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ABSTRACT Considering the wide application of lithium-ion battery in life, the prediction of the remaining
life of lithium-ion battery has become a research hotspot. Studies show, due to the improvement of the
technology level of lithium-ion battery, its life is getting longer and longer. Even under the condition of
accelerated life test, it is difficult to obtain enough available data for research in a short term. In order to solve
the problem of how to accurately predict the residual life with the data-driven method under the condition
of small sample size, an overall trend virtual sample generation method based on differential evolution
(OT-DEVSG) is proposed. This method uses a differential evolution algorithm with better optimization
performance, and improves the original mega-trend-diffusion (MTD) method, the range of virtual samples is
effectively constrained and the trend of samples can be estimatedmore accurately. Themethod can effectively
generate a virtual sample data sequence with time parameters, and adapt the virtual sample to the real-life
sample trend, which solves the problem of insufficient degradation data of the lithium-ion batteries. Finally,
we validate the effectiveness of the OT-DEVSG method with three existing data sets. The experimental
results show that the proposed OT-DEVSG method is effective for solving the problem of long-term life
prediction of lithium-ion batteries.

INDEX TERMS Lithium-ion battery, overall trend virtual sample generation method based on differential
evolution (OT-DEVSG), small data.

I. INTRODUCTION
Lithium-ion battery is an environmentally-friendly high-
energy rechargeable battery. Because of its various advan-
tages, such as high capacity, low self-discharge rate, high
safety and long cycle life, it is widely used in areas like
electronic communication engineering, transportation and
aerospace [1], [2]. However, after a number of charge and
discharge cycles, the capacity of the lithium-ion battery will

The associate editor coordinating the review of this article and approving
it for publication was Jason Gu.

gradually decrease. This degradation of performance will
affect the normal use of the equipment, and even cause serious
accidents [3]. Therefore, from the perspective of safety, reli-
ability and economy, it is especially important to identify the
long-term safe and effective way of operating of lithium-ion
batteries for avoiding potential accidents [4]. In recent years,
the prediction of the remaining service life of lithium-ion
batteries has become a research hotspot [5]–[7].

There are two methods for predicting the remaining life of
lithium-ion batteries, model-driven methods and data-driven
methods [8]. However, due to the difficulty in detecting
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and controlling the physical working mechanism and vari-
ous chemical reactions inside the battery, the model-based
prediction method is relatively complicated and difficult to
implement [9]. Data-driven method can analyze the current
health status and residual life of lithium-ion batteries based
on existing data, avoiding the shortcomings of model-driven
method. At present, there are many methods for predicting
the remaining life of lithium-ion battery based on the data-
driven method. For example, Li et al. [18] proposed a method
for predicting the remaining life of indirect lithium-ion bat-
teries based on Elman neural network. Cadini et al. [11]
proposed a particle filter based residual life prediction diag-
nosis method for lithium-ion batteries. Li et al. [8] pro-
posed a hybrid remaining useful life prediction method for
lithium-ion batteries based on a mixture of long-short-time
memory and Herman neural network. Zhang et al. [20] pro-
posed a method for predicting the remaining useful life
of lithium-ion batteries using an improved UPF method
based on MCMC. Zhao et al. [14] proposed a life predic-
tion method for lithium-ion battery based on support vector
machine. Wang et al. [15] proposed a battery life prediction
method based on relevant vector machine under uncertain
conditions. However, the results from previous studies are
seriously undermined by the lack of large sample of data,
which is necessary for the data-driven methods to yield
accurate predictions [16]. Fu-Kwun Wang et al. proposed a
method for predicting the remaining life of lithium-ion batter-
ies based on SVR and differential evolution algorithms [19].
Moreover, with the improvement of design and product tech-
nology level, the life of lithium-ion battery is getting longer
and longer. According to the test methods and requirements
for the cycle life of lithium-ion batteries and battery packs,
it is difficult to obtain sufficient degradation data in a short
period of time even under accelerated life test conditions.
In this regard, it takes a half year or more to complete a
set of cycle life tests, which makes the existing battery data
becomes not available. Therefore, it is so difficult to accu-
rately predict battery life with a small amount of battery data,
which solving the problem of small samples becomes the
key to solving the problem of accurately predicting battery
life [16].

