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ABSTRACT In this paper, based upon Voronoi Diagram, we propose GridVoronoi which is a novel spatial
index that enables users to find the spatial nearest neighbour (NN) from two-dimensional (2D) datasets
in almost O(1) time. GridVoronoi augments the Voronoi Diagram with a virtual grid to promptly find out
(in a geometric space) which Voronoi cell contains the query point. It consists of an off-line data pre-
processing phase and an on-line query processing phase. In the off-line phase, the digital geographical space
is partitioned with a Voronoi Diagram and a virtual grid, respectively. Next, for each square unit (i.e., grid
cell), the corresponding Voronoi cells that contain or intersect with this square are derived and kept in a
hashmap-like structure. In the on-line phase, for each real-time spatial NN query, the algorithmfirst identifies
which virtual square(s) contain(s) this query; then looks up the hashmap structure to find the corresponding
Voronoi cell(s) for this grid cell and the final result for the query. Overall, GridVoronoi significantly reduces
the time complexity in finding spatial NN in 2D space, thus improves the efficiency of real-time spatial NN
queries and Location Based Services.

INDEX TERMS Geospatial analysis, nearest neighbour methods, query processing, spatial databases.

I. INTRODUCTION
Due to the massive spread of smartphones and the develop-
ment of precise positioning techniques, location-based ser-
vices have become increasingly popular in everyday life.
More and more Web resources are being Geo-tagged; the
number of Geo-referenced Web objects, such as restaurants
and hotels associated with location information and textual
descriptions, has been growing exponentially. In recent years,
a significant amount of research work has focused on manag-
ing and mining such Geo-referenced Web objects, in which
one challenging task is the processing of database queries
that take location into account (often referred to as spatial
queries, or location-aware queries).

Spatial (K ) Nearest Neighbor (NN) search techniques can
be used inmany different real-life applications, including (but
not limited to) Location-Based Services (LBS), urban space
planning [1], route planning [2], [3], positioning based on
Internet of Things (IOT) [4]–[6], location verification/privacy
protection [7]–[10], spatial data mining [11]–[15], etc.

The associate editor coordinating the review of this article and approving
it for publication was Waleed Alsabhan.

In this paper, we investigate how to improve the efficiency
of spatial NN query processing, which is a fundamental
issue for top-k spatial keyword queries [16] and preference
queries [17], location-aware recommendation [18], etc. The
Geo-location of a query is often modelled as a point located
in a geographical area where all the data points reside.
In this paper, we focus on geographical areas that consist of
two-dimensional (2D) data sets that are widely available, and
frequently queried in Geo-spatial applications and Location
Based Services.

While a significant amount of research work on location-
aware query processing has focused on the optimisation
aspects of finding top-k results [16], [17], [19], very lit-
tle attention has been paid on how to improve the pro-
cessing efficiency of a single NN query. NN querying is
often assumed to be an issue that has been thoroughly
studied. When searching for location-aware nearest neigh-
bours, almost all existing work relies on R-Tree-like struc-
tures to access the local neighbourhood of a spatial NN query.
However, using R-Tree-based structures, the time complexity
for arriving to an NN query’s local neighbourhood in a geo-
metric space is O(log n) (n is the total number of objects/data
points), which is very expensive. Moreover, all nodes/entries
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intersecting this neighbourhoodmust be checked to obtain the
final NN object, leading to the unnecessary examination of
many unrelated entries. Thus, optimizing spatial NNquerying
is a critical research issue that deserves more attention.

As mentioned above, existing approaches need O(log n)
time to access an NN query’s corresponding neighbourhood
in the geographical area, which is highly time-consuming.
The ideal situation is to arrive to query’s matching location
in the geographical area and find the nearest spatial object in
O(1) time. If there is an algorithm which can turn this expec-
tation into reality, then the efficiency for real-time spatial NN
query processing can be substantially improved.

To this end, we propose a method which is able to find an
NN query’s nearest spatial object in 2D datasets in almost
O(1) time. We refer to this method as GridVoronoi since it
uses a Voronoi Diagram [20], [21] blended with a virtual
square grid for quickly accessing the corresponding location
of the query in the geographical area and finding the nearest
spatial object in almost O(1) time. Voronoi Diagram structure
is highly efficient in exploring the local neighbourhood in
a geometric space, but it lacks an efficient access method
that can help it locate this neighbourhood promptly. For this
reason, we augment Voronoi Diagram with a virtual grid.
This grid is virtual because we do not need to establish a
physical grid in the geographical area. There are generally
two phases in GridVoronoi: the offline pre-processing phase
and the online query processing phase.

In the offline pre-processing phase, we first partition the
digital geographical area using Voronoi Diagram, and each
Voronoi cell contains only one spatial data point. Next, with
a virtual grid, we virtually divide the same geographical area
into square units. With the virtual grid, we can immediately
calculate the corresponding virtual square (in the virtual grid)
that covers anNNquery’s spatial location.We also propose an
efficient algorithm that pre-computes for each virtual square
which Voronoi cell(s) contain(s)/intersect(s) it and keeps the
correspondence in a hashmap.

In the online query processing phase, for each spatial
NN query, GridVoronoi first calculates which square unit
of the virtual grid contains this query. It next finds in the
above hashmap the Voronoi cell that contain(s)/intersect(s)
this square unit and returns the corresponding spatial data
point for this Voronoi cell, as the query result.

In Figure 1, we demonstrate the main idea of GridVoronoi.
It uses Voronoi Diagram and a virtual grid of square units
to divide the 2D geographical area. v0 . . . v19 are 20 Voronoi
cells generated by Voronoi Diagram, while the square units
(with light gray color) are part of the virtual grid. Q1 and Q2
are two real-time spatial NN queries.Q1 is inside v9, whereas
Q2 is at the intersection of v8, v9 and v13. We observe that
a Voronoi cell may contain many virtual squares and it can
intersect with some virtual squares as well. ForQ1, by simple
calculations in the virtual grid, we can immediately find
the corresponding virtual square it locates. If GridVoronoi is
able to locate the Voronoi region (v9) corresponding to the
virtual square, then the data point in v9 must be the answer

FIGURE 1. A Toy Example for GridVoronoi.

forQ1. ForQ2, we also calculate the virtual square that covers
the query location. If GridVoronoi knows the square is at the
intersection of v8, v9 and v13, then it only needs to check the
data points in these three Voronoi cells to find out the final
nearest neighbour for Q2. For both queries, GridVoronoi will
be extremely efficient because it only needs to check very
few Voronoi cells. An important problem that GridVoronoi
needs to investigate is how to compute which virtual squares
are contained by the Voronoi cells or which virtual squares
intersect the Voronoi cells, which we will address in the
following sections.

