
SPECIAL SECTION ON SECURITY AND PRIVACY IN EMERGING DECENTRALIZED
COMMUNICATION ENVIRONMENTS

Received July 31, 2019, accepted August 20, 2019, date of publication August 26, 2019, date of current version September 25, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2937637

Prototyping Flow-Net Logging for Accountability
Management in Linux Operating Systems
YANG XIAO 1,2, (Senior Member, IEEE), LEI ZENG2, HUI CHEN 3,4, (Senior Member, IEEE),
AND TIESHAN LI 1, (Senior Member, IEEE)
1Navigation College, Dalian Maritime University, Dalian 116026, China
2Department of Computer Science, The University of Alabama, Tuscaloosa, AL 35487-0290, USA
3Department of Computer and Information Science, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA
4Graduate Center, City University of New York, New York, NY 10016, USA

Corresponding author: Yang Xiao (yangxiao@ieee.org)

This work was supported in part by the National Natural Science Foundation of China under Grant 51939001, Grant 61976033, Grant
U1813203, Grant 61803064, and Grant 61751202, and in part by the Science and Technology Innovation Funds of Dalian under Grant
2018J11CY022.

ABSTRACT Accountability in conjunction with preventative countermeasures is necessary to satisfy the
needs of real-world computer security. A common method to achieve accountability is via logging and
auditing. To achieve better accountability, a logging system should be capable of capturing activities as
well as the relationships among the activities in a computer system or network. Existing logging techniques
record activity events in isolation and rely on attributes and time stamps of the logged events to establish
their relationships, and this approach leads to probable loss of event relationships among large and complex
logs and a confusion during auditing. Prior works have indicated that flow-net is effective in addressing this
problem by organizing events in a direct acyclic graph and preserving event relationships during logging. In
this work, we provide a prototypical design and implementation of a flow-net accountable logging framework
in the Linux operating system. Particularly, it can be applied to Internet of Things (IoTs) with Android
Operating Systems. We measure the performance overhead introduced by the flow-net logging prototype via
experiments in Linux. The results indicate that the flow-net prototype only introduces a small overhead when
compared with existing logging methods. In addition, we show by examples enforcement of accountability
policies in the flow-net logging framework and its performance overhead. This work thus constitutes a further
step to advance flow-net in addressing accountability in computer systems and networks.

INDEX TERMS Computer security, accountability, logging, auditing, flow-net, IoT.

I. INTRODUCTION
The common approach to ensure security is via preventa-
tive countermeasures, such as, access control and intrusion
detection that attempt to prevent secure policy violations
from security attacks [1]. Another approach is via account-
ability [1]–[8] — an after-the-fact examination of system
activities to discern whether a violation of a security policy
has occurred, and what has caused or what chain of events
has led to the policy violation [1], [2], [9], [10].

Real-world experiences from dealingwith security indicate
that accountability is not only complement to preventative
countermeasures, but also necessary.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiaojiang Du.

First, some attacks, e.g., Distributed Denial-Of-Service
attacks are non-differentiable from normal activities, which
makes it a challenge to design effective intrusion detection
mechanisms to counter them [11], [12]. Second, preven-
tative countermeasures requires often beforehand knowing
what constitutes an attack, which is difficult for zero-day
attacks [13], [14]. Preventative countermeasures often either
tempt loose access control in favor of functionality and fea-
tures, lower expenses, or convenience of using software or
systems, or invite over-stringent access control in favor of
policy compliance or out of paranoia, in particular, when
users’ voices are unheard. Aside from these, as networked
computers from big to small have become ubiquitous and
online privacy becomes an increasingly important concern to
individuals and societies, we have again learned that preven-
tative countermeasures are inherently ineffective in dealing

131172 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0001-8549-6794
https://orcid.org/0000-0002-9840-4876
https://orcid.org/0000-0003-0474-953X


Y. Xiao et al.: Prototyping Flow-Net Logging for Accountability Management in Linux Operating Systems

with online privacy because ‘‘information is easily copied’’
and ‘‘aggregated and automated correlations and inferences
across multiple databases uncover information even when it
is not revealed explicitly’’ [1], and it is no easy feat if not
outright a futile effort to deploy access controls that work
in concert in multiple independent administrative sites to
prevent online privacy violation from happening.

Complement to preventative countermeasures, account-
ability isn’t designed with the sole emphasis on prevent-
ing an attack from happening or detecting an ongoing
attack. Instead, it is an approach of reward/penalty, e.g.,
at the event an attack is happening or happened, we want
to discern responsible parties for the attack and apply a
remedy afterward — this is consistent with how real world
physical security works, which ‘‘is not about provide perfect
defenses against determined attackers, instead, it is about
value, locks, and punishment’’ [15]. Preventative counter-
measure and accountability work in tandem is the approach
to realize this vision in deal with real-work computer secu-
rity. As such, accountability is becoming increasingly a
sought-for approach for security in addition to preventative
countermeasures.

A commonmechanism to achieve accountability is through
logging and auditing [1]. Logging is the process of recording
records of system and network activities. The collections of
the records are often referred to as logs, logging data, audit
trails, or audit logs. Auditing involves conducting reviews
and examinations of system activities based on the logs, and
the purpose is to ascertain 1) whether there is a security
policy violation, and 2) if any, whether we can identify the
responsible system entity or entities from a number of log
events that are leading to the policy violation.

There are technical challenges to apply logging and audit-
ing effectively to achieve accountability. First, it requires
security policy maker and system administrators to have
a foresight on what events to log; otherwise, the auditing
process would lack adequate data to go on. For instance,
Trusted Solaris has the capability to define a set of pre-
defined events to collect in logging and a list of auditing
queries to answer with these logged events [16]. Second, the
auditing process must be able to infer adequate information
to answer accountability questions.

To address these challenges, researchers have examined
approaches that records and organize logs as direct acyclic
graphs (DAG) and recognized the advantages of the DAG
approaches [17]–[20]. Among theseDAGapproaches is flow-
net [19]. This paper introduces a prototype of a flow-net
logging framework to support accountability.