Small sample refers to the situation in which the number
of samples is small, which is the standard for judging the
quality of results in existing studies. In practical applica-
tions, the threshold value of small sample problem is usually
defined as 30 [11], [17], [18]. Specifically, in fields ofmedical
diagnosis or industrial manufacturing, the problem of small
data volume exists due to the lack of prior experience data
or the difficulty in obtaining available data [8]. On the other
hand, in the fields of machine learning and pattern recog-
nition, expanding sample sizes has also become a research
hotspot. In order to solve the small sample problem, some
methods for expanding sample size have been proposed,
Romero F. A. B. de Morais et al. proposed an undersampling
method to solve small sample problems [30]. Der-Chiang
Li et al. proposed a method of estimating the sample first

and then reconstructing the sample [31]. Soman, Sumit et al.
proposed a non-iterative technique to add small samples and
samples [32]. Yan-Lin He et al. proposed a nonlinear inter-
polation virtual sample generation method to enhance sample
information [13]. and the virtual sample generation technol-
ogy is the most advanced and most popular method [20].
According to Niyogi et al. [21], who proposed the virtual
sample generation method, the attempt for using prior knowl-
edge of a given small training set to create virtual samples
to improve recognition performance succeeded. They gener-
ated a fresh view of a given 3D object from applying other
directions through mathematical transformation, and call the
newly generated sample a virtual sample [21]. Inspired by this
innovation, many VSG-based methods were then proposed.
Yang et al. [23] proposed a virtual sample generation method
based on Gaussian distribution. Li et al. [24] proposed a
small sample generation method based on genetic algorithm.
Chen et al. [16] proposed a virtual sample generation method
based on PSO. However, when it comes to analyzing the
degradation data of lithium-ion battery with time attribute,
these methods are not applicable. They cannot describe the
overall trend of data well or solve the problem of inaccurate
prediction of the remaining life of lithium-ion battery in the
long term.

All in all, in this paper, a method of generating overall
trend virtual samples based on differential evolution algo-
rithm is proposed. The main contribution of this paper is
proposing a new virtual sample generation method and con-
sidering the overall trend of data with time series, improving
the existing virtual sample generation method with the DE
algorithm that has better performance than previous attempts
of other methodologies. The OT-DEVSG method given in
this paper can generate a virtual sample sequence effectively,
It solves the existing small sample problem very well and
improve the predicting accuracy of Back Propagation Neural
Networks (BPNN) which achieves the accurate long-term
prediction of the remaining life of the lithium-ion battery at
any time point.Moreover, the validity of the proposedmethod
is verified by a comparison between it and the PSOVSG
method as well as experiments under three different data sets.

II. PROPOSED METHOD
In this paper, a method of generating overall trend virtual
samples based on differential evolution algorithm is proposed
for small samples, and BPNN is established to test the reli-
ability of virtual samples. This section will introduce the
basic principle of differential evolution algorithm, summarize
the BP neural network, and explain the proposed method in
detail.