The rest of the paper is organised as follows. Section II
reviews the prominent spatial NN search approaches.
In Section III, we introduce the GridVoronoi approach which
enhances the Voronoi diagram with a virtual grid to imme-
diately locate the Voronoi cell that contains a query point.
In Section IV, we address the issue of optimizing the side-
length of the grid cells for fast NN query processing. Then
in Section V, we discuss the complexity of GridVoronoi.
In Section VI, we extend GridVoronoi to process K nearest
neighbour queries. In Section VII, we experimentally com-
pare GridVoronoi with two well-established approaches on
real-world datasets. Finally, Section VIII concludes the paper.

II. RELATED WORK
The spatial nearest neighbour search problem has been exten-
sively studied in the literature. Existing algorithms can be
grouped into four categories: R-Tree based, Voronoi Dia-
gram based, Grid-partition based and Hybrid approaches.

A. R-TREE BASED APPROACHES
For R-Tree based approaches for (K)NN query processing,
Best-First Search (BFS) [22] has been the prevalent technique
for processing nearest neighbour queries [23]. BFS employs
a priority queue to store all nodes that need to be explored
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through the search process. It traverses from the root of the
R-Tree down to the leaves. For each minimum bounding
rectangle (MBR) it has visited, it computes the bounded
distances between the query point and the MBR, then inserts
the entry of each visited MBR into a heap and follows the one
closest to the query point.

In recent years, a significant amount of work [19],
[24]–[26] has been focused on processing spatial keyword
queries, that is, queries that specify both a location and a set
of keywords. IR2-tree [24] is a well-known approach that effi-
ciently answers top-k spatial keyword and preference queries.
It consists of an R-Tree and a signature tree to facilitate
both top-k spatial queries and top-k spatial keyword queries.
Similarly, IR-tree [25] is an R-Tree extended with inverted
files for processing the location-aware top-k text retrieval
queries. Each leaf node in the R-Tree is associated with an
inverted file with the text descriptions of the objects stored
in this region. Essentially, R-Tree is leveraged for spatial
proximity querying, whereas the inverted file is used for text
retrieval.

B. VORONOI DIAGRAM BASED APPROACHES
Besides R-Tree, many state-of-the-art approaches utilise
Voronoi Diagram to enhance KNN query processing because
Voronoi diagrams are efficient data structures for exploring a
local neighbourhood in a geometric space.

The most related approach to GridVoronoi is the VoR-
Tree structure proposed in [27]. Both methods utilise Voronoi
diagram to make full use of its power in exploring a local
neighbourhood in a geometric space. Moreover, both Grid-
Voronoi and VoR-Tree can help Voronoi Diagram come to
the neighbourhood of a query quickly. However, there are
two main differences between them. First of all, VoR-Tree
utilises an R-Tree to access to the query’s neighbourhood in
the geographical space, but the time complexity for R-Tree to
find the neighbourhood is O(log n). In contrast, GridVoronoi
uses only (almost) O(1) time to reach this neighbourhood
because it simply calculates the corresponding virtual square
for NN query points. Second, to speed up the computation for
NN, VoR-Tree associates each data point in the R-Tree with
a structure that contains the Voronoi cell for this data point
and its neighbouring Voronoi cells. Since the neighbourhood
derived from the first step may contain several overlapped
MBRs in the R-Tree, there may be many data points in this
neighbourhood that VoR-Tree needs to check for each data
point whether the Voronoi cell in the associated structure
contains the query point. With GridVoronoi, we only need to
check in the hashmap for the corresponding Voronoi cell of
the square calculated in the first step.
V ∗-Diagram [28] is a well-known work that utilises

Voronoi Diagram for processing moving KNN queries.
It computes a safe region by jointly considering the query
location, the data objects and the current search space.
By doing so, the computation cost for providing continuous
answers to the moving KNN queries can be greatly reduced.
GridVoronoi can also be applied to processing moving

NN queries. There are two cases to consider. The first is
that the virtual square for the current query is contained by
a Voronoi cell. In this case, they check whether the virtual
square for the new query is still being covered by the Voronoi
cell. If yes, there is no change in the query answer. Otherwise,
it will be processed as the second case. The second case is that
the virtual square for the current query is at the intersection of
two or more Voronoi cells. In this case, they only compute the
distances between the query’s new location and these Voronoi
cells. Hence, with GridVoronoi the overhead for maintaining
continuous answers for moving NN queries will be very low.

The authors of [29] also employ Voronoi diagram for
processing moving KNN queries. In their method, instead
of continuously checking the validity of the safe regions and
recomputing them if invalidated, they use a small set of safe
guarding objects (influential set). This enables users to avoid
the high pre-computation cost of order-k Voronoi diagram by
computing it locally and on-the-fly.

C. GRID-PARTITION BASED APPROACHES
Another work related to ours is the conceptual partitioning
method (CPM) proposed in [30] for monitoring continuous
NN queries. In CPM, the data objects are indexed by a main-
memory grid with square units and each square is associated
with the list of objects residing therein. With the help of
the square grid, in continuous NN monitoring people only
need to consider the minimal set of square units to retrieve
the NN when the query moves. Both GridVoronoi and CPM
use grids to partition the space, but the difference is that
the former builds a correspondence between each virtual
square and the Voronoi cell(s) that contain(s) this virtual
square. This way, when an NN query comes, we just need
to calculate the matching virtual square that contains the NN
query, then search in the hashmap and return the data point
in the retrieved Voronoi cell. Using CPM, for each NN query,
people have to checkmany local squares in order tomake sure
that they can get the true nearest neighbour, which consumes
more time than GridVoronoi.

A work that discusses scalable NN query processing
is [31], where a novel distributed spatial data index (Inverted
Grid Index), which is a combination of inverted index and
grid partition, is constructed. The authors show that the index
constructing time is over 25% less than R-tree and Voronoi-
based index. The authors study the influence on efficiency
of KNN query when the width of the grid cell varies. They
deduce that the optimal value of cell width depends on the
distribution of data points in specific dataset.

D. HYBRID APPROACHES
Another category of approaches for (K)NN query processing
utilise grid-partition indices combined with Voronoi Dia-
gram based approaches which can be pre-computed offline
to improve the efficiency of NN query processing [32].

In [33], the authors propose the ‘‘grid-partition’’ index
which is essentially a combination between one-row (stripe-
like) grid cells and Voronoi Diagram, as it associates objects
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with grid cells for fast query processing. The differences
between [33] and our work mainly lie in two aspects. First,
depending on the dataset size and shape, in [33], a grid cell
can intersect with dozens of voronoi cells, whereas in our
proposed method, the majority of the grid cells (squares)
intersect (or contain/being contained by) 1 or 2 Voronoi
cells. The number of associated objects (data points) greatly
influences the NN query processing efficiency. Second, for
our work, we prove that, the NN query processing efficiency
is monotonically decreasing with the side-length of the grid
cells (squares), which can not be guaranteed in [33].