Flow-net as a logging mechanism builds comprehensive
logs to track events. It maintains explicitly the relationships
of events in the logs, and the events and the relationships
form a DAG [19], [20]. Advantages of this flow-net
approach becomes apparent when we compare it with tradi-
tional approaches, i.e., logging mechanisms that record log
events individually without explicitly considering relation-
ships among the events. In the traditional approaches, we

must infer the relationships of the events from the values
of the attributes of the logged events during auditing. The
relationships inferred may not be reliable, and the inference
process may be time consuming.

Prior works have proposed flow-net to achieve account-
ability in computer networks and systems, and these works
have laid a theoretical foundation and suggested application
scenarios for accountability via flow-net [19]–[22]. These
works began the introduction of the flow-net concept in
computer networks and systems [5], [19]. Although account-
ability as a concept is well perceived from early computer
system design [2], it isn’t trivial to define accountability
policy including the types of entities we should identify as a
cause of a policy violation, and the level of accountability we
desire to achieve, e.g., how confident we are whenwe identify
the root cause of the policy violation. As such, in practice,
accountability policy is often manifested as a logging and
auditing policy that include types of events to log and set
of auditing rules to detect policy violation [16], [23]. Xiao
et al. and Fu et al. proposed the concepts of P-Accountability
and Q-Accountable logging in the flow-net framework to
define accountability requirement qualitatively or quantita-
tively [24], [25].

Given these prior works, our aims are at three intercon-
nected problems primarily at addressing practical concerns
of achieving accountability using flow-net. We are 1) to
provide a proof-of-concept design and implementation of
the proposed flow-net logging framework in Linux operating
systems, 2) to assess the performance overhead introduced by
the flow-net logging; and 3) to demonstrate the ability of the
framework to enforce accountabiliy policies. We summarize
the contributions of this paper as follows:

• We identify improvements for traditional logging tech-
niques in modern operating system.

• We introduce a logging framework called flow-net to
eliminate identified drawbacks incurred by the tradi-
tional logging techniques.

• We provide a proof-of-concept design and implementa-
tion of the flow-net logging framework in Linux. Partic-
ularly, it can be applied to Internet of Things (IoTs) with
Android Operating Systems.

• We evaluate the performance overhead introduced by the
flow-net logging implementation.

• Finally, we demonstrate by examples how we express
accountability policies and how much the performance
overhead introduced to enforce these policies.

The organization of this paper is as follows. Section II
provides a brief review of Linux logging, Linux auditing, and
SELinux on which we built the prototypical implementation
of the flow-net logging framework. We provide an overview
of flow-net, and compare traditional and flow-net logging
techniques, and describe the design and implementation of
the flow-net framework in Linux in Section III. Section IV
presents an evaluation of the performance overhead intro-
duced by the flow-net logging implementation and discusses

VOLUME 7, 2019 131173



Y. Xiao et al.: Prototyping Flow-Net Logging for Accountability Management in Linux Operating Systems

TABLE 1. Linux kernel logging.

FIGURE 1. Logging overview.

accountabiliy policy examples and their enforcement cost.
Finally, we conclude this paper and presents the future work
in Section V.

II. BACKGROUND
Relevant to the prototypical design and implementation of
the Flow-net logging framework in Linux are the Security-
Enhanced Linux (SELinux), Linux logging subsystems, and
Linux auditing framework. We provide a brief overview of
these three. Note that we discuss Linux in general, but it
can be applied to Internet of Things (IoTs) with Android
Operating Systems [26].

A. SYSTEM LOGGING IN LINUX
Figure 1 is a high-level overview of logging in Linux systems.
Linux logging consists of two major components. First, it
is logging in the Linux kernel. The Linux kernel maintains
buffers to store log messages. These buffers are typically
cyclic buffers (also called ring buffers). Kernel may overwrite
the log messages in the ring buffers even if they are not
consumed, i.e., transferred to user space buffers or to user
space processes. Table 1 provides an overview of the kernel
logging access mechanisms. Second, a Linux system has log-
ging services interactingwith the Linux kernel. These logging
services maintain the user space logging buffers and consume
loggingmessages in the user space buffers. There are a variety
of user space logging services in Linux systems. Popular ones
include syslog2, rsyslog3, and syslog-ng4. Besides

2See http://www.infodrom.org/projects/sysklogd/
3See https://github.com/rsyslog/rsyslog
4See https://github.com/balabit/syslog-ng

additional enhancements, these logging services generally
implement the syslog protocol [27], and route the log mes-
sages arriving in the user space buffer to destinations like
the system console, or mail the messages to a specific user,
or save the messages in a log file or a database, or pass the
messages to another syslog service instance.

B. OVERVIEW OF SELINUX
SELinux was initially designed to realize Mandatory Access
Control (MAC). It has evolved to support one or combina-
tion of multiple security models including Multi-Level Secu-
rity (MLS), Multi-Category Security (MCS), Type Security,
Identity-Based Access Control, and Role-Based Access Con-
trol [28], [29]. It consists of two major components, a policy
language and a policy enforcement component.

A SELinux policy consists of essentially a set of
rules called Access Vector (AV) rules or Access Vector
Cache (AVC) rules. An AV rule is a 5-tuple, i.e., (rule
type, source, target, class, permission
set). Of the 5-tuple, the pair of (source, target)
serves as an index to the rule, i.e., the Access Vector of the
rule. Figure 2(a) is an example of AV rules. The interpretation
of these rules is in Figure 2(b) where we represent the rules
in an Access Control Matrix-like format. In this context,
we can consider an AV rule as a 2-tuple (a pair), i.e., a
pair of (AV, rights-set) where AV is (source,
target) and rights-set (class, permission
set, rule type).

Its policy enforcement component is a Linux Security
Module (LSM) [31]. The component consists of Object
Manager, Access Vector Cache (AVC), and Security Server.
LSM has a number of hook function pointers. The Linux
system bootstrp process initializes SELinux by pointing the
LSM hook function pointers to SELinux routines. Figure 3
illustrates the relationships of these components and how
SELinux enforces its security policies [28], [29], [32]. For
instance, when a process requests to access a file, we first
form an AV by obtaining the source type from the process
and the target type from the file, and send it to the Object
Manager. If the Object Manager does not find the AV, the
file is not subject to MAC of SELinux and the access control
falls back to traditional Linux Discretionary Access Control
(DAC). If the Object Manager finds the AV, SELinux uses
the AV to look up the AV rules from the AVC. If the Object
Manager does not find an AV rule in the AVC, SELinux

131174 VOLUME 7, 2019



Y. Xiao et al.: Prototyping Flow-Net Logging for Accountability Management in Linux Operating Systems

FIGURE 2. 3 SELinux AV rules and their access control matrix-like representation.