A. DIFFERENTIAL EVOLUTION
The Differential Evolution (DE) was proposed by Rainer
Storn and Kenneth Price on the basis of evolutionary
ideas such as genetic algorithms in 1997, the essence is
a multi-objective (continuous variable) evolutionary algo-
rithm (MOEAs) for solving the global optimal solution in
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multidimensional space. Like other evolutionary algorithms,
DE is a stochastic model that simulates the evolution of
organisms, and through repeated iterations, individuals who
adapt to the environment are preserved [25]. Compared with
the genetic algorithm, the differential evolution algorithm
generates the initial population and defines the fitness value
of each individual in the population randomly. The main
process also includes three steps: mutation, intersection and
selection. In the differential evolution algorithm, a vector
that is generated from two parent vectors that is different
from their offspring vector, then the offspring vector and
a vector from the older generation that is not one of its’
parent vectors generate a new vector, who later compared
with one of its’ parent vectors for preserving the one with
better fitness. The differential evolution algorithm preserves
the population-based global search strategy, using real-coded,
differential-based simple mutation operations and one-to-one
competitive survival strategies, for reducing the complexity
of genetic operations. The unique memory of the differen-
tial evolution algorithm makes it possible to dynamically
track the current search situation to adjust its search strat-
egy. In addition, it has strong global convergence ability
and robustness, and do not need to use the characteristic
information of the problem that is suitable for solving some
use of conventional mathematical programming methods
which cannot solve the optimization problems in complex
environment. Therefore, it is widely used in data mining,
pattern recognition, digital filter designing, artificial neural
networks, electromagnetics and other fields. In the first Inter-
national Competition on Evolutionary Optimization, (ICEO)
held in Nagoya, Japan in 1996, the differential evolution
algorithm proved to be the fastest evolutionary algorithm.
Obviously, the approximation effect of the differential evo-
lution algorithm relative to the genetic algorithm is more
significant [26], [27].

The differential evolution algorithm is mainly used to solve
the global optimization problem of continuous variables. Its
main working steps are basically the same as those of other
evolutionary algorithms, including Mutation, Crossover and
Selection. The basic idea of the algorithm is to start from a
randomly generated initial group, and the offspring vector
generated from two individuals randomly selected from the
population as the random variation source of the third indi-
vidual, the offspring vector is weighted and summed with
a third individual according to a certain rule to generate
a new individual, this operation is called mutation. Then,
the mutated individual is mixed with a predetermined target
individual to generate a test individual, and this process is
called crossover. If the fitness value of the test individual is
better than the fitness value of the target individual, the test
individual replaces the target individual in the next genera-
tion, otherwise the target individual is still preserved, and the
operation is called selection. In each evolutionary process,
each individual vector is used as the target individual. The
algorithm continuously calculates it, retains the individuals
with higher fitness level, eliminates the individuals with

lower level of fitness, and guides the search process to the
global optimal solution.

The differential evolution algorithm mainly includes the
following four steps:

Step 1: Initialization
Initialization includes determining the boundaries of the

population range, the number of individuals, and the dimen-
sions of the individual population, which are generally initial-
ized by the formula (1).

Xi(0)=Xi,1(0)+Xi,2(0)+. . .+ Xi,n(0), i=1, 2, 3, . . .M

(1)

Xi,j(0) = Lmin
j + rand(0, 1) ∗ (Lmax

j − Lmin
j ) (2)

where, Xi(0) represents the i-th individual of the initial pop-
ulation, M represents the number of individuals produced, n
represents the dimension of each individual, and Xi,j(0) repre-
sents the j-th gene of the i-th individual of the 0th generation,
Lmin
j ,Lmax

j is the initial range boundary of the population.
Step 2: Mutation
In the g-th iteration, three individuals of Xp1(g), Xp2(g),

Xp3(g) are randomly selected from the population as parents.
Two of the individuals perform vector difference generation
to generate a new vector, and then the new vector sums with
the third individual to generate an experimental individual
that is called the first intermediate vector, and the expression
is as shown in (3)

Hi(g) = Xp1(g)+ F ∗ (Xp2(g)− Xp3(g)) (3)

where p1 6= p2 6= p3 6= i, F is the scaling factor, generally
between [0, 2], F mainly affects the global locating ability of
the algorithm. The smaller the F is, the better the local search
ability is. The larger theF is, the more the algorithm can jump
out of the local minimum, but the convergence speed will be
slower.