Reference [34] is another hybrid method related to ours.
Their proposedmethod, which provides approximate answers
for range NN queries, aims to balance the performance trade-
off between query response time and the quality of answers
for mobile users in mobile cellular network, through a user-
specified ‘‘approximation tolerance level’’ parameter. Their
solution is based onVoronoi diagram and an incomplete pyra-
mid structure as the access method to index the Voronoi cells.
There are several differences between [34] and our work. First
of all, the former aims to process range NN queries, while
our work investigates how to speed up NN query processing.
Second, [34] can not completely guarantee the correctness of
the query result, when computing the intersections between
a grid cell in the current level k and those in the lower
(i.e., k + 1) level for range NN queries. In contrast, our
work can provide exact answers for NN queries. Further-
more, our work gives techniques on deriving the intersecting
and containing relationships between the grid cells and the
Voronoi cells. More importantly, our work provides theo-
rems on the monotonically decreasing relationship between
the side-length of the grid cells and the query processing
efficiency.

In summary, most of the existing work relies on R-Tree
based structures to reach the neighbourhood of a spatial
query’s corresponding location in geographical space where
all the data points reside in, leading to a time complexity of
O(log n).

III. GRIDVORONOI APPROACH
In this section, we introduce the GridVoronoi approach for
efficient nearest neighbour search in a two-dimensional (2D)
datasets. There are two general phases in GridVoronoi. The
first is an offline pre-processing phase in which we build the
structures needed by GridVoronoi, while the second phase
is mainly focused on online NN query processing. Together,
there are five specific steps which we will elaborate in the
following.

A. OVERALL FRAMEWORK
In this subsection, we show howwe useGridVoronoi to index
the 2D spatial data and process real-time spatial NN queries.
There are two phases in GridVoronoi which are the offline
data pre-processing phase and the online query processing
phase. In the offline phase, we organise the spatial data and
offer a fast path for a query to find theNNobject to its location

FIGURE 2. Overall framework.

in the 2D space. In the online query processing phase, for each
spatial NN query we first compute its location in the digital
geographical area, then through the stored correspondences
between a location and the nearest spatial object made possi-
ble by the offline phase, we directly return the nearest spatial
data point to this location as the query answer.

In Figure 2, steps (1), (2) and (3) happen in the offline pre-
processing phase. In step (1), we use the Voronoi Diagram to
partition the 2D geographical area, which will be detailed
in subsection III-B. Then in step (2), we virtually partition
the same geographical area using a grid, the details of which
will be described in subsection III-C, whereas the issue on
how to set an optimised side-length for the grid cells is
illustrated in section IV. To compute the correspondences
between a location and the nearest spatial object, in step (3)
we design a method that determines the virtual square units
(also called ‘‘virtual squares’’ or ‘‘grid cells’’ hereafter) that a
givenVoronoi cell contains/crosses.We provide details of this
method in subsection III-E. Steps (4) and (5) are for online
query processing, in step (4) we calculate the virtual square
unit that covers the query point (given in subsection III-D),
while in step (5) we look up the hashmap and retrieve the
Voronoi cells corresponding to the virtual square unit. From
the data points in these Voronoi cells, we select the one
nearest to the query point as the query result.

B. USING VORONOI DIAGRAM TO PARTITION THE SPACE
Given a set of data points in the space, a general Voronoi Dia-
gram [21] partitions the space into disjoint regions. Each dis-
joint region, referred to as a Voronoi cell, is a convex polygon.
EachVoronoi cell may have a number of surroundingVoronoi
cells, each of which shares at least one side/edge with this
Voronoi cell. By definition of the Voronoi diagram, the center
of each Voronoi cell is resided by a data point (POI) from
the dataset. That is, each Voronoi cell must contain a data
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point (POI) which is centered in the Voronoi cell. Moreover,
according to the properties of Voronoi diagram (which can
be found in the references [21]), the nearest neighbour for
each query point located inside the area of the Voronoi cell
must be the corresponding data point (POI) which centers
in the Voronoi cell. If a query point is on the side of two
neighbouring Voronoi cells, then the distances from the query
point to the two data points in the two Voronoi cells are the
same.

Once we know the query point q is in which Voronoi
cell, i.e., which Voronoi cell covers this query point, then
we immediately know the data point of this Voronoi cell
is the nearest neighbour of q. Even when a query point is
on the side of a Voronoi cell, we only need to return the
data points of the two Voronoi cells sharing this side [21].
Overall, once the Voronoi cell that contains the query point
is known, Voronoi diagram can simultaneously remove the
need for re-scanning all the data points in the space and guar-
antee that we can promptly find the NN object to the query
point.

But how dowe knowwhichVoronoi cell contains the query
point? If all the Voronoi cells are equal-sized squares or rect-
angles, then through dividing the coordinate position by the
side length of the square or rectangle, we can immediately
calculate the query locates in which square or rectangle
cell. Unfortunately, Voronoi cells are usually irregular con-
vex polygons, their sizes vary as well. Hence, we need a
method that can quickly determine whether a query point is
contained in which Voronoi cell. A straightforward solution
is to traverse all the Voronoi cells until we find one that
contains the query point. Another solution is the VoR-Tree
proposed in [27] which utilises an R-Tree structure to find
the query’s corresponding neighbourhood in the space. The
straightforward approach is obviously very time-consuming.
VoR-Tree is more efficient than the straightforward approach,
but as already analysed in Section II, it is still costly. Thus
we propose GridVoronoi in which we add a virtual grid to
Voronoi Diagram to quickly compute the Voronoi cell that
contains the query point. Prior to using the virtual grid,
we need to set an appropriate side-length for the grid cells
in the virtual grid, which we will address in Section IV.

C. NUMBERING THE SQUARES OF THE VIRTUAL GRID
Given the side-length of the grid cells, denoted as l,
we address how to virtually partition the 2D space using a
virtual grid, and how to number the virtual square units. Let
the 2D plane be a bounded rectangular area R, the matter
now is how to partition R with a virtual grid of squares.
Let the lower left vertex of R be P0(x0, y0), the upper left,
upper right and lower right vertices be P1(x0, y1), P2(x1, y1)
and P3(x1, y0), respectively. Let ceil(x) be a function that
rounds the element x to the nearest integer towards infinity,
and floor(x) be a function that rounds the element x to the
nearest integer towards minus infinity.

We divide R into m-by-n virtual square units: for each row
there are m = ceil( x1−x0l ) virtual squares; while for each

column, there are n = ceil( y1−y0l ) virtual square units. If R
and the virtual square units are regarded as a matrix, then R
is converted into a m-by-n matrixM. Accordingly, the virtual
square numbering problem is equivalent to the problem of
numbering the elements in M.
For convenience of explanation, we hereafter assume the

coordinates of the lower left point ofR be (0,0), that is, x0 = 0
and y0 = 0. We number the virtual square units in bottom-
to-up and left-to-right order. Let element M(x, y) represent
the element at the xth row and yth column of M, then the
number for the corresponding virtual square is m× x+ y. For
instance, in Figure 3, m = n = 8, elementM(0, 0) represents
the 0th element of the 0th row inM, then the number for this
element and the corresponding virtual square is 0; similarly,
element M(2, 3) represents the 3rd element of the 2nd row,
so the number for this element and the corresponding virtual
square unit is 8× 2+ 3 = 19.