FIGURE 3. SELinux policy enforcement logic [28], [29], [32].

queries the Security Server and retrieves the AV rules using
the AV. SELinx then caches these AV rules in the AVC. With
the AV rules, SELinux determines whether it grants or denies
the process’s access to the file. If it denies the access, it forms

an AVC denied message, and as we shall see, logs the message
via the Linux audit framework.

Table 2 is an example of an AVC denied message that cor-
responds to an SELinux policy violation. In this example, we
also see examples of SELiux Security Context that consists
of user, role, type, and the optional field of range. An
object controlled by a SELinux policy, such as a file has an
association with a SELinux type. The type of a process, as
we have described in the above in effect specifies a protection
domain and the type of an object specifies a permissions-set
on the object, as in Figure 2. SELinux associates an SELinux
userwith one or more SELinuxroles, and associates each
rolewith one ormore SELinuxtypes to which theroles
have access. The range field is optional. It is present when
the policy supports MCS or MLS, and specifies a level of
MLS (e.g., level s0) and a category of MCS. Linux loads a
SELinux policy when it boots. It establishes the associations
between the SELinux types and Linux users and files that
are under the policy’s control. The association process is
in effect SELinux ‘‘labeling’’. The AVC denied message in
Table 2 essentially states that the permissions-set retrieved
by the AV (http_t, tmp_t) does not contain a read
permission.

C. LINUX AUDIT SYSTEM AND LOGGING
Linux audit system is in fact a logging component for the
Linux kernel and provides a service to record audit events
in logs and tools to query the logs [33]. It consists of a kernel
component and a user space component. A user can instru-
ment the kernel to specify events to log, such as, at the entry
or at the exit of a system call or both. The audit subsystem
writes these events to a kernel buffer and transferred to the
user space component via the netlink socket, a kernel
interface for efficient access of kernel data in user space [34].
Linux audit subsystem interactions with LSM and SELinux,
e.g., SELinux writes AVC denied messages via Linux audit
framework, which in turn writes the messages to a file or to a
syslog service.

VOLUME 7, 2019 131175



Y. Xiao et al.: Prototyping Flow-Net Logging for Accountability Management in Linux Operating Systems

TABLE 2. An SELinux logging record.

III. FLOW-NET AND FLOW-NET LOGGING
IMPLEMENTATION
We present a prototypical design and implementation of the
flow-net based logging.

A. FLOW-NET
Aflow-net is a log recorded in a directed acyclic graph (DAG)
that maintains events and their relationships as part of the
log [19]. Inside a system, there are entities, such as a file,
a user, a system call, and a process. Each entity has activities
associated to it, either performed by it or performed on it.
We order all of the activities associated with an entity in
a temporal order from its creation to the present time or
to its termination. These activities form the activity flow of
the entity. Each activity involves typically two entities, i.e.,
a subject and an object, and the subject and the object’s
flows thus intersect with each other. The flows in the system
form a network called a flow-net, a DAG where logging
events representing the activities are vertices (or nodes) and
a temporal relationship between two closest events in a flow
becomes an edge.

For example, consider a subject, e.g., a user. All of the
events involved with the user from the time when a system
administrator creates the user account in the system to the
present time or to the time when the system administrator
removes the user account from the system forms a flow along
with time, called the user’s flow. Consider an object, e.g., a
file. All of the events involved with the file from the time
when a process creates the file to the present time or to the
time when a process deletes the file are a flow along with
time, called the file’s flow. An event such as that the user
opens the file is on both the flow of the user and that of the
file. The two flows thus intersects at this common event. All
of the flows in a system forms a flow-net.

Figure 4 includes an example of a flow-net log and illus-
trates this concept. The log shows that User A logged in,
entered a directory, opened File B, read File B, closed File B,
and logged out. User D logged in and created File B. These
events form 3 flows in the flow-net log. For convenience, we

call them Flow User A, Flow File B, and Flow User D. Flow
User A records actions the subject, i.e., User A performed,
Flow File B actions performed on the object, i.e., on File B,
and Flow User D actions User D performed.

To achieve accountability, e.g., to determine the causes of
an event of interest, e.g., an unauthorized access of a user
file, we trace back to events leading to the event of interest,
and infer the cause of the unauthorized access from the pre-
ceding events. The relationships among events are essential
for achieving this. A requirement to allow back-tracing is
to know first what events relate to the unauthorized access
event, and the temporal order of these related events, i.e.,
which occur earlier, and which later. Figure 4 also include
a snapshot of a ‘‘traditional log’’. In Figure 4, the traditional
log has 9 events. To determine the set of related events, we
must examine the values of the attributes of the events, such
as, whether two events share an attribute and the values are
identical. To determine the temporal order of these events, we
rely on the time stamps of these events.

The back-tracing can be difficult in the traditional logs,
if we only depend on the time stamps to figure out what
happened. These time stamps can be either the time when
the events occur or the time when the system records the
events. The consistency of the time stamps can be a problem.
In addition, due to concurrency and asynchronous I/O in
the system, the order of event arrivals in a log alone does
not necessarily establish any causality or correlation of the
events because the events may arrive out of order and may
occur concurrently; the correct temporal order is essential to
achieve accountability accurately.

In addition, given the set of events in the traditional logs, an
auditormust use an algorithm to infer the relationships among
the events using event types, event attributes, and the values
of the attributes. The accuracy of the relationship inferred
depends on the auditor’s knowledge, skills, and experience
or on the sophistication of the algorithm used.

The above back-tracking process in the traditional logs
implies the assumption that sufficient preceding events are
in the log for us to analyze during the auditing process.

131176 VOLUME 7, 2019



Y. Xiao et al.: Prototyping Flow-Net Logging for Accountability Management in Linux Operating Systems

FIGURE 4. Flow-net log vs. traditional log.

To record log events, system administrators must config-
ure the system beforehand. Since the purpose of the log is
to support auditing, it requires the administrators to have
a foresight on what events are necessary to support audit-
ing process. It is possible the system has never logged
necessary events to support effective auditing process to
answer queries of interest. Furthermore, as shown in Figure 1
some events may not be present in the log files since
they were 1) dispatched to other network locations, 2) con-
sumed by another process, and 3) overwritten by later event
data before the system writes them out to log files or
databases.

