuals that we have, the bet-
ter the search performance for the optimal solution will be.
Thus, we perform the mutation operation on each individual
using a different method than the conventional GA. With the
increase in the iteration number ¢, the population gradually
evolves towards an optimal solution. To maintain the diversity
of the population and prevent falling into the local optimum,
the proportion of individuals that execute the two kinds of
variations in the population should also vary as the iteration
number ¢ changes. We define a control parameter ¢ to act
as the threshold of the mutation probability to regulate the
proportion of individuals executing the two types of muta-
tion operations in the population. Notably, when the con-
trol parameter ¢ is small, the proportion of individuals per-
forming a specific type of mutation operations is small, and
vice versa.

More concretely, at the early stage of search, i.e., when the

number of iteration meets t < % ,in order not to destroy the
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good genomes that are preserved in the crossover operation,
that is, the good mapping relationship between the containers
and VMs, the mutation should not be too “intense” so that
the individuals performing “lightweight” mutations should
occupy a relatively high proportion in the population. When
the search arrives at the middle period, i.e., t — A%,
individuals with sufficient crossover and mutation opera-
tions tend to gather around the local optimum. However,
lightweight mutation has low diversity at this moment due to
its weak ability to jump out of the local optimum. Therefore,
itis necessary to gradually increase the number of individuals
carrying out the TSEMO to make them jump out of the local
optimum. At the final stage of search, i.e., t — Maxl,
most individuals have approached the global optimum and
the TSEMO mutation will become too intense, which does
not contribute to the local search. Therefore, we adopt the
TPEMO once again for most individuals. To sum up, in the
whole iterative search process, the proportion of individuals
carrying out TPEMO should decrease slowly from the highest
point and then increase sharply after reaching the lowest
point. Since the control parameter ¢ and the proportion of
individuals performing a given type of mutation operation
are synchronous, the control parameter ¢ also has the above
characteristics. Thus, we should find a function of ¢ that cor-
responds to these characteristics as the control parameter ¢.

There exist many off-the-shelf functions that satisfy the
requirement, i.e., the value of the function slowly decreases
from the highest point and then rises sharply after reaching
the lowest point. An alternative way is function construction.
We can easily construct a desired piecewise function with
existing straightforward functional primitives. However, it is
very difficult to compare and find the optimal function since
it has no general formula. By experimental analysis, we found
that the lower half of the star line fits the above characteristics,
and so we choose one star line from a class of star lines as our
control parameter ¢. The function of the lower half of the star
line is shown as follows:

J0-J62 -y

0 )

param(t) =1 — t € [1, MaxI].

where MaxI is the maximum number of iterations and the
value range of param(t) is [1 — 1/6, 1]. 6 can be used to
control the lower bound of the param(t). We have conducted
many experiments on the value of 6 and found that the
search effect is the best when 6 is 1.55. Therefore, we set
0 = 1.55. The graph of param(t) is shown in Fig. 6. When
t €10, LA%J ], the value of param(t) decreases first at a slow
pace and then fast. When ¢t € [L%J,Maxl ], it increases
first at a fast pace and then slow.

control parameter usage. While we are using param(t)
as the control parameter ¢, we first generate a number range
from 0 to 1 at random as the value of the random probability.
If this probability is less than param(t), then we perform
TPEMO; otherwise, we perform TSEMO.
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FIGURE 6. The graph of the control parameter.

D. CHECK AND CORRECTION OPERATION

When a new individual is generated, it must to be checked
whether it meets the constraints in the model. If the placement
exceeds the resource constraints, the placement is not feasible
and thus needs to be corrected. We put each failed container
into a VM that can hold it according to the First Fit algorithm
until all containers successfully complete placement. Other-
wise, a new individual is generated as initialized.

E. OTHER RELATED OPERATIONS

1) FITNESS FUNCTION

After the feasibility check and correction operation, the fit-
ness of a new individual needs to be calculated for com-
parison purposes. Here, we use the target function Power in
Section II as the fitness function.

2) NEW POPULATION GENERATION AND OPTIMAL
INDIVIDUAL UPDATE

To retain the high-quality individuals, we mix parent and chil-
dren individuals together, arrange them in ascending order
of their fitness values, and assemble a new population by
choosing the top Cnum individuals. If the energy consump-
tion of the optimal individual in the new population is less
than that of the global optimal individual, the individual
will be recorded as the global optimal individual. Otherwise,
the global optimal individual stays the same.