Step 3: Crossover
Crossing can increase the diversity of the population. In the

g-th iteration, each individual and the intermediate vector
generated by the mutation are crossed. Specifically, each
allele of each individual is selected according to a certain
probability. Select the allele of the first intermediate vector to
cross and generate the second intermediate vector, the expres-
sion is as shown in (4)

vi,j =

{
hi,j(g), rand(0, 1) ≤ Pcr
xi,j(g), else

(4)

where Pcr is the rate of crossover.
Step 4: Selection
The selection process is based on the greedy choice strat-

egy, according to the fitness function value, from the second
intermediate vector Vi(g) and the original vector Xi(g) of
each individual in the g-th iteration, the higher the fitness
is selected in the next generation. The selection process will
make each individual’s Xi(g+ 1) better in fitness than Xi(g),
and finally converge to some best or local best. The mutation
and crossover operation will help to jump out of the local
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optimum to achieve global optimality. The expression of the
selection process is as shown in (5)

vi,j =

{
Vi(g), if f (Vi(g)) > f (Xi(g))
Xi(g), else

(5)

where f () represents the fitness function.
The maximum number of iterations set in this paper is

200. Before reaching the maximum number of iterations,
formula (5) will be used for selection and judgment. When
the maximum number of iterations is reached, the optimal
value for the 200th iteration is output. The algorithm flow
chart shown in Fig. (1).

FIGURE 1. DE algorithm flow chart.

B. BPNN
BPNN is a multi-layer feedforward neural network. The main
characteristics of this neural network are forward propagation
of signals and back propagation of errors. In forward transfer,
the input signal is processed layer by layer from the input
layer through the hidden layer until the output layer, and the
neuron state value of each layer affects the state of the next
layer of neurons. If the output layer does not get the expected

output, the error between the prediction and the expectation
is backpropagated, and the network weight and threshold are
adjusted according to the prediction error, so that the BPNN
prediction output is continuously approaching the desired
output. The network topology of BPNN is shown in Fig. (2).
In the figure, I1, I2, and I3 are input values of BPNN, θ is the
offset, H1, H2, H3, H4, and H5 are hidden layer nodes, and
Out is the output.

FIGURE 2. BPNN topology diagram.

BPNN must first be trained by large amount of data,
so that the network has the ability to associate memory and
prediction. BPNN training first carries out the feedforward
process, determines the input layer node, the output layer
node, the hidden layer node of the network according to the
input (X, Y) of the system, and initializes the connection
weights of the input layer, the hidden layer and the output
layer, and Parameters such as threshold and learning rate are
outputs. Then, X is sequentially sent to the input neuron,
and the corresponding value obtained by the hidden layer
neuron is determined according to the input data and the
connection weight. According to the hidden layer neurons
and the connection weights, the regression value of the final
output is obtained after the activation function. The process
of BP is to compare the predicted values obtained from feed-
forward with the reference value and adjust the connection
weight according to the error. Then we use a trained network
parameter to predict the test machine data to obtain the target
prediction value.

C. PROPOSED METHOD
This paper is to achieve a long-term accurate prediction of
the remaining life of lithium-ion batteries by increasing the
sample size. Here we propose a method based on differential
evolution algorithm for overall trend virtual sample genera-
tion (OT-DEVSG). This method can generate a new sample
with the same overall trend as the original small sample data,
and with the same time attribute within an acceptable range.
Next, the proposed OT-DEVSG will be described in detail.
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FIGURE 3. Schematic diagram of trend diffusion.

For OT-DEVSG proposedmethod, first the original sample
have been divided into training and test sets, then the overall
trend of the original training set with small sample data
were acquired, and finally calculate the estimated distribu-
tion of data points and data sets attribute acceptable range.
Li et al. [28] proposed the mega-trend-diffusion (MTD) to
estimate the trend of the data and roughly determine the
acceptable range of the data. However, the MTD technology
uses a triangular distribution to describe the overall distribu-
tion. It is difficult to describe the overall detailed characteris-
tics of the data with complex distribution, and the data from
the center point in the overall trend will have a greater impact
on the estimation of the acceptable range. On the basis of
MTD, Zhu et al. [29] proposed a multi-distribution overall
trend diffusion technology (MD-MTD), which solved the
some problems mentioned previously to some extent. In this
paper, based on theMD-MTDmethod, the size of the adaptive
data set can be determined, for calculating the value of the
correction factor, which enable us to have acceptable range
of datasets. The schematic diagram of the trend diffusion is
shown in Figuer(3), where Min is the minimum value of the
small sample data, Max is the maximum value of the small
sample data, LB is the lower bound of the extended acceptable
range, andUB is the expanded Accept the upper bound of the
range.