FIGURE 3. Number the squares and find the squares that the edge
v0 → v1 intersects.

It should be noted that the rightmost and uppermost virtual
squares will be numbered in the same way, even though their
sizes may be smaller than l-by-l.

D. FINDING THE VIRTUAL SQUARE FOR A QUERY
After the two-dimensional space is divided into virtual square
units, we now study how to find the corresponding virtual
square for a user-specified NN query Q(x,y). We present our
method in Algorithm 1.

We use Formula 1 to compute the number (i.e., the identi-
fier) of the matching virtual square/grid cell for queryQ(x,y),
if Q(x,y) is not on a side of the virtual square. Lines 2-4
of Algorithm 1 are the pseudo-code in accordance with
Formula 1.

number=m×(ceil(
y−y0
l

)−1)+(ceil(
x−x0
l

)−1) (1)
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Algorithm 1: FindVirtualSquare: Find the Virtual
Square(s) that Contain(s) an Input Query Point
Input: the coordinates of a query point p, x and y;

square side length l
Output: the identifier(s) of the virtual square(s)

that contain(s) p
begin1

u← l × (ceil(x/l)− 1);2

b← l × (ceil(y/l)− 1);3

sq[0]← m× b+ u;4

if x = u then5

if y = b then6

sq[1]← m× (b+ 1)+ u;7

sq[2]← m× b+ u+ 1;8

sq[3]← m× (b+ 1)+ u+ 1;9

else10

sq[1]← m× b+ u+ 1;11

else12

if y = b then13

sq[1]← m× (b+ 1)+ u;14

return sq;15

end16

If Q(x,y) is on a side of the virtual square, or it coincides
with a vertex of the square, thenwe consider the virtual square
units sharing the side or vertex.

Overall, we only need to check which Voronoi cell(s)
contain(s) the corresponding virtual square. Since such cor-
respondences are stored in a hashmap, we can promptly find
the nearest data point to the spatial NN query.

E. FINDING THE VIRTUAL SQUARES A VORONOI
CELL CROSSES/CONTAINS
Determining the Voronoi cells a virtual square intersects is an
important task inGridVoronoi. Given a Voronoi cell, we need
a method to find out the virtual squares intersecting with it.

A Voronoi cell consists of several vertices and edges
(i.e., sides), so we first need to study the problem of finding
the grid cells that a given edge crosses. Let the vertices
of a Voronoi cell be orderly stored in accordance with the
adjacency relationship. In Figure 3, let V0(x0, y0), V1(x1, y1)
be the two endpoints of a Voronoi edge E, the goal is to return
the numbers (i.e., the identifiers) of the virtual squares that E
crosses.

We introduce an efficient method to find out the virtual
squares that E crosses. The general idea is to first calculate
the intersections of E and the squares, next infer from the
intersections the specific virtual squares that E crosses.
Starting from one endpoint of E, we successively compute

the intersections of E and vertical lines whose x coordinate
values are the integer times of l and range from x0 to x1.
Similarly, we calculate the intersections of E and horizontal
lines whose y coordinate values are the integer times of l and

range from y0 to y1. We also consider the cases when E is
vertical or horizontal. After we insert all the intersections
and the two endpoints into a set cp, we sort data points in cp
by their y coordinate values. We next compute the midpoints
of two adjacent data points in cp and for each midpoint
find the corresponding virtual square that contains it. Finally,
we return the numbers of these squares.

The reason that we calculate the midpoints is that, if a
line intersects a virtual square, there will be two intersections
and the midpoint of them is contained by only one virtual
square. This way, each midpoint corresponds to only one
virtual square that E crosses. To get all the virtual squares that
E crosses, we just need to find out the squares that contain the
midpoints.

After we calculate all the squares that the edges of the
Voronoi cell crosses, the Voronoi cell should be wrapped by
these surrounding virtual squares. Then the virtual squares
inside the fenced area must include all the candidate squares
that the Voronoi cell contains.

Algorithm 2: HashSquares: Store the Correspondences
between the Virtual Square(s) and a Voronoi Cell in a
Hashmap
Input: the vertex set VS ofa Voronoi cell VC
Output: a hashmap that stores the correspondences

between the virtual square(s) and VC
begin1

vid ← the identifier of VC ;2

v0← VS[0];3

for i← 1 to VS.size()− 1 do4

v1← VS[i];5

sq← FindSquaresCrossed(v0, v1);6

insert all elements of sq into IS;7

v0← v1;8

sq← FindSquaresCrossed(VS[i],VS[0]);9

insert all elements of sq into IS;10

IS ← sort(IS);11

f0← floor(IS[0]/n);12

insert (f0, vid) into hashmap;13

for j← 1 to IS.size()− 1 do14

f1← floor(IS[i]/n);15

insert (f1, vid) into hashmap;16

if f0 = f1 then17

if IS[i]− IS[i− 1] > 1 then18

for c← IS[i]+ 1 to IS[i− 1]− 1 do19

insert (c, vid) into hashmap;20

else21

f0← f1;22

end23

Algorithm 2 addresses the problem of finding all the virtual
squares that a Voronoi cell contains or intersects. We first
find all the virtual squares intersecting with the edges of a
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FIGURE 4. GridVoronoi on 2D data points.

Voronoi cell; next, we sort the virtual squares by their identi-
fiers, then find the virtual squares the Voronoi cell contains.
The main observation is that, virtual squares between two
surrounding squares (that intersect the Voronoi cell) on
the same row (i.e. along the same horizontal line) must be
contained by the Voronoi cell. So we iteratively calculate
the surrounding virtual squares that are on the same row, then
store in a hashmap the correspondences between the Voronoi
cell and the virtual squares that are between two surrounding
virtual squares, i.e., the numbers of these virtual squares are
between that of the two surrounding virtual squares on the
same row. Such a strategy makes Algorithm 2 very efficient
in finding the virtual squares contained in a Voronoi cell.

In short, Algorithm 2 helps us promptly identify the virtual
squares that a Voronoi cell contains. We keep a hashmap
that stores the correspondences between the Voronoi cell and
the intersecting virtual squares, as well as the virtual squares
contained in the Voronoi cell. With such a hashmap, we can
rapidly find the matching Voronoi cell for the virtual square
that contains the NN query.

Examples 1 and 2 are two cases that show separately
the offline data pre-processing phase (i.e., the offline index
creation phase) and the online NN query processing phase in
GridVoronoi.
Example 1: In Figure 4, we use GridVoronoi to split the

2D data. We also number the virtual squares, ranging from
0 to 24. In Figure 5, we show the hashmap structure that
keeps the correspondences between the virtual squares and
the Voronoi cells that contain/intersect the squares. For a
virtual square that intersects two or more Voronoi cells, e.g.,
square 18 intersects v10, v14, v15, v18 and v19, the value set in
the hashmap for the virtual square will include the numbers
of all these Voronoi cells. But if a virtual square is contained
in a Voronoi cell, e.g., square 24 is contained in v19, then in
the hashmap, there will be only one Voronoi number in the
value set for the square. The final hashmap will be used in
the online query processing phase, as shown in Example 2.