Next is to consider the time complexity to build complete
relationships from the events in a log if the relationships
are not explicitly recorded, i.e., given that we want use a
traditional log to build the relationships of the events, how
much time it will take. Consider a traditional log of m events.
First, we begin with one event and determine its relationship
with all the rest (m−1) events. Second, we choose the second
event and determine its relationship with all the rest (m − 2)
records. So on so forth, finally, we choose the last event and
finish building the relationships. The total steps are therefore
(m− 1) · (m− 2) . . . 1 = m!.

Contrast to the traditional log, a flow-net log contains both
events information and relationships among these events.
This has two advantages. First, the relationships among
events in the flow-net log allow us to recover activity flows
because this is how the system builds a flow-net log. This
is useful to trace events in the log and to discover the
root causes of some important events, such as, an unautho-
rized access to a user’s file. Second, during the process of
recording flows, the flow-net logging must record necessary
events along the flow regardless whether an administrator
configures it or not, which ensures that the system must
record necessary events otherwise it wouldn’t be able to
build the flow-net log. Third, to support auditing, we only
sequentially examine events along flows, which is in lin-
ear time. Therefore, flow-net logging is a better approach
than traditional logging to support logging and auditing for
accountability.

B. EVENT TYPE AND STRUCTURE
1) COMMON EVENTS IN LINUX
In order to record user activities in flow-net in Linux, we will
explore major events from Linux system booting to powering

VOLUME 7, 2019 131177



Y. Xiao et al.: Prototyping Flow-Net Logging for Accountability Management in Linux Operating Systems

off. Understanding these is necessary to help us design data
structures to build flow-net logs.

• Linux boot. Linux boot is a common event as we must
boot the system before we use it, and it is the time when
the system initializes a flow-net.

• Linux reboot. From time to time, a reboot is necessary,
such as, a kernel upgrade. Reboot is also a common
event, and it is the time when the system reinitializes a
flow-net.

• User login. When Linux boot finishes, the system will
authenticate and authorize a user to run a process. In an
interactive system, this often leads to a user login event.
If a whole-system flow-net is not of interest but a user
is, it is the time we initialize a user specific flow-net.

• Switch user. When a user logs in the system, the user
can sometimes switch to another user if authorized to do
so, which is the time that the user switches protection
domains.

• Opening and closing shell. Linux users use system shells
to interacts with the system. Opening and closing shell
are also important and common events.

• Shell commands. Users in Linux can launch programs
through shell commands. As such, users’ interaction
with shell are also important common events.

• Graphic interface interactions. Uses often interacts with
applications via graphical user interface. For instance,

users can use a desk shortcut to launch an application.
Therefore, users’ interactions with graphic interfaces are
also common events.

These events are high-level events. These provide a begin-
ning point for us to explore more event types by breaking
down these events to finer events. We explore event hierarchy
in next section.

Prior works in Operating Systems logging and auditing
provide a blueprint for common events that we should con-
sider in our design, for instance, Trusted Solaris Operating
System defines a list of events to support auditing queries
[16, Appendix B Audit Record Descriptions].

2) EVENT TYPE HIERARCHY
In previous section we describe major events in Linux. These
events are high level events, each consists of low level events,
and we can continue to break down the low level events to
even finer events. The high-level events and low-level events
form a hierarchy. The hierarchy helps us determine event
types we should consider in the design.

Figures 5 and 6 illustrate two event hierarchies, the Linux
boot and user login events. For instance, Linux boot includes
two lower level events, PC boot and Linux process initial-
ization. PC boot contains three lower level BIOS events,
starting from BIOS checking Master Boot Record (MBR) to
boot loader loading operating system while Linux process

FIGURE 5. Boot structure tree.

131178 VOLUME 7, 2019



Y. Xiao et al.: Prototyping Flow-Net Logging for Accountability Management in Linux Operating Systems

FIGURE 6. Login structure tree.

initialization includes all lower level process initializations
necessary for booting Linux operating system. User login
event has three lower level events, initialing process to spawn
getty, login process and running users’ sessions. In order
to spawn getty process, system needs opening the tty
lines, setting their modes, printing the login prompt, obtaining
the user’s ID, and starting the login process. Login process
consists of authenticating user name and its password. At last,
users are able to run their own sessions.

3) STRUCTURE OF LOGGING RECORD
A log consists of logging events, each corresponding to a
logging record. We adopt the logging record format defined
in Trusted Solaris [16], as such, a logging record consists of
a sequence of logging tokens, typically, header token, subject
token, slable token, and return token [16].
A Header token is the first token in a logging record. A

subject token is a token that records information about a
subject. A slable token holds sensitive label (i.e., ‘‘slabel’’)
information that implies a confidentiality policy we must
enforce for these tokens. At last, the return token stores the
status of an involved operation, such as, a system call.

We adopt the set of token types defined in the Trusted
Solaris Operating Systems [16], and Table 3 are examples of
those token types. Each token type has its own format. In a
logging record, a token may have data specific to the token.
Since the type and the amount of data following a token vary,
we adopt a specific format for each type of token. Table 4 lists
the formats for selected token types, each is a list of attributes.
For instance, ‘‘acl, user_object, user id, r’’ is
an ACL token (an Access-Control-List token). It means a user

TABLE 3. Selected tokens implemented in accountable log system
(Adopted from trusted solaris [16]).

with user id has read permission (i.e., permission r) on a
specific object type, i.e., a user_object.

C. FLOW-NET IMPLEMENTATION
1) LOGGING KERNEL EVENTS
LSM provides a number of function hooks (i.e., function
pointers). These hooks are for loading security modules, such
as, the SELinux module. For proof of concept, we simply
adopt these hooks to capture the events with modification to
SELinux, i.e., we modify SELinux in the event-capturing part
of the program to build the flow-net structurewhere events are
cross-referenced at flow intersections.We record events given
in Section III-B. For instance, we ensure that the prototype
records all the activity flows shown in Figure 4, i.e., we log
events associated with User A, File B, and Use D.

VOLUME 7, 2019 131179



Y. Xiao et al.: Prototyping Flow-Net Logging for Accountability Management in Linux Operating Systems

TABLE 4. Format of selected tokens (adopted from trusted solaris [16]).