IGA FLOW CHART

The flowchart of the improved IGA is shown in Fig. 7.
It first performs the crossover operation. After performing the
test and correction operation for each new individual, IGA
updates the optimal location for each individual. Next, it uses
the control parameter ¢ to selectively execute the mutation
operations and once again performs the test and correction
operation for the newly generated individuals. At last, IGA
generates a new population and iteratively updates the global
optimal individual.

IV. PERFORMANCE EVALUATION

In order to comprehensively evaluate the performance of our
method, we introduce several state-of-the-art strategies or
algorithms for comparison. The following subsection briefly
describes the selected strategies or algorithms. What follows
is the experimental scenarios and relevant parameter settings.
Finally, we perform an analysis of the results obtained under
each scenario.
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A. ALGORITHMS FOR COMPARISON

In order to measure the performance of our strategy against
the strategies commonly used in industrial, the traditional
rapid placement algorithm, the goal-driven greedy algo-
rithm and other heuristics algorithms, we choose the spread
and binpack strategies, First Fit, Best Fit [28], GA and
PSO [29]-[31] for comparison.

The spread and binpack strategies are two common strate-
gies for container scheduling in industrial. They compute
ranking based on a node’s available CPU and memory, and
the number of its hosted containers. In this paper, we rank the
nodes using the sum of their available CPU and memory. The
spread strategy places a new container in the node that not
only has the biggest ranking but also meets the container’s
resource requirement. If two nodes have the same amount of
available CPU and memory, the spread strategy prefers the
node that has minimum number of containers. The advantage
of this strategy is that you will lose only a few containers
when a node goes down. In contrast, the binpack strategy
places the new container in the node that meets the container’s
resource requirement but has the smallest ranking. If two
nodes have the same amount of available CPU and memory,
the binpack strategy prefers the node that has the maximum
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number of containers. The binpack strategy is able to avoid
fragmentation since it leaves room for bigger containers.

The First Fit algorithm is a classical rapid placement algo-
rithm with advantage of short response time. It processes the
containers in a container queue and places each container in
the first node that can meet its resource requirement.

The Best Fit algorithm is a greedy algorithm. It processes
the containers in a container queue and places each container
in the node that meets its resource requirement with the min-
imum fitness. In this paper, we use the energy consumption
function in Section II as its fitness function.

The PSO is a heuristic algorithm that has fast convergence.
It uses the global optimal position and individual historical
optimal position to adjust the movement of current particle.
The PSO algorithm typically involves two core formulas,
i.e., velocity update formula and position update formula,
which are shown as follows:

Vigl = wkvitcl x & x (Pi—X)+c2 % n* (Pgi—X;), (14)
Xiy1 = Xi +vig1. (15)

where i denotes the ith iteration; X; and v; denote the particle
position and velocity at the ith iteration, respectively; w is the
inertia weight for keeping the primary velocity; c1 and ¢2 are
the learning factor; ¢ and 5 are random numbers ranging from
0to 1, and P;(Pg;) is the best position in history of the ith(all)
particle. The more details can be seen in the literature [29].

GA, as described in chapter III, is a heuristic algorithm
with a completely different searching mechanism, compared
to the PSO. It simulates an evolutionary mechanism of species
in nature for searching. Our proposed IGA improves the
mutation operation in GA.

The spread and binpack strategies, the First Fit and the
Best Fit algorithms have similarities, in that they both process
containers in a container queue and deal with only one con-
tainer at each time. Moreover, they only obtain a single one
CP solution at last. Furthermore, these algorithms inherently
do not support parallelism and the quality of CP solution
primarily depends on the container queue. The PSO, GA and
IGA, however, are population-based searching techniques.
They select an optimal CP solution from multiple feasible CP
solutions, which make the algorithm have a global view to
select the optimal one after all new containers being placed.
Besides, the three heuristic algorithms have a relatively high
complexity, but they can be parallelized and their execution
time then can be greatly reduced. Table 2 summarizes the
difference between these strategies or algorithms.

B. EXPERIMENTAL SCENARIO DESIGN AND

PARAMETERS SETTING

Generally, due to the continuous creation and logout of VMs
on the PM, the number of VMs hosted by each PM is
not always the same. We call this scenario as nonuniform
distribution. Instead, we call the scenario where there are
same number of VMs on each PM as uniform distribution.
In addition, in order to compare the performance of different
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TABLE 2. The characteristics comparison of the seven algorithms.