During extended range, the original training set to a small
sample of X = {x1, x2, . . . , xm} by substantially the MD-
MTD method, according to the formula for calculating the
acceptable range boundaries UB and LB.

LB =

{
CL − LS ×

√
−2 Ŝx

NL
× ln(10−20) L ≤ min

min L > min
(6)

UB =

{
CL + RS ×

√
−2 Ŝx

NU
× ln(10−20) L ≥ max

min L < max
(7)

CL =

{
x[(n+1)/2] if n is odd
1
2 (x[n/2] + x[n/2+1]) if n is odd

(8)

LS =
NL

NL + NU + m
(9)

RS =
NU

NL + NU + m
(10)

Ŝx =

n∑
i=1

(Xi − X̄ )2

n− 1
(11)

where m is the number of small sample data, CL is the data
center, NL is the number of sample data that with values less
than CL, NU is the number of sample data values that with
values greater than CL, LS is the left skewness that describes
the asymmetric diffusion characteristics of the data, and RS
is the right skewness that describes the asymmetric diffusion
characteristics of the data, and Ŝx is the variance of the
original sample data. Here, the CL is the calculation method
of the MD-MTD method which is modified to overcome the
influence of outliers in the center of datasets and to optimally
estimate the trend of the data. Due to the existence of outliers,
the values of NL and NU are too large, which result in an
overestimation of the left and right skewness LS and RS that
makes the acceptable range of sample estimation excessively
increase. Here, the distribution in the left and right skewness
calculation formula increases the correction factor m, which
is m=n/10 in this paper.
Fig. (4) is a schematic diagram of a collection of small

samples and virtual samples of the training set. The blue
square points shown in the figure are a set of original small
sample data points, and the area between the two brown
curves is a collection of all virtual samples, the area between
two black lines is the range of acceptable virtual samples.
Obviously, adding dummy samples to the gaps of the original
samples reduces the gap between the original small sample
data and increases the amount of information in the sam-
ple set. But not all generated virtual sample data help to
enrich the information obtained from a small sample set. The
generated virtual samples can be divided into two types: a
suitable virtual sample (green triangle) and an inappropriate
virtual sample (brown star), as shown. Appropriate virtual
samples will improve the prediction accuracy of the predic-
tion model, while inappropriate virtual samples will have a
negative impact on the prediction accuracy of the prediction
model.

The OT-DEVSG proposed in this paper can perform vir-
tual sample generation on sample data sequences with time
attributes. At each time point, the original small sample
is expanded to generate n new virtual sample data points,
and the set of the i-th sample data with all the time points
is regarded as a new virtual sample data sequence Xi =
{xi1, xi2, . . . , xim}, m is the number of sets of virtual sam-
ple sequence data. The method can constrain the generated
virtual samples, constrain the virtual samples to the ideal
confidence interval, and adapt the trend of the virtual sam-
ple data sequence closer to the trend of the original sample
data. This method can be regarded as a multi-dimensional
nonlinear overall trend constraint optimization under certain
circumstances. The constraint conditions can be described by
the following expressions.

LB ≤ xij ≤ UB, j = 1, 2, . . . ,m (12)

G(Xi) < 5%, i = 1, 2, . . . , n (13)

G(Xi) =
1
n

n∑
j=1

∣∣xj − xij∣∣× 100% (14)
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FIGURE 4. Diagram of the relationship between small sample data and virtual sample data.

FIGURE 5. OT-DEVSG method flow chart.

where LB,UB represent the upper and lower boundaries of the
generated virtual sample data point xij, and G(Xi) represents
the fitness value of the overall trend of the i-th virtual sample
data sequence and the trend of the original small sample data.