Additionally, we need to consider another problem: when
do we create a new entry in the flow-net for an entity? If
we maintain the cross-reference for all entities in the system
at all times, it may dramatically slow the system and the
flow-net may become too complex to be useful. To reduce
flow-net size, we only record events associated with files
or users. To further reduce flow-net size, we also consider,
at what time do we need to and not need to insert a new
event in the flow-net when an activity happens? For this, we
determine whether the events along the same flow are equal,
e.g., multiple modifications by User A to File B are equal
events along Flow User A without interleaved by other events
when file modification event token does not have the content
of the file as one of its attribute. When an equal event occurs,
we only record a reference to the preceding event with a new
time stamp.

Listing 1 outlines the changes to Linux kernel to record the
events when writing to a file. We captured the write event
and logged it in logEventBuf in the kernel space. The next
step is to forward the data in the kernel space to the user space.

In order to build a complex flow, we need to capture
important events. For example, a login event is critical.
To determine when the login event happens is also a
concern. Because when the machine finishes booting, the
system creates a getty process, the process will in turns
create another process called login, both are via the exec
system call. Therefore, a login event happens whenever a
call to exec to create a login process. After the init
process respawns the getty process, the login event has
transpired. In addition, all file-related operations are essential
and the prototype must log events for these operations, such
as, chmod, chown, and so on.

List. 1. Revision made to the Linux kernel source code file
linux-2.6/fs/sysfs/bin.c.

2) BUILDING FLOW-NET
In this prototype, we build flow-net in the user space. There
are two user space components. One is to build the flow-net.
Upon receiving an event in the user space transferred from the
kernel space, we first check whether the involved entities are
new. If an entity is new, we instantiate an entity object, and
initialize a flow object for the entity. The entity object has a
pointer referencing the flow object. If an entity is already in
the flow-net, we append the event to the end of the entity’s
flow. The other like a syslog service program is to write the
flow-net to a file on the disk.

We use an array list to represent a flow. Each flow has their
own events. Listing 2 are example event data structures in the
flow-net. Each event has a reference to next event in the flow.
There are a list of flow intersection objects, and each contains
pointers referencing intersecting events.

D. COMMUNICATION BETWEEN KERNEL SPACE
AND USER SPACE
When we build a flow-net in the user space, we need to
arrange the kernel to transfer the event to the user space.
Linux kernel has methods to communicate with a user
space program, and these methods include named pipes, the
copy_to_user and copy_from_user kernel APIs, and
the netlink socket [34], [35].

List. 2. Data stuctures for the write and the read events.

131180 VOLUME 7, 2019



Y. Xiao et al.: Prototyping Flow-Net Logging for Accountability Management in Linux Operating Systems

FIGURE. 7. Kernel and user space data exchange in flow-net logging.

Exchanging data between the user and the kernel spaces
can be a significant overhead. Figure 7 provides an insight
how we may reduce logging overhead. When the kernel
writes a logging event to the kernel ring buffer, it must ensure
mutual exclusive access to the ring buffer or some other
critical data structures, for which, the kernel uses a lock.
Since we access these data structures exclusively, additional
requests to the data structures must wait, thereby, causing a
delay. In addition, the system also runs a set of processes that
moves log events from the kernel space to the user space, from
the user space to a network location, or to a non-volatile stor-
age. These processes compete CPU and I/O resources with
other applications. Therefore, to reduce logging overhead,
we may examine 1) the methods to reduce locking; 2) the
methods to run logging services more holistically with other
applications, for instance, via operating system scheduling,
while user applications are busy at performing CPU intensive
tasks, the logging services can make use of idle I/O resources;
and 3) the methods to exploit the cost of store or dispatch
logging events to different locations (typically, it is the fastest
to write to memory, and the secondly fastest to write to a high
speed network location, and the slowest to write to a local
file.

In these three approaches, the named pipe follows the
FIFO discipline. Because we desire to use a program in the
user space to process events in an array, and the order of
the processing isn’t necessarily FIFO. The copy_to_user
or copy_from_user kernel APIs copies data between
two buffers, one in the kernel space, and the other the user
space. The netlink socket is a two-way message passing
interface between the kernel space and the user space [7],

[34], [35]. In essence, we can use either copy_to_user
or the netlink socket to transfer the event data in the
kernel space to the user space. We tested both of these two
communication methods in Section IV.

E. SOME ADVANTAGE OF FLOW-NET LOGGING
As we all know, the minimal time unit in common data
exchange formats is 1/100 seconds, which is not sufficiently
precise to establish the sequence of logging events. Precision
of timing can be a source of challenge in keeping track of
logging events, in particular when we transform one format
to another for auditing or other purposes. For instance, it is
common we choose the precision of 1/100 seconds when we
write out logged events. This can confuse the order of events
that happen closely in time. Traditional logging may easily
loose the ordering of the these events seemingly happening
at the same time; however, this won’t be a problem for flow-
net logging because it arranges events in a temporal order in
a flow in the flow-net.

Second, the traditional logging mechanism merely shows
discrete events with their time stamps. We infer the rela-
tionships among the events using the attributes of the events
and the time stamps. Below is an example that a confusion
may arise in Linux or other UNIX-like operating systems.
Consider file access events. The recorded logging events
often only use a file name to distinguish different files. For
instance, we open a file ‘‘file1’’ and don’t close it; we
delete the ‘‘file1’’ and create another file with the same
name ‘‘file1’’, which has totally different data. Then we
close the original ‘‘file1’’. The logging record will be
confusing because Linux does not delete an open file before

VOLUME 7, 2019 131181



Y. Xiao et al.: Prototyping Flow-Net Logging for Accountability Management in Linux Operating Systems

TABLE 5. Specification of testing computers.

it closes the open file. Therefore, we cannot figure out what
happened exactly, i.e., whether we are operating a single
file or two files with an identical name based on the file
name using traditional logging records. If we use the flow-
net model, the cross-references will show what was going on
before, which offsets the problem.

IV. EVALUATION
A. PERFORMANCE OVERHEAD OF FLOW-NET
LOGGING IMPLEMENTATION
The advantage of flow-net logging to aid auditing is evident
as discussed above. The essential question we must answer
is how much overhead the flow-net logging incurs on the
system.