TABLE 3. Parameter setting.

Algorithm | Parameter setting

PSO cl =2 =2,w = 0.73,Popsize = 25

GA Popsize = 25, pcrossover = 0.75, pmutation = 0.035
IGA Popsize = 25, pcrossover = 1,p = param(t)

TABLE 4. Average utilization of VM resources before and after CP in the
nonuniform distribution Scenario.

Algorithm | Classify characteristic

spread common industrial strategie | containers  are  scattered
across the nodes

binpack | common industrial strategie | tend to avoid fragmentation

First Fit | rapid placement algorithm short response time

Best Fit | greedy strategie choose the optimal state in
each step

PSO heuristic algorithm velocity and position update

GA heuristic algorithm chromosome update

IGA heuristic algorithm improved the mutation opera-
tion of GA

algorithms at different scales of new containers, we define
three scales, namely small-scale, med-scale and large-scale.
Thus, we compare the performance of each algorithm on the
placement for new containers with different scales in the two
different VM distribution scenarios. Next, we set the required
parameters in the experiment.

We set 50 heterogeneous PMs in the simulation. Through
normalization, the total CPU and memory resources of each
PM are both set as 1, i.e., cpui?,{,‘]il = 1 and mem%{jf =1,
and the resource specification for each VM is set as
cpuifyy! = 0.0714 and memijy! = 0.0832; thus, each PM can
hold up to 12 VMs. In addition, we use the method introduced
in [32], [33] to generate random containers with different
CPU and memory requirements. The method is shown in
algorithm 2, where U* and U™¢™ references for the CPU
and memory utilization, respectively; rand(1.0) returns a
number in the range from 0 to 1.0 (not included) at random;
and 7 is a probabilistic reference value, which is used to
control the correlation of the CPU and memory utilization.
To be more specific, UP* = 0.0071, U™em = 0.0082, T = 1.
The numbers of small, medium and large scale containers
are set as 360, 720 and 1100, respectively. In addition, all
experiments are repeated for 15 times.

Algorithm 2 Generation of container Synthetic Instances

Input: n (the number of container), Ucpu, U™ and T
Output: < U™, U™ > Set
1 fori=1tondo

2 U™ =2%rand(UPt);

3 U™ = rand(U™em)

4  r =rand(1.0)

5 i ((r < T&&U" > UP)||(r>T&&U™" < UPY))
then

6 UMM = ymem 4 ymem

7  endif

8 end for

9 return < U™, U™ > Set

All the parameter settings of the three heuristic algorithms
are shown in Table 3.

C. NONUNIFORM DISTRIBUTION SCENARIO

The nonuniform distribution scenario simulates the place-
ment after the PMs randomly accept a batch of VMs for the
continuous creation and logout, and the VM accept a batch of
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Small-scale Med-scale Large-scale
Before placement | Cpu:63.87%; | Cpu:63.87%; | Cpu:63.87%;

Mem:63.32% | Mem:63.32% | Mem:63.32%
After placement Cpu:74.26%; Cpu:74.74%; Cpu:95.64%;

Mem:73.89% | Mem:83.88% | Mem:94.74%

TABLE 5. The relative gains in energy-saving of the IGA compared to
other six algorithms in the nonuniform distribution scenario.

Small-scale Med-scale Large-scale
Spread 0.94% 1.14% 0.13%
binpack 0.87% 1.07% 0.85%
First Fit 0.45% 0.58% 0.66%
Best Fit -0.45% -0.75% 0.17%
PSO 0.55% 0.67% 0.36%
GA -0.0707% 0.14% 0.57%

TABLE 6. The computation time (s) comparisons of the four low
computational complexity algorithms for one run in the nonuniform
distribution scenario.

Small-scale Med-scale Large-scale
Spread 0.0230186079 |0.0388297173 | 0.0477303978
binpack 0.0291823719 |0.0373321108 | 0.0651015496
First Fit 0.0557253299 |0.1633873561 | 0.3491435875
Best Fit 0.9147878163 | 1.6545005028 |2.4553231172

TABLE 7. The average computation time (s) comparison of the three
heuristic algorithms at 5000 iterations in the nonuniform distribution
scenario.

Small-scale Med-scale Large-scale
PSO 2061.5889311 |7385.1640248 | 156874.51320
GA 22215.032024 | 48948.756198 | 74844.075756
IGA 3919.0178061 | 7828.3049242 |37791.866990

containers for the continuous copy and delete. The total num-
ber of VMs hosted by PMs is set as 340, and each VM runs
some containers. The average VM resource utilization before
CP and that after CP are shown in Table 4.