After obtaining the appropriate virtual samples, combine
with the original small samples of the training set for gener-
ating a new training set, which is used for training the BPNN
with the new training set and the network with the training set
with a large number of virtual samples, in order to optimize
the prediction performance of the network.

Finally, the original small sample test set data is tested
with the trained network, and the predicted results are used to
evaluate the performance of the network, thereby verifying
the validity of the virtual sample. The flow chart of the
method proposed in this paper is shown in Fig. (5).

TABLE 1. The parameter settings for DE.

III. EXPERIMENT AND DISCUSSION
In order to verify the rationality and effectiveness of the OT-
DEVSG method, three different common data sets with only
a small amount of sample data were selected for experimen-
tal verification, including battery data sets held by NASA,
CALCE, and Oxford University. The NASA data set includes
4 complete battery degradation data, B5, B6, B7, B18;
CALCE battery data has A3, A5, A8, A12, which are 4 com-
plete battery degradation data; The Oxford University battery
degradation dataset contains complete battery degradation
data for eight SLPB533459H4 lithium-ion battery cells c1-
c8 from Kokam COLTD. In order to measure the effective-
ness of the method, the root mean square error (RMSE)
and the average percentage (MAPE) of the full cycle battery
capacity prediction and the absolute error (AE) of the pre-
dicted remaining cycle number are used as evaluation criteria.
The relevant parameter settings of DE are shown in Table (1).

RMSE =

√√√√ 1
m

m∑
i=1

(y(i)test − ŷ
(i)
test )2 (15)

MAPE =
1
no

no∑
n=1

∣∣∣∣y− ŷy
∣∣∣∣× 100% (16)

AE =
∣∣RULtrue − RULpredicted ∣∣ (17)

A. CALCE
This section uses battery test data from the Univer-
sity of Maryland Center for Advanced Life Cycle
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Engineering (CALCE), which is the battery capacity degra-
dation data of A3, A5, A8, and A12 lithium-ion batteries
tested at room temperature [14]. The initial capacity of this
group of lithium-ion batteries is 0.9Ah, and a constant current
discharge of 0.45A is used. After a plurality of charge and
discharge cycles, when the rated capacity of the battery is
reduced by 30% (from 0.9Ah to 0.63Ah), the battery is
considered to have reached the end of life standard. Fig. (6)
shows the capacity degradation data curve of four batteries.

FIGURE 6. CALCE raw data.

(1) Only the A3 raw sample data is used as the training
set for BPNN loop training, and the remaining A5, A8, and
A12 groups are used as the test. The predicted result is shown
in Fig. (7).

(2) The A3 original sample data was used as the training
set to expand and generate virtual samples, and the remaining
A5, A8, and A12 groups were tested. Firstly, the training
set is spread according to the formula, and the upper and
lower bounds of the extended data are obtained. The range
is taken as the range of the random initial population of the
differential evolution algorithm, and the random population
is initialized, and then the initialized particles are processed
according to the formula. Perform mutation, crossover, and
selection processes to obtain an optimal new individual value,
and perform each of the above data points of the A3 original
sample to obtain a new complete sample. The above experi-
ment was performed 100 times to form 100 sets of complete
virtual sample data sequences. The 100 sets of virtual samples
are used as the training sets of the BPNN network, and the
remaining 3 sets of original sample data are used as the
test sets for predicting purpose. In this experiment, a sliding
window with a capacity of 10 data points and a step size
of 10 data points was used for continuous test and prediction.
The 10 data in the windowwere test data input into the trained
BPNN, and the output would obtain the predicted battery
capacity for the next 10 times, testing processes are repeated
continuously until the end of battery life. The training set

FIGURE 7. Prediction results before CALCE data is added to a small
sample.

data, the generated virtual sample data shown in Fig. (8),
the test set data and the corresponding predicted values are
shown in Fig.(9).