To answer this question, we design the following test sce-
nario. We prepare two Linux systems, one with the original
Linux 2.6 kernel (called the original system), and the other
with the modified kernel with the flow-net logging (called the
flow-net system). The specifications of the computers that run
the two system are in Table 5.

We then prepare a workload program. In the workload
program, we open a new file, write a given volume of data to
the file (e.g., a number of random integers), and subsequently,
delete the file. We call these three steps a ‘‘time action’’.
After each time action, we put the process in sleep for a

TABLE 6. Overhead of implemented flow-net logging at an extreme case.

period of time. By controlling the sleeping period, we can
control the frequency (or rate) of the time actions. Using this,
we can simulate either I/O-bound workloads or CPU-bound
workloads. In the workload program, we repeat the time
action-sleep cycles for a number of times, e.g., 2,000 times.
We run the work load program in the two Linux systems and
record the running times at different action frequencies. The
difference of these running times of the workload program
in the two systems tells us the performance overhead of
the flow-net logging if any when compared to the original
system.

We prepared two implementations, one uses copy_to_
user kernel API to transfer log events in the kernel
space to the user space (the copy_to_user implemen-
tation), and the other the netlink socket (the netlink
implementation).

We first obtain the results using the copy_to_user
implementation. We set the sleeping period as 0 (the smallest
period) and write one random integer at a time (also the

FIGURE. 8. Performance overhead of flow-net logging.

131182 VOLUME 7, 2019



Y. Xiao et al.: Prototyping Flow-Net Logging for Accountability Management in Linux Operating Systems

smallest amount of data). This represents an extreme case as
it is one of the most I/O intensive workloads. The results are
in Table 6. The table shows that in the original system, the
process took 14,998 time ticks of user time and 13,426 system
time, and in the flow-net system, the process took 23,695 user
time and 17,254 system time.

Because of the added logging logic in the kernel, such as,
we modified the read and write functions in the kernel
source code, we observe an increase in the system time. In
the user space, we launched user space-logging programs to
build flow-net and write the flow-net logs to files. The two
programs that run simultaneously will also incur an overhead.
This will increase the user time as well.

TABLE 7. Common accountability queries.

Denote the total wall-clock running time of the workload
program on the flow-net system as Tf and that on the original
system as To. The performance overhead (or cost) of the flow-
net logging system over the original system as C = Tf /To.
Using this definition, we estimate the overhead at the extreme

FIGURE. 9. Format of flow-net log.

VOLUME 7, 2019 131183



Y. Xiao et al.: Prototyping Flow-Net Logging for Accountability Management in Linux Operating Systems

case as C = (40, 949 − 28, 424)/28, 424) ≈ 44%. This
overhead is in effect the upper bound of the performance
overhead.

Two factors impact flow-net logging. One is time action
frequency. The other is the kernel buffer size for flow-net
logging events. Figure 8 is the performance overhead ver-
sus action frequency (in actions/second) and kernel buffer
size for flow-net logging (in pages where a page is 4
KB in the test systems). Logging events become more as
action frequency increases, and the overhead becomes higher.
Relationship between the buffer size and the overhead is
more complex. In general, large buffer size leads to fewer
transfers from the kernel space and the user space and to
fewer disk I/O requests to write logs to files, which leads
to less overhead; however, it isn’t consistently observed in
Figure 8.

B. QUERY PERFORMANCE OF LOGS
Accountability requires to trace back the events using logged
data to answer some queries of interests. In this section,
we will use common queries required by accountability and
evaluate the query performance using the logged data. Table 7
lists four common accountability queries.

Throughout the remainder of the paper, we will refer to
these queries as Queries 1, 2, 3, and 4. We evaluate the
performance of these queries in traditional log and flow-net
log in query time. For traditional log, we organize a log as
a sequence of records of log events in a file ordered by the
event time stamp, while for flow-net log, we do as flows, as
illustrated in Figure 9.

We executed the 4 types of queries on traditional logs and
flow-net logs and measured the query times. Figure 10 are the
results when we vary log size, i.e., the number of log events.

FIGURE. 10. Query times on traditional logs and flow-net logs.

131184 VOLUME 7, 2019



Y. Xiao et al.: Prototyping Flow-Net Logging for Accountability Management in Linux Operating Systems

The query times of Query 1 on flow-net logs are less than
those on traditional logs. This is because we must conduct
a sequential search over the entire log when querying a tra-
ditional log; however, we only need to follow a flow when
querying a flow-net log.

The query times of Query 2 on flow-net logs are greater
than those on traditional log. This is the result of the two
following factors. In our implementation of flow-net logs, a
log event may have multiple copies because multiple flows
intersect at the event as the result that the event involves
more than one entities, such as User A and File B (e.g.,
in the case that User A opened File B). Therefore, a flow-
net logs tend to have more log records due to duplicative
log events. Also, events in a traditional log is already in
temporal order while in a flow-net log, events are not in
temporal order when they are in different flows. As a result,
to list all of the entities’ activities in a specific time range,
it requires checking all of the log records in flow-net logs
while only partially in a traditional log, as such, the query
times on flow-net log is greater than those on traditional
logs.

The query times of Query 3 on flow-net log are less than
those on traditional logs. This is the result of the following
observation. To list an entity’s activities at a specific time, we
only need to search the entity’s flow in a flow-net log while
we must search the entire log on a traditional log.

The query times of Query 4 on flow-net log are also less
than those on traditional logs. To answer this query on a flow-
net log, we only need to locate the entity’s flow while on
traditional log, we ought to search the entire log. This explains
the observation.

C. ENFORCING ACCOUNTABILITY POLICIES
We examine accountability policy enforcement in the flow-
net logging framework. For this, we test these policies: 1) reg-
ular users cannot delete a log that records regular users’
activities; 2) peer administrators can delete a log that logs
regular users activities; 3) peer administrators cannot delete
a log that records the activities of him/herself; and 4) peer
administrators can delete a log that records the activities of
other peer administrators.

We take advantage of SELinux’s security policy language
and express accountability policies as SELinux policies.
Listing 3 are the policies written as a set of SELinux policies
in SELinux policy language.

In the policies, ourreglogtype_t and
ouradmlogtype_t are two new SELinux types with
attribute file_type and sysadmfile to allow access
by the administrator. sysadm_t has a full access
(read, write, etc.) to ourlogtype_t type files.
relabelfrom and relabelto indicate that staff_t
can re-label ourtype_t type files from and to a different
type.