FIGURE 5. The hashmap that maintains the correspondences between
the grid cells and the voronoi cells.

Example 2: Assume query points Q1 and Q2 in
Figure 4 are two real-time NN queries. In Figure 5, we have
the hashmap structure, generated in the offline data pre-
processing phase as shown in Example 1, that keeps the
correspondences between the virtual squares and the Voronoi
cells that contain/intersect the squares. For Q1, we first
calculate the number of the grid cell that it resides using
Algorithm 1, which is 18. Then we lookup 18 in the hashmap
in Figure 5 and find the Voronoi cells v10, v14, v15, v18 and v19.
We next retrieve the data points in these 5 Voronoi cells
and compute the nearest data point to Q1. Similarly, we can
find the nearest data point(s) to Q2. Notice that since Q2
happens to be the common vertex of squares 7, 8, 12 and 13,
we need to look up all these square numbers in the hashmap,
as illustrated in subsection III-D. The final query answers for
Q1 and Q2 will be the data point associated with v10, and the
two data points contained in v6 and v9, respectively.
We note that, in our implementation we employ the C++

Standard Template Library for the hashmap structure. Each
key of the hashmap represents the identifier of a virtual
square, while the value corresponding to this key is the
identifier of the Voronoi cells that contains/intersect with the
square. If there are 2 or more such voronoi cells, we use a
linked list structure to connect them and stored as the value
for the key, as shown in Figure 5.

IV. DETERMINING THE SIDE-LENGTH OF THE GRID CELLS
Now we study the influence of the slide length (grid cell
length) l to the performance of GridVoronoi for processing
NN queries and whether there is an optimal value for l to
achieve the best performance.

The side-length of the grid cells is a very important param-
eter. If the side-length is too large, then each grid cell will
include or intersect with so many Voronoi cells that it will be
computation-demanding to check all of them for each query.
On the other hand, if the side-length is too small, then there
will be such a great amount of virtual squares (grid cells) that
storing the correspondences between the grid cells and the
Voronoi cells in a hashmap will consume a lot of memory
space.
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To find the NN of a query point q, for the grid cell in which
q is located, we need to check the correspondingVoronoi cells
of this grid cell (details given in subsection III-E). There are
three situations to be considered, as described in Lemma 1.
Lemma 1: To find the NN of a query point q through

GridVoronoi: (1) for no more than 2n − 5 grid cells (let T
be the union of such grid cells and t be the total number,
t ≤ 2n−5), we have to check three or more Voronoi cells; (2)
for the grid cells that intersect the Voronoi cells (letW be the
union of such grid cells and w be the total number), we only
need to check two Voronoi cells; (3) for the grid cells that are
contained in the Voronoi cells (letU be the union of such grid
cells and u be the total number), we only need to check one
Voronoi cell.
Let y be the number of Voronoi cells that we need to check

for an NN query q, x be the corresponding grid cell for q.
Then,

y =


1 x ∈ U
2 x ∈W
> 2 x ∈ T

(2)

There are at most 2n − 5 vertices in the Voronoi dia-
gram [21]. Thus, if q is located in a grid cell that contains
a vertex, then we should check all the Voronoi cells sharing
this vertex.

For a given dataset, the number of Voronoi vertices is fixed,
thenT and t are also fixed; the size of the bounded rectangular
area R for the dataset (see subsection III-C), denoted as r,
is also fixed. Then,

t + w+ u =
r
l2

(3)

To improve the efficiency for processing q, we expect the
probability that a grid cell corresponds to only one Voronoi
cell to be as high as possible, i.e., the proportion of U in R to
be as large as possible.

Let P(q ∈ U) represent the probability that a query point
q locates in a grid cell that corresponds to only one Voronoi
cell; Xi be the number of squares a side intersects; b be the
total number of sides. With Equation 3, we infer that

P(q ∈ U) = 1−
w+ t

r
l2

= 1−
l2t +

∑b
i=1 l

2Xi
r

(4)

In Equation 4, l2t represents the combined area for the grid
cells that belong to T, whereas

∑b
i=1 l

2Xi is the total area of
the grid cells inW. For a given dataset, r, b and t are all fixed.
It is clear that, to have a maximum P(q ∈ U), we only need
to make l as small as possible.

Let y be the number of Voronoi cells that we need to check
for a query q. For q ∈ U , where a query q corresponds to only
one Voronoi cell, the cost of computations is low. The same
goes for query q ∈ W , where the query corresponds to two
Voronoi cells. Hence, we only need to minimise the number
of query points corresponds to more than two Voronoi cells.

To this goal, let P(q ∈ T ) be the probability of the query q
locating in a grid cell, where the grid cell contains a Voronoi
vertex. Let l be the side length of the grid cells and r be the
size of bounded rectangular area for the 2D dataset, then:

P(q ∈ T ) =
(2n− 5) ∗ l2

r
. The numerator of this equation

denotes the total area of grid cells belong to T . For a given
dataset, (2n − 5) and r are fixed. Thus, to have a minimum
P(q ∈ T ), we simply need to put l as small as possible.
Therefore, there is no single optimal value for l (l > 0)

to achieve the best P(q ∈ U). The efficiency of Grid-
Voronoi in Nearest Neighbour Query Processing is mono-
tonic with respect to the side-length l: the smaller the
value of l, the more efficient GridVoronoi will be in NN
processing.

In the following, we address two alternatives to derive an
appropriate side-length for GridVoronoi. However, before we
give details on these two approaches, we note that the values
to be derived by these approaches will not be optimal, because
a smaller side-length l is always preferred, given the fact that
GridVoronoi is monotonic with respect to the side-length l.
Nevertheless, these two methods will help users promptly
pick an appropriate value for l (the upper bound or lower
bound of value of l), given user-specified constraints or hard-
ware constraints.

A. PARAMETER-DRIVEN SIDE-LENGTH FOR THE GRID
P(q ∈ T) represents the probability that a query point q
locates in a grid cell that corresponds to three or more Voronoi
cells. Then we have:

P(q ∈ T) ≈
t ∗ l2

r
(5)

Since t ≤ 2n− 5, we have

P(q ∈ T) ≤
(2n− 5) ∗ l2

r
(6)

For a given dataset, n, t and r are fixed, then l is the only
variable. Thus, the smaller the value of l, the lower the value
of P(q ∈ T). For instance,
• If l = 1

√
n , then P(q ∈ T) = t

r∗n < 2
r ;

• If l = 1
n , then P(q ∈ T) = t

r∗n2
< 2

r∗n .
Let 0 be a user-specified variable that defines the maxi-

mum value of P(q ∈ T), i.e., the maximum percentage of
grid cells that intersect three or more Voronoi cells. Then we
have:

0 ≥ P(q ∈ T) (7)

Based on Formula 5 and 7, we infer Formula 8:

l ≤

√
r ∗ 0

t
(8)

We find from Formula 8 that, to guarantee that P(q ∈ T) is
no greater than 0, l should be less than or equal to

√
r∗0
t .