B. NASA
This section uses NASA lithium-ion battery data for experi-
mental verification. NASA battery data is held by the NASA
PCoE research center test data of lithium-ion battery [33],
the battery has the rated capacity of 2 Ah commercial
18650 lithium-ion batteries, this group of data with four
groups of lithium-ion battery (5, 6, 7 and 18) at room tem-
perature in 24 degrees Celsius 3 different job characteris-
tics (charging, discharge, and impedance). Charge with 1.5A
current in constant current mode until the battery voltage
reaches 4.2V, then continue to charge in the constant voltage
mode, and the charging ends when the charging current drops
to 20 mA. The discharge is a constant current discharge at
a current of 2 A. When the voltages of the No. 5, No. 6,
No. 7, and No. 18 batteries are reduced to 2.7 V, 2.5 V,
2.2 V, and 2.5 V, respectively, the discharge is stopped. The
above-mentioned charge and discharge cycle of the battery is
performed several times to deteriorate the battery. When the
rated capacity of the battery is reduced by 30% (from 2Ah to
1.4Ah), the battery is considered to have reached the end of
life standard, and the experimental data collection is stopped.
In this experiment, the experimental data was verified by
three sets of data of B5, B6 and B7. Fig. (10) shows the
capacity degradation data curve of three batteries.

(1) Only B5, B6 raw sample data is used as the training set
for BPNN training, and B7 is used as the test. The prediction
result is shown in Fig. (11).

(2) In this experiment, we will extract the original data
of B5 and B6 batteries in the NASA data set for training
purpose, and adopt the B7 battery data as the test set. The
B5 and B6 sample data are generated in accordance with the
steps in Section 3.1, respectively. The B5 and B6 data sets
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FIGURE 8. A3 raw sample data and virtual sample data sequence in
CALCE.

FIGURE 9. Prediction result graph after adding virtual samples to the
CALCE data set.

respectively form corresponding 100 sets of complete virtual
sample data sequences, and the 200 sets of virtual samples are
used as training sets of the BPNNnetwork. In this experiment,

FIGURE 10. NASA raw data.

FIGURE 11. Prediction results before NASA data is added to the virtual
sample.

a sliding window with a capacity of 10 data points and a
step size of 10 data points were used for continuous testing
and predicting. The 10 data in the window were test data
input into the trained BPNN, and the output would obtain
the predicted battery capacity for the next 10 times, testing is
continued until the end of battery life. The training set data,
the generated virtual sample data shown in Fig. (12), the test
set data and the corresponding predicted values are shown
in Fig. (13).

C. OXFORD
This section uses the Oxford Battery Degradation Dataset,
the battery life cycle data from the Oxford Battery Degrada-
tion Data Set for verifying experimental results. This data set
contains 8 small lithium-ion batteries C1-C8, at 40◦ temper-
ature test charge 1 - C, 1 C discharge, pseudo OCV charge
(OCVch), pseudo OCV discharge (OCVdc) time, voltage,
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TABLE 2. Prediction error comparison table before and after adding virtual samples.

FIGURE 12. B5, B6 raw sample data and virtual sample data sequence in
NASA.

charge and temperature degradation data of the measured
values. This section uses battery charge data as a battery
degradation reference to make battery life predictions. The
rated capacity of the battery is 0.74Ah, and a constant cur-
rent discharge of 0.74A is used. After multiple charge and
discharge cycles, the battery is considered to be ineffective
when the battery capacity is reduced by 30% (from 0.74 Ah

FIGURE 13. Prediction results after NASA data is added to the virtual
sample.

to 0.52Ah). This section uses C1, C2, C3, and C4 for experi-
mental verifications. Fig. (14) shows the capacity degradation
data curve of four batteries.

(1) The C1, C2, C3 raw sample data is used as the train-
ing set for BPNN training, and C4 is used as the test. The
predicted result is shown in Fig. (15).