Line 5 means that regular users, i.e., any user labeled as
staff_t type can read log files, i.e., any files labeled as the

List. 3. Accountability policies written as SELinux policies.

ourreglogtype_t or the ouradmlogtype_t type, but
cannot write to or delete these files. Line 6 indicates a system
administrator, i.e., a sysadm_t user can read log files, and
Line 7 tells that a system administrator can write or delete
these log files.

Upon observing these policies are successfully enforced
by running a set of testing applications, we also want
to measure how much overhead there is in the flow-
net logging implementation. The test scenario to measure
flow-net logging overhead is identical to that in Section IV-A,
albeit we use the improved solution, i.e., to use the
netlink socket to transfer logging data from the ker-
nel space to the user space. Figure 8(b) is the testing
results.

V. CONCLUSION AND FUTURE WORK
In addition to preventative countermeasures, accountability
has been increasingly viewed as a necessary means to address
real-world security. A common approach to provide account-
ability is via logging and auditing. We posit that Flow-net is
an effective technique to provide accountability by preserving
event relationships during logging and by answering account-
ability queries efficiently during auditing.

Building upon prior works in flow-net, we designed and
implemented a prototype of the flow-net logging framework
to support accountability. The primary objective is to examine
an important practical concern, i.e., to demonstrate the fea-
sibility of the flow-net framework to support accountability.
The experiments using the prototype indicate that the over-
head of the flow-net logging is moderate, in particular, when
we use the netlink socket as the means to transfer logging
data from the kernel space to the user space. In SELinux
policy language, we also wrote accountability polices. Tests
indicate the flow-net prototype can enforce these policies also
with moderate overhead.

Although the results are overall positive to meet the pri-
mary objective, the work has limitations. First, our prototype
introduced modification to the Linux kernel source code, and
it can introduce stability problems to the kernel and degrade
its quality. Second, it remains uncertain whether race condi-
tions exist in our implementation. The future work includes to
structure the flow-net logging framework as a loadable kernel
module, and to introduce formalmethods to ensure the quality
of the design and implementation.

VOLUME 7, 2019 131185



Y. Xiao et al.: Prototyping Flow-Net Logging for Accountability Management in Linux Operating Systems

REFERENCES

[1] D. J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigenbaum, J. Hendler,
and G. J. Sussman, ‘‘Information accountability,’’ Commun. ACM, vol. 51,
no. 6, p. 82, 2008.

[2] H. Nissenbaum, ‘‘Computing and accountability,’’Commun. ACM, vol. 37,
no. 1, pp. 72–81, 1994.

[3] D. G. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon,
and S. Shenker, ‘‘Accountable Internet protocol (AIP),’’ ACM
SIGCOMM Comput. Commun. Rev., vol. 38, no. 4, pp. 339–350,
2008.

[4] J. Mirkovic and P. Reiher, ‘‘Building accountability into the future
Internet,’’ in Proc. 4th Workshop Secure Netw. Protocols, Oct. 2008,
pp. 45–51.

[5] Y. Xiao, ‘‘Accountability for wireless LANs, ad hoc networks, and wireless
mesh networks,’’ IEEE Commun. Mag., vol. 46, no. 4, pp. 116–126,
Apr. 2008.

[6] Z. Xiao, N. Kathiresshan, and Y. Xiao, ‘‘A survey of accountability in com-
puter networks and distributed systems,’’ Secur. Commun. Netw., vol. 9,
no. 4, pp. 290–315, 2016.

[7] L. Zeng, H. Chen, and Y. Xiao, ‘‘Accountable administration in oper-
ating systems,’’ Int. J. Inf. Comput. Secur., vol. 9, no. 3, pp. 157–179,
2017.

[8] Y. Lu, X.Wang, C. Hu, H. Li, and Y. Huo, ‘‘A traceable threshold attribute-
based signcryption for mhealthcare social network,’’ Int. J. Sensor Netw.,
vol. 26, no. 1, pp. 43–53, 2018.

[9] R. Shirey, Internet Security Glossary, document RFC 2828, Internet
Requests for Comments, May 2000.

[10] R. A. Nadi and M. G. H. A. Zamil, ‘‘A profile based data segmentation
for in-home activity recognition,’’ Int. J. Sensor Netw., vol. 29, no. 1,
pp. 28–37, 2019.

[11] N. Hoque, D. K. Bhattacharyya, and J. K. Kalita, ‘‘Botnet in DDoS attacks:
Trends and challenges,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 4,
pp. 2242–2270, 4th Quart., 2015.

[12] A. Jose, R. Malekian, and B. B. Letswamotse, ‘‘Improving
smart home security; Integrating behaviour prediction into
smart home,’’ Int. J. Sensor Netw., vol. 28, no. 4, pp. 253–269,
2018.

[13] L. Bilge and T. Dumitraş, ‘‘Before we knew it: An empirical study of zero-
day attacks in the real world,’’ in Proc. ACM Conf. Comput. Commun.
Secur., 2012, pp. 833–844.

[14] Q. Liu, F. Chen, F. Chen, Z. Wu, X. Liu, and N. Linge, ‘‘Home appliances
classification based on multi-feature using ELM,’’ Int. J. Sensor Netw.,
vol. 28, no. 1, pp. 34–42, 2018.

[15] B.W. Lampson, ‘‘Computer security in the real world,’’Computer, vol. 37,
no. 6, pp. 37–46, Jun. 2004.

[16] Sun Microsystems, Mountain View, CA, USA. (Nov. 1999). Trusted
Solaris Audit Administration. [Online]. Available: https://docs.oracle.
com/cd/E19109-01/tsolaris7/805-8057/805-8057.pdf

[17] W. Lee, A. Squicciarini, and E. Bertino, ‘‘The design and evaluation of
accountable grid computing system,’’ inProc. 29th IEEE Int. Conf. Distrib.
Comput. Syst., Jun. 2009, pp. 145–154.

[18] J. Lockerman, J. M. Faleiro, J. Kim, S. Sankaran, D. J. Abadi, J. Aspnes,
S. Sen, and M. Balakrishnan, ‘‘The fuzzyLog: A partially ordered shared
log,’’ in Proc. 13th USENIX Symp. Oper. Syst. Design Implement. (OSDI),
2018, pp. 357–372.