We compare IGA with other strategies and algorithms.
The relative energy-saving gains are shown in Table 5. The
comparison of the energy consumption and the average com-
putation time for one iteration are summarized in Fig. 8,
Table 6 and Table 7, respectively.

The graphs of the spread, binpack, First Fit and Best Fit
in our experiment are a horizontal line, as shown in Fig. 8.
The reason is that the four algorithms do not have a random
mechanism, such that they can produce only one CP solution
no matter how many times the experiment is repeated. The
performance of GA and IGA are substantially better than the
other methods except Best Fit on all three container scales.

VOLUME 7, 2019



R. Zhang et al.: GA-Based Energy-Efficient CP Strategy in CaaS

IEEE Access

<104 Small-scale
=116
7 I
8 \_ Spread
Sl S WM
2
o
Q binpack

0 1000 2000 3000 4000 5000

iteration

. <104 Med-scale FirstFit
2
® 1.18
o
© PSO
o 1.17
2
o
[oN

0 1000 2000 3000 4000 5000 GA

iteration
4  Large-scal

. <10 arge-scale GA
2
17
Q
o
E 1.206 ] BestFit
3
a 1.202

0 1000 2000 3000 4000 5000
iteration

<104 Small-scale

2 116 —

@ —

O —

o 115

o " + =

]

g —

Spr bin FFPSOGA IGA BF

—_ «104 Med-scale

2 ==

‘g 1.18 _ =

=

@ 1.17 =

=

g —

Spr bin FFPSOGA IGA BF

5 «104 Large-scale
G 121 —

8 -

< 1.206 [ — =

() —
2 1.202 =

o

Spr bin FFPSOGA IGA BF

FIGURE 8. The energy consumption comparison of the seven algorithms in the nonuniform Distribution Scenario.

They perform the best when the CPU resource utilization is
74.74% and memory resource utilization is at 83.88%, and
the largest improvement of the IGA compared to other algo-
rithms can even reach 1.14%. However, when the resource
utilization exceeds 84.74% for CPU and 83.88% for the
memory, the improvements of GA and IGA slightly decrease.
In general, the performance of IGA is better than that of
GA, especially when the resource utilization of the VM is
relatively high (CPU resource utilization exceeds 74.26% and
memory resource utilization exceeds 73.89%). The improve-
ment of IGA over GA increases as the resource utilization
increases, and the largest energy savings improvement can
even reach 0.57%. This also verifies that our improved muta-
tion operation performs better than GA when VMs have
high resource utilization. In addition, the experimental result
shows that IGA can save more than 0.45% of energy con-
sumption comparing to the best solution in the initial popu-
lation generated by the First Fit algorithm, which indicates
that IGA has a good searching performance than First Fit.
It is also observed that PSO performs better than GA in the
large-scale scenario but still worse than IGA, and that the
Best Fit algorithm is significantly better than GA and IGA in
the small-scale and mid-scale container placement scenarios
while IGA performs better than Best Fit and GA (worst) in
the large-scale container placement scenario. Therefore, our
improved mutation method is experimentally proved to have a
good effect on searching new CP solutions with better fitness
when the VM resource utilization is high.

On one hand, the four algorithms, i.e., spread, binpack,
First Fit and Best fit, have far lower computational complex-
ity than the three heuristic algorithms, i.e., PSO, GA and
IGA. On the other hand, the former only needs one run
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to complete the placement while the latter requires huge
numbers of iterations to search a good solution. Therefore,
we compare these two kinds of algorithms separately. The
computation time comparisons over the four algorithms are
shown in Table 6 and the computation time comparisons over
the three heuristic algorithms are shown in Table 7.

As shown in Table 6, the four algorithms as a whole take
a very small computational time cost because of their low
computational complexity. However, the time cost of Best Fit
is larger than the other three ones’ since it uses a traversal
searching strategy, which has a higher computational com-
plexity. By comparison, the three heuristic algorithms have
a very poor computational time cost. We remark that the
efficiency of these algorithms can be improved by paral-
lelization. In this paper, we only focus on the improvement
of the algorithm’s search mechanism and do not perform
research on algorithms’ parallel optimization. In the follow-
ing, we compare the computational time cost of the three
heuristic algorithms. As shown in Table 7, GA has more
time cost in the three different scenarios. This may be caused
by the worse performance of its mutation operation in high
VM resource usage that leads to a large number of infeasible
solutions to be corrected. The time costs of the three heuristic
algorithms increase sharply in Large-scale scenario. Notably,
PSO has the maximum time cost and may also encounter
the problem that too many infeasible solutions need to be
corrected. Thanks to the exploitation of our improved muta-
tion method, IGA has a low time cost in the three heuristic
algorithms, especially in the large-scale scenario.