(2) In order to verify the impact of the number of training
set samples on the prediction accuracy, we will extract the
original data of C1, C2, C3 batteries as training sets, and the
C4 battery data as the test set. The training sets C1, C2, and
C3 are respectively subjected to virtual sample generation
according to the steps shown in Section 3.1. The C1, C2,
and C3 data sets respectively form corresponding 100 sets
of complete virtual sample data sequences, and the 300 sets
of virtual samples are used as training sets of the BPNN
network. In this experiment, a sliding windowwith a capacity
of 15 data points and a step size of 15 data points was used for
continuous testing and predicting. The 15 data in the window
are test data that are inputted into the trained BPNN, and in
the nest 15 times, the output of the predicted battery capacity
would be obtained, continue to test until the end of battery
life. The training set data, the generated virtual sample data
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FIGURE 14. Oxford raw data.

FIGURE 15. Prediction results before Oxford C4 data is added to the
virtual sample.

shown in Fig. (16), the test set data and the corresponding
predicted values are shown in Fig.(17).

D. DISCUSSION
In order to reflect the faster convergence speed and higher
learning efficiency of the OT-DEVSG method proposed in
this paper, here we will compare the proposed method with
the PSOVSG method on the NASA dataset. Convergence
curve Fitness value are shown in Fig. 18. It can be seen from
the figure that the fitness value of the OT-DEVSG method
proposed in this paper is reduced from the initial training
of 7.92 after 23 iterations to about 0.001. However, the initial
value of the fitness of the PSOVSG method is 27.34, which
is reduced to about 0.001 after 50 iterations. This shows
that OT-DEVSG has higher convergence speed and learning
efficiency.

In order to prove that BPNN has better learning efficiency
with sufficient training data, the convergence performance of

FIGURE 16. C1, C2, C3 raw sample data and virtual sample data sequence
in Oxford.

FIGURE 17. Prediction results after Oxford C4 data is added to the virtual
sample.

BPNN is verified under NASA data set, and the loss function
is shown in Fig. 19. The loss function value is reduced from
the initial 7.513 through 15 iterations to 0.0001. It can be
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FIGURE 18. Fitness value decline curve. (a)OT-DEVSG (iterations=200). (b)PSOVSG (iterations=200).

FIGURE 19. Loss function decline curve.

seen from the male figure that the training of the BPNN
model is effective when there is a sufficiently large training
set.

Table (2) gives the comparison of the prediction error
data after adding the virtual sample and the prediction error
data with the original small sample data. It can be seen
that, compared with the prediction error value without virtual
samples, after adding a large number of virtual samples,
the value of MSE, MAPE and RUL AE have been signif-
icantly improved, which enables accurate prediction of the
future long-term residual life. The more virtual samples are
added, the smaller the MAPE value of the prediction result
will be. It can be seen from the diagrams (20), (21) and (22)
that the prediction accuracy has been greatly improved after

FIGURE 20. Comparison of predicted MSE before and after adding virtual
samples.

FIGURE 21. Comparison of predicted MAPE before and after adding
virtual samples.

adding a large number of virtual samples, and theOT-DEVSG
effectively improves the prediction performance of the small
sample set.
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FIGURE 22. Comparison of predicted RUL AE before and after adding
virtual samples.

IV. CONCLUSION
Due to the insufficient data of existing training samples, the
performance of machine learning algorithm model is poor,
and it is difficult to obtain robust prediction results and
enhance prediction accuracy. A new OT-DEVSG method is
proposed to solve the problem of poor robustness of pre-
diction model caused by insufficient training samples of
data-driven method. This method generates a large number
of virtual samples within an acceptable range, fills the infor-
mation gap between the original small sample data by adding
virtual samples, increases the amount of training sample data,
and improves the accuracy of the prediction model. In addi-
tion, the method adaptively expands the acceptable range of
the overall trend, makes the deviation between the virtual
sample and the actual sample insignificant, which improves
the applicability of the virtual sample. In this paper, three
different small sample datasets are tested. By adding virtual
samples generated by this method, the prediction accuracy is
improved, and the effectiveness of this method is supported.
In conclusion, the OT-DEVSG method is reasonable and
effective for solving small sample prediction problems.
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