[19] Y. Xiao, ‘‘Flow-net methodology for accountability in wireless networks,’’
IEEE Netw., vol. 23, no. 5, pp. 30–37, Sep. 2009.

[20] B. Fu andY. Xiao, ‘‘Amulti-resolution accountable logging and its applica-
tions,’’ Comput. Netw., vol. 89, pp. 44–58, Oct. 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128615002042

[21] Y. Xiao, K. Meng, and D. Takahashi, ‘‘Accountability using flow-net:
Design, implementation, and performance evaluation,’’ Secur. Commun.
Netw., vol. 5, no. 1, pp. 29–49, 2012.

[22] B. Fu, Y. Xiao, and H. Chen, ‘‘FNF: Flow-net based fingerprint-
ing and its applications,’’ Comput. Secur., vol. 75, pp. 167–181,
Jun. 2018.

[23] Oracle and/or its Affiliates. (Sep. 2010).Oracle Solaris Trusted Extensions
Administrator’s Procedures. [Online]. Available: https://docs.oracle.com/
cd/E18752_01/pdf/819-0872.pdf

[24] Z. Xiao, Y. Xiao, and J. Wu, ‘‘P-accountability: A quantitative study of
accountability in networked systems,’’ Wireless Pers. Commun., vol. 95,
no. 4, pp. 3785–3812, 2017.

[25] B. Fu and Y. Xiao, ‘‘Accountability and Q-accountable logging in wire-
less networks,’’ Wireless Pers. Commun., vol. 75, no. 3, pp. 1715–1746,
2014.

[26] H. Sun, S. McIntosh, and B. Li, ‘‘Detection of in-progress phone calls
using smartphone proximity and orientation sensors,’’ Int. J. Sensor Netw.,
vol. 25, no. 2, pp. 104–114, 2017.

[27] R. Gerhards, The Syslog Protocol, document RFC 5424, Internet
Requests for Comments, Mar. 2009. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc5424.txt

[28] Red Hat. (2013). Deployment, Configuration and Administration of Red
Hat Enterprise Linux 5. Accessed: May 10, 2019. [Online]. Avail-
able: https://access.redhat.com/documentation/en-us/red_hat_enterprise_
linux/5/html/deployment_guide/index

[29] SELinux Contributors. (May 10, 2019). Security-Enhanced Linux.
[Online]. Available: http://en.wikipedia.org/wiki/Security-Enhanced_
Linux

[30] SELinux Contributors. (May 10, 2019). SELinux Access Vector Rules.
[Online]. Available: https://selinuxproject.org/page/AVCRules

[31] J. Morris, S. Smalley, and G. Kroah-Hartman, ‘‘Linux security modules:
General security support for the linux kernel,’’ in Proc. USENIX Secur.
Symp., Berkeley, CA, USA, 2002, pp. 17–31.

[32] D. P. Quigley, ‘‘PLEASE: Policy language for easy administration of
SELinux,’’ M.S. thesis, Stony Brook Univ., Stony Brook, NY, USA,
2007.

[33] S. Ma, J. Zhai, Y. Kwon, K. H. Lee, X. Zhang, G. Ciocarlie, A. Gehani,
V. Yegneswaran, D. Xu, and S. Jha, ‘‘Kernel-supported cost-effective
audit logging for causality tracking,’’ in Proc. USENIX Annu. Tech. Conf.
(USENIX ATC), 2018, pp. 241–254.

[34] P. Neira-Ayuso, R. M. Gasca, and L. Lefevre, ‘‘Communicating between
the kernel and user-space in Linux using netlink sockets,’’ Softw., Pract.
Exper., vol. 40, no. 9, pp. 797–810, 2010.

[35] P. N. Ayuso. (May 10, 2019). Communicating Between the Kernel and
User-Space in Linux Using Netlink Sockets: Source Code Reference.
[Online]. Available: https://people.netfilter.org/pablo/netlink/netlink-
libmnl-manual.pdf

YANG XIAO (M’98–SM’04) is currently a
Professor with the Department of Computer
Science, The University of Alabama, Tuscaloosa,
AL, USA. His current research interests include
cyber physical systems, the Internet of Things,
security, wired/wireless networks, smart grids, and
telemedicine. He has published over 200 journal
and conference articles. He was a Voting Mem-
ber of the IEEE 802.11 Working Group from
2001 to 2004, involving the IEEE 802.11 (WIFI)
standardization work.

LEI ZENG graduated from the Department of
Computer Science, The University of Alabama,
Tuscaloosa, AL, USA, in December 2014.

131186 VOLUME 7, 2019



Y. Xiao et al.: Prototyping Flow-Net Logging for Accountability Management in Linux Operating Systems

HUI CHEN is with the faculty of the Department
of Computer and Information Science, Brooklyn
College, City University of New York and the
Doctoral Faculty of the Ph.D. Program in Com-
puter Science, the Graduate Center of the City Uni-
versity of New York. His current research interests
include software engineering, wireless networks,
wireless sensor networks, and system and network
security. He has been teaching courses in software
development, computer networks, computer secu-

rity, and web programming among others. He is a member of the ACM and
a Senior Member of the IEEE. He served and has been serving on technical
program committees of conferences sponsored by the IEEE or ACM.

TIESHAN LI (M’09–SM’12) received the B.S.
degree in ocean fisheries engineering from the
Ocean University of China, Qingdao, China, in
1992, and the Ph.D. degree in vehicle opera-
tion engineering from Dalian Maritime University
(DMU), China, in 2005, where he was a Lecturer,
from September 2005 to June 2006, an Associate
Professor, from 2006 to 2011, has been a Ph.D.
Supervisor, since 2009, and a Full Professor, since
July 2011. FromMarch 2007 to April 2010, he was

a Postdoctoral Scholar with the School of Naval Architecture, Ocean and
Civil Engineering, Shanghai Jiao Tong University. From November 2008
to February 2009 and from December 2014 to March 2015, he visited the
City University of Hong Kong, as a Senior Research Associate (SRA). Since
September 2013, he visited the University of Macau as a Visiting Scholar for
many times. His research interests include intelligent learning and control
for nonlinear systems, multi-agent systems, and their applications to marine
vehicle control.

VOLUME 7, 2019 131187