Best Fit and IGA are completely different in searching
mechanisms and this experiment shows their own advan-
tages. Specifically, Best Fit is a greedy algorithm, which
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TABLE 8. Average utilization of the VM resources before and after CP in
the uniform distribution scenario.

Small-scale Med-scale Large-scale
Before placement | Cpu:60.5%; Cpu:60.5%; Cpu:60.5%;

Mem:60.46% | Mem:60.46% | Mem:60.46%
After placement Cpu:70.92%; | Cpu:81.26%; | Cpu:92.62%;

Mem:70.58% | Mem:80.89% | Mem:91.93%

TABLE 9. The relative gains in energy-saving of the IGA compared to
other six algorithms in the uniform distribution scenario.

Small-scale Med-scale Large-scale
Spread 0.24% 0.29% 0.19%
binpack 0.16% 0.24% 0.16%
First Fit 0.14% 0.16% 0.14%
Best Fit -0.32% -0.35% -0.12%
PSO 0.13% 0.168% 0.14%
GA -0.0726% 0.0854% 0.13%

TABLE 10. The computation time (s) comparisons of the four low
computational complexity algorithms for one run in the uniform
distribution scenario.

Small-scale Med-scale Large-scale
Spread 0.0264035464 | 0.0462832532 |0.0451671044
binpack 0.0237872253 | 0.0326790677 | 0.0562550373
First Fit 0.0534573955 | 0.1480580580 |0.3267901073
Best Fit 1.0719190374 | 1.9153617134 |2.7334571218

TABLE 11. The average computation time (s) comparison of the three
heuristic algorithms at 5000 iterations in the uniform distribution
scenario.

Small-scale Med-scale Large-scale
PSO 1394.4937099 | 4104.5347651 | 14860.896511
GA 23735.186635 | 45377.754627 | 70008.606312
IGA 3754.0942869 | 7177.3628598 | 12230.74869

places each container one by one to choose the current best
placement. It can get a good solution, but the effect mainly
depends on the container queue. Albeit such a limitation,
the algorithm does not support random search mechanism
and thus results in poor target searching performance. IGA is
a heuristic algorithm based on a population update strategy,
which shows a good target searching performance but needs
lots of iterations to search a good result. The combination
of the two algorithms may have a very good performance
in both solution quality and convergence rate. For exam-
ple, IGA is used to select the optimal container queue for
Best Fit or Best Fit is used to generate the initial popula-
tion for IGA. We will try these combinations in the future
work.

D. UNIFORM DISTRIBUTION SCENARIO

To fairly compare the performance of these algorithms,
we run them in exactly the same initial scenario. Each PM
hosts 7 VMs, and each VM runs the same batch of containers.
The average VM resource utilization before CP and that after
CP are shown in Table 8.

We compare IGA with other strategies and algorithms,
and the relative energy-saving gains are shown in Table 9.
Table 10, Table 11 and Fig. 9 compare the average execution
time and the energy consumption, respectively.
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The results are similar to the nonuniform scenario, but the
difference is that the energy-saving improvement of IGA is
lower compared with the nonuniform scenario. As a result,
our improved IGA is more effective in solving the CP prob-
lem in the nonuniform distribution scenario, especially when
the VM resource utilization is high. It performs the best
when both the CPU and memory resource utilization are at
approximately 84% based on our experiment.

V. RELATED WORK

The optimal scheduling of VMs in data centers has been
widely investigated in the past decade. As a finer-grained
virtualization technique, containers have recently gained
increasingly more popularity in both academia and industry,
and such a problem in the CaaS paradigm is revisited in the
literature.