Moreover, we notice that the upper bound of l increases
monotonically with 0. For instance,
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• If 0 = 0.01, then l ≤
√

r∗0.01
t =

√
r

100∗t ;

• If 0 = 0.1, then l ≤
√

r∗0.1
t =

√
r

10∗t .

Therefore, given a user-specified parameter 0 that defines
the maximum value of P(q ∈ T), the upper bound of l is√

r∗0
t .

B. MEMORY-BOUNDED SIDE-LENGTH FOR THE GRID
In subsection V-B, we analyze the maximum space needed by
GridVoronoi, which is given in Formula 12. Let ne, nv be the
number of edges/sides and vertices of the Voronoi Diagram,
respectively. For a given dataset, n, ne, nv are fixed and the
only variable is l, i.e. the side-length of the grid cells.

Let ϕ be the maximum available memory space for
GridVoronoi, then ϕ should satisfy that

ϕ ≥ 3
r
l2
+ 4ne − 2nv (9)

Then we have:

l ≥

√
3r

ϕ − 4ne + 2nv
(10)

Therefore, the smallest (memory bounded) side-length for
GridVoronoi is

√
3r

ϕ−4ne+2nv
.

It should be noted that since an integer value usually takes
4 Bytes, thus in the case that ϕ is measured in terms of
Megabytes (MB), then we shall use ϕ ∗ 2−18 should replace
the ϕ in Formula 10. That is,

l ≥

√
3r

ϕ ∗ 2−18 − 4ne + 2nv
(11)

In conclusion, given ϕ as the maximum memory space
for GridVoronoi, the smallest side-length of the grid cells
for GridVoronoi to achieve the best performance is l =√

3r
ϕ−4ne+2nv

.

V. THE COMPLEXITY OF GRIDVORONOI
A. TIME COMPLEXITY
Consider again the steps in Figure 2. In step (1), for building
Voronoi diagrams on 2D data the worst time complexity is
O(n log n) [20] and it has been generalized and improved
to O(sort(n)) worst-case complexity in general and an O(n)
complexity can be achieved for some datasets [35]. Step (2)
does not take any time since the grid and squares are virtual.
Step (3) takes O(3n) time, for there are in total 3n−6 edges in
the Voronoi diagrams [20], and for each edge we compute the
virtual squares it intersects. So the overall time complexity in
the off-line pre-processing phase is O(n log n) + O(3n).
In the online query processing phase, step (4) needs only

O(1) time to calculate the matching virtual square for an NN
query. In Step (5), lookup the number of the virtual square
in the hashmap for the corresponding Voronoi cell(s) needs
approximately O(1) time. If the number of Voronoi cells is
more than 1, we need to calculate the distances between the
NN query point and the data points in these Voronoi cells;

however, as discussed in Section IV, a grid cell corresponds
to no more than 6 Voronoi cells on average, so we need to
check very few data points to find out the final NN. There-
fore, step (5) uses almost O(1) time. Overall, the total time
complexity of GridVoronoi in on-line NN query processing
is nearly O(1), whereas the time complexity is O(log n) for
the current state of the art algorithms that rely on R-Tree-
like structures for nearest neighbour search. However, we also
note that, overly large grid cell length will lead to excessive
query processing time, since one square unit may intersect
with many Voronoi cells, can be seen in subsection VII-D.
In such cases, the on-line NN query processing will not
be O(1).

B. SPACE COMPLEXITY
For the memory usage of GridVoronoi, the only concern
is that we need an auxiliary hashmap structure to save the
correspondences between the grid cells and the Voronoi cells.
Thus it is important to analyze the space complexity of Grid-
Voronoi. To keep in the hashmap the numbers of the grid cells
as the keys, and the identifiers of the Voronoi cells that every
grid cell intersects as the corresponding values for the keys:

1) we need r
l2

space to keep all the numbers of the grid
cells as the keys in the hashmap. This is because there
are in total r

l2
grid cells, therefore r

l2
space is needed to

keep all the numbers (i.e., identifiers) of the grid cells
as the keys in the hashmap;

2) for grid cells in T, we need up to 4ne space to store
in the hashmap the identifiers of the Voronoi cells that
every grid cell (in T) intersects, as the correspond-
ing values for the grid cells. From the fact that every
Voronoi edge is shared by exactly two Voronoi cells,
we notice that the space needed to keep the identifiers
of the Voronoi cells per Voronoi edge is twice the space
occupied by the identifiers of the two Voronoi cells,
which is 4. There are ne edges, we hence need a total
space of 4ne to keep in the hashmap all the values for
the grid cells in T.

3) for grid cells in U and W, we need up to 2( r
l2
− nv)

space to store in the hashmap the identifiers of the
Voronoi cell(s) that each grid cell (in U or W) inter-
sects/contains, as the corresponding values for the grid
cells. This is due to the fact that every grid cell in U
corresponds to only Voronoi cell in the hashmap, while
each grid cell inW corresponds to two Voronoi cells in
the hashmap. Since there are in total r

l2
− nv grid cells

that belong to U and W, we hence need a maximum
space of 2( r

l2
−nv) to keep in the hashmap all the values

for the grid cells in U and W.
Adding the above three spaces together, we need up to

3 r
l2
+ 4ne − 2nv space to store the hashmap. Let $ be the

space needed by the hashmap, we have:

$ ≤ 3
r
l2
+ 4ne − 2nv (12)

Since an integer variable commonly occupies a space of 4
Bytes, thus up to (3 r

l2
+ 4ne − 2nv) ∗ 2−18 MB space is
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needed to store the hashmap. We note that this is only the
upper bound memory consumption of GridVoronoi; in real
cases, the actual memory usage also depends on grid cell
length, because a large grid cell length will make the square
units intersect with many voronoi cells, whereas a small grid
cell length will generate more square units and entries in the
hashmap structures.

VI. PROCESSING KNN QUERIES
In this section, we discuss how to process K Nearest Neigh-
bour (KNN) queries using GridVoronoi.
Given a query point q and a user-specified parameter K ,

which is the number of expected nearest neighbours, KNN
query finds the K closest data points to q. UponGridVoronoi,
we propose the following algorithm to process KNN queries.

First, based upon GridVoronoi, we find p0 which is the
NN data point to q and insert it to the result set RS. Second,
starting from the Voronoi cell v0 that contains p0, we find the
Voronoi neighbours of v0, sort them in ascending order by the
distances from the data points to q and put them in a heap.
Third, we remove the first data point p1 from the heap and
insert it into RS; next, we fetch the Voronoi neighbours of p1
and insert them in the heap orderly. The third step loops until
the number of data points in RS is K .
Voronoi diagram is a very effective tool in exploring the

local neighbourhood of a given Voronoi cell. Therefore, once
we use GridVoronoi to find the Voronoi cell that contains q,
with the power of the Voronoi Diagram we only need to visit
a limited number of neighbouring Voronoi cells to find the
KNN data points.

VII. PERFORMANCE
In this section, we experimentally evaluate the proposed algo-
rithm, GridVoronoi, using four real-world datasets.
Dataset A is derived from the North East dataset which

contains 123,593 postal addresses (points) that represent
three metropolitan areas of USA (New York, Philadel-
phia and Boston), hence three clusters. It is available at
Chorochronos1 (previously called ‘‘R-tree Portal’’). Dataset
B contains 5,922 cities and villages of Greece, obtained from
the same portal Chorochronos. Dataset C contains populated
places and cultural landmarks in US, Canada, Mexico, their
mergings and divisions, a total of 24,493 points. It is freely
available from the Digital Chart of the World, a comprehen-
sive digital map of Earth.2 Last, datasetD is obtained from the
California’s Points of Interest dataset [36]3 which contains
locations of 62,556 California places.

We compare GridVoronoi with two well-known algo-
rithms: BFS [22] and the VoR-Tree based algorithm [27].

We use the Boost library4 to construct the Voronoi dia-
grams, which will be used in bothGridVoronoi and VoR-Tree.

1http://www.chorochronos.org/
2https://worldmap.harvard.edu/data/geonode:Digital_Chart_of_

the_World
3http://chorochronos.datastories.org/?q=node/17
4http://www.boost.org

For BFS and VoR-Tree, we use the R*-tree [37] implementa-
tion from Chorochronos. We adopt the default parameters of
R*-tree.

Two different types of queries are considered in the
experiments. The first set of queries corresponds to
randomly-generated query points (random queries), while,
in the second set, query points are deliberately placed either
on the sides or at the vertices of the Voronoi cells (worst
queries). Both sets of queries contain 5,000 points.
We define L as the value of the grid cell length that virtually

partitions the rectangular region (plane) where a given dataset
resides into 10,000 square units. Hence, we can measure the
grid cell length l in units of L. E.g. l = 2L (two times of L)
denotes a grid cell length that partitions the same plane into
2,500 square units, whereas L

2 (half the value of L) is a grid
cell length value that splits the same plane into 40,000 square
units. Likewise, L4 ,

L
8 denotes a side-length that partitions the

plane into 160,000 and 640,000 square units, respectively.
In our experiments, we assume that the queries are issued

to a server with large memory, and all the nodes of the R*-tree
can be loaded into memory. All algorithms are implemented
in C++ and tested on a computer with an Intel Xeon E5-2690
8-core, 2.9GHz processor and 32GBMemory, running Linux
Mint 17.3.

TABLE 1. Query time comparison of different methods for NN (random
queries, average time, units are in ms).

TABLE 2. Query time comparison of different methods for NN (worst
queries, average time, units are in ms).

A. EFFICIENCY ON NN QUERIES
In the first set of experiments, we evaluate the performance
and the scalability of different NN algorithms. It should be
noted that GridVoronoi uses L for the grid cell length in
the experiments in Tables 1 and 2. As mentioned above,
l measured in L units corresponds to the grid cell length value
that virtually partitions the planewhere a given dataset resides
into 10,000 square units. We note that only the query pro-
cessing time is reported in our experiments, not including the
offline index building time for all the algorithms. The offline
index building time for GridVoronoi is usually longer than
the other algorithms, especially in the case of large datasets.
Nevertheless, the index building process is done once for all,
and can be used in the real-time spatial NN querying.
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In Table 1, we compare the running time performance
of GridVoronoi (GV) against VoR-Tree(VOR), BFS, and the
naive baseline NN method, using random queries. In the
naive baseline NN method, for each query, it always scans
the whole dataset to calculate the distances from the query
point to each data point, then return the data point having
the smallest distance to the query point as the final result.
The values reported in Table 1 correspond to average running
time needed for one query (i.e. the total running time divided
by the number of queries, in our experiments 5,000). It can
be seen thatGridVoronoi significantly outperforms VoR-Tree
and BFS in terms of query t4ime by orders of magnitude
in all 4 datasets. In specific, GridVoronoi is found to be
3 to 4.6 times faster than VoR-Tree, and 3.5 to 5.9 times
faster than BFS. VoR-Tree is also faster than BFS in all
datasets but not by a significant degree. All three algorithms
are many times faster than the naive method. GridVoronoi,
the top performing algorithm, is up to 400 times faster than
the naive method.

We also find that the average running time is independent
of the dataset size. For instance, dataset C contains more
points than dataset B but GridVoronoi performs faster in C.
In Table 2, we present results of the experiments we con-

ducted using the worst queries set. It is clear thatGridVoronoi
is significantly faster than VoR-Tree and BFS.

For worst queries, both GridVoronoi and VoR-Tree are
slower than the case of random queries, which is expected,
as these two algorithms rely on the Voronoi diagram, thus
when a query is on the sides or at the vertices of the Voronoi
cells they need to check 2 or more cells to find the nearest
neighbour.

FIGURE 6. Efficiency comparison between GV, VOR, and BFS on different
datasets (random queries).

These results are visualised in Figures 6 and 7. We can
deduce that the performance gain depends on the data. In gen-
eral, GridVoronoi performs significantly faster than the rest,
while VoR-Tree is consistently faster than BFS. This obser-
vation is consistent with the findings in [27].

In Figure 8, we vary the grid cell length of the virtual
grid to test its influence on the performance of GridVoronoi.
As shown in the figure, when the side-length changes from 2L
to L/8, the average running time decreases monotonically on
every dataset for both random and worst queries.

We observe that, for the worst queries, the performance
of GridVoronoi on dataset B and C is almost the same.

FIGURE 7. Efficiency comparison between GV, VOR, and BFS on different
datasets (worst queries).

FIGURE 8. The NN query processing efficiency of GridVoronoi for
processing NN queries on different datasets with varying grid cell length.

Also, while it is faster in random queries on dataset D than
on dataset A, this is reversed for worst queries.

Using hashmap’s key-value structure, for each square iden-
tifier (id) as the key, we calculate the number of elements in
the corresponding value. For all the query points, we compute
the sum of the number of elements for all the square ids. Then
divide this sum value by the total number of query points
(e.g. 5000), which we define as the average search length.
Average search length can measure GridVoronoi’s effi-

ciency in finding the spatial NN (in the online query pro-
cessing phase), since in GridVoronoi, once the square id of a
query point is determined, we just need to check the key-value
structure (in a hashmap) for this square id’s corresponding
value (very limited number of candidate data points), from
which the final spatial NN result can be derived.