Tchana et al. [34] first proposed a resource management
strategy under CaaS to reduce the resource usage of VMs
while keeping a high Quality of Service (QoS) for applica-
tions. It adequately utilizes the application-level information
in the optimal scheduling for the underlying VM consoli-
dation. They concluded that the resource management that
combines the two-layer information (application level and
virtualization level) is better than the separate resource man-
agement for each layer. Zhang et al. [28] also obtained a
similar conclusion in their work. By comparison, they ana-
lyzed the differences in the resource utilization computations
under the two methodologies and then introduced a container
placement strategy based on the bestfit algorithm for the two
situations where there are sufficient and/or insufficient vir-
tual machine resources. More concretely, they optimized the
initial placement for new containers to minimize the number
of PMs and resource waste. The work of Hussein er al. [35]
is mainly based on [28]. They focused on improving the
utilization of both VM and PM resources simultaneously.
Different from the work of [28], they proposed an improved
ant colony optimization (ACO) algorithm based on Best Fit
algorithm and evaluated their algorithms based on Google
cloud workload. However, the above works do not consider
the objective of energy savings. Tchana et al. [11] took into
account the energy consumption in their following work.
They introduced an improved strategy for VM consolidation,
which aggregates container payloads to reduce the number of
VMs and PMs and thus decreases the power consumption.

In [4], Piraghaj et al. optimized the initial placement of
containers to minimize VM resource waste in CaaS. Specifi-
cally, they first analyzed the use pattern of application tasks,
investigated the impact of workload characters on VMs,
and then proposed an efficient strategy to choose suitable
host VMs for containers by considering their resource usage
instead of the amount that is estimated by users. Afterwards,
they extended the work to support energy-efficient VM con-
solidation in [10] by aggregating container payloads and
reducing the number of active PMs. Notably, they lever-
age Pearson’s correlation coefficient for container and PM
payloads to select suitable PMs and propose a container
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FIGURE 9. The energy consumption comparison of the seven algorithms in the uniform Distribution Scenario.

migration strategy for both underloaded and overloaded PM
scenarios to reduce the number of active PMs and the server’s
energy consumption. However, the above works [10], [11]
only consider a linear energy consumption model.

Docker, a widely adopted off-the-shelf container tech-
nique in the industry, provides three placement strategies,
i.e., spread, binpack and random [8]. Their main purpose is
to quickly deploy containers for customers, but they are not
ideal solutions with regard to energy efficiency.

Furthermore, many heuristic algorithms are used in con-
tainer management. Guerrero et al. [36] used NSGA-II to
optimize container allocation and elasticity management.
Kaewkasi et al. [3] exploited an ACO-based algorithm in
container scheduling for resource balance. Fan et al. [29]
leveraged an improved PSO to optimize a VM-Container
hybrid hierarchical resource scheduling problem.

VI. CONCLUSION AND FUTURE WORK

This paper clarified the energy-efficient CP optimization
problem under a nonlinear server energy-consumption model
in CaaS and proposed an energy-efficient strategy to solve it.
To be specific, we treat the CP issue as a packing problem
and establish an energy-efficient CP model for optimization.
When adopting the conventional GA to find the optimal
solution for the problem, a flaw occurs in which the diversity
of the population cannot be guaranteed as the resource utiliza-
tion of VMs becomes higher. This can result in significant
performance degradation. To solve this problem, we intro-
duced an improved GA called the IGA that replaces the origi-
nal mutation operation with two proposed exchange mutation
operations. We also creatively use a control parameter ¢ to
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control their usage. At last, through extensive experimental
tests, we show that our strategy can achieve better energy
savings compared with the two existing Docker Swarm strate-
gies, i.e., spread and binpack. In addition, the proposed IGA
is more effective at solving the energy-efficiency CP problem
in the nonuniform distribution scenario when the resource
utilization of VMs is high, compared with the First Fit,
PSO algorithm and conventional GA. Both of the Best Fit
algorithm and IGA have their advantages and disadvantages,
the combination of these two algorithms may has a very good
performance in both solution quality and convergence rate.

However, the current work still needs to be improved in
terms of the following aspects. First, it only considers a single
optimization objective, i.e., energy efficiency, and thus, more
objectives such as low resource waste and high availability
should be taken into account. Second, we only evaluate the
IGA using MATLAB simulations with homogeneous PMs
and VMs and randomly generated containers. Therefore,
it should be tested in a real system. Third, the control parame-
ter ¢ in our algorithm is a function of the number of iterations.
It might be better to add more different mutation operations
and change the control parameter ¢ as a function of the
number of iterations and VM resource utilization. Last, our
strategy only applies to a static placement of containers, and
it is unable to support real-time relocation and scheduling;
thus, we hope to extend the work to dynamic container con-
solidation in the future.
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