In Figure 9, we report the average search length of
GridVoronoi in processing NN queries, with varying grid
cell lengths. We see that average search length follows the
same pattern as average running time, for both random and
worst queries, when varying the grid cell length. This is
because a smaller average search length implies shorter com-
putation time (lookup overhead).

In Table 3, we report the relationship between the number
of grid cells/squares and the value of average search length
in GridVoronoi. We observe that, when the number of grid
cells/squares is very large (i.e. when the grid cell length is
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FIGURE 9. The average search length of GridVoronoi for processing NN
queries on different datasets with varying grid cell length.

TABLE 3. Average search length for varying grid cell numbers.

FIGURE 10. Effect of the number of data points on the running time
performance of GridVoronoi at different grid cell lengths.

very small),GridVoronoi only needs to check 2−3 data points
to find the spatial NN.

In Figure 10, we evaluate the scalability performance of
GridVoronoi by measuring the average running time for
5000 queries at varying numbers of data points, with every
subset of points being randomly sampled from dataset B.
We see that when we are using a large number of virtual
squares the average running time is almost constant, while
when the total number of squares of the virtual grid is small,
running time increases sharply with n, where n is the num-
ber of data points. Therefore, we can claim that the time

complexity of GridVoronoi is almost O(1) when l is small
enough. In comparison, BFS and VoR need O(log n) search
length to find the spatial NN.

B. EFFICIENCY ON KNN QUERIES
In the second set of experiments, we compare the perfor-
mance of the GridVoronoi based KNN algorithm, proposed
in section VI, against VoR-Tree and BFS.

FIGURE 11. The KNN Query Processing Efficiency of Different Methods on
C and D Datasets (K = 1, 5, 10, 15, 20).

In Figure 11, the 1st and 2nd plots show the performance of
the three methods on dataset C, for random and worst queries
respectively, when varying the number of nearest neighbours
(i.e. K ) from 1, 5, to 20. The grid cell length used in these
experiments is l = 1L, in correspondence with the L value
used in Figures 8 and 9.

For all the three methods, the CPU time increases as K
increases; but VoR-Tree and BFS take more time than Grid-
Voronoi to derive the corresponding KNN results. Moreover,
we see that BFS always spends the most time, closely fol-
lowed by VoR-Tree for all different K values, while Grid-
Voronoi takes significantly less time than both of them.
We observe that the relevant difference in running time
between GridVoronoi and the rest slightly decreases as K
increases. This is because the most time-consuming part for
GridVoronoi is finding the NN of a query. Once the NN result
is obtained, GridVoronoi needs to explore in the Voronoi
diagram the neighbourhood of the NN result (point) to find
the rest K − 1 nearest neighbours, which can be an iterative
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process, since the neighbours of the currently derived results
need to be further explored (e.g., the neighbourhood of the
2nd nearest neighbour in the Voronoi diagram) to guarantee
the correctness of the KNN results.

In the 3rd and 4th plots, we report the KNN query pro-
cessing performance of the three methods on dataset D, for
both random and worst queries. The same observations hold
as with dataset C.

C. MEMORY CONSUMPTION OF GRIDVORONOI
In order to examine the influence of the grid cell length
parameter L and the number of nearest neighbours K to the
memory consumption of GridVoronoi in KNN queries we
measure the memory required for the underlying hashmap
structure when varying L and K . For these experiments we
use 5,000 random queries, as in the subsection VII-B.

FIGURE 12. The memory consumption of GridVoronoi when processing
NN queries on different datasets with varying grid cell length.

In Figure 12 we observe that, for a specific K , here K = 1,
thememory consumption ofGridVoronoi depends on both the
size of the dataset and the grid cell length. As expected,
the larger the dataset, i.e. the more data points needed to
be stored in the hashmap structure, the more memory Grid-
Voronoi consumes. Also, the smaller the grid cell length l,
the larger memory consumption by GridVoronoi. It is inter-
esting to notice that, when the value of l is lower, i.e. when
we have opted for maximum running time performance,
the memory consumption of GridVoronoi scales better, with
regard to dataset size, than when l is large. For example,
at L/16 memory usage grows from 95 MB in dataset B
(5922 data points) to 170 MB in dataset A (123593 data
points), i.e. a 179% increase, while at 2L the corresponding
memory usage increase ratio is 935%.

We can infer that memory complexity follows a power law
with regard to the grid cell length. The ratio of the memory
usage values between two datasets increases monotonically
with the ratio of the sizes of these two datasets, asymptoti-
cally becoming equal when l tends to infinity. The memory

complexity increases exponentially with l but by a lower
order than 2, which was the theoretical value in equation 12
after the analysis in subsection V-B.

In Figure 13, we compare the memory usage of Grid-
Voronoi (GV) with different grid cell lengths, VoR-Tree, and
BFS algorithms, for KNN query processing on datasets C
and D at different values of K . It is clear that GridVoronoi
consumes significantly less memory than the two other algo-
rithms. Furthermore, we observe that, given a specific grid
cell length value, the memory consumption of GridVoronoi
is independent of K when K is 5 or larger. The memory
consumption of BFS and VoR-Tree resembles that of Grid-
Voronoi; they are also independent of K when K ≥ 5.

FIGURE 13. The memory consumption of GridVoronoi (using different
grid cell lengths), VoR-Tree, and BFS for processing KNN queries on
datasets C and D with varying K .

From Figure 13, we observe that VoR-Tree is highly sen-
sitive to the size of the dataset. For dataset D, which has
3 times the number of data points than dataset C, the cor-
responding memory usage for VoR-Tree is 2.6 times higher.
This outcome is to be expected, as the R-Tree spatial indexing
hierarchical data structure is more appropriate for on-disk
rather than in-memory approaches.

BFS is significantlymorememory efficient thanVoR-Tree,
consuming 2.5 to 3.5 times less memory. GridVoronoi is the
clear winner when grid cell length is set to be L/4 or larger.
As we have seen in subsection VII-B (see Figure 11),
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GridVoronoi outperforms VoR-Tree and BFS, in terms of
average (query processing) running time when the grid cell
length is 1L, while we have shown that average running
time performance for GridVoronoi increases monotonically
as the grid cell length gets smaller (see Figure 8). We can
deduce that GridVoronoi is superior to both VoR-Tree and
BFS, in terms of running time performance and memory con-
sumption, when the grid cell length l is between L/4 and 1L.

In summary, we find that there is a trade-off between
running time efficiency and memory footprint, which, in the
case of GridVoronoi, can be managed by the grid cell length
parameter l. Overall, the lookup efficiency of GridVoronoi
is almost O(1), hence it can significantly speed up spatial
nearest neighbour query processing.

D. LARGE-SCALE EXPERIMENTS
In order to further investigate the scalability of GridVoronoi
on large datasets, we use OpenStreetMap Data Extracts,5

which are updated daily and contain POIs from different
continents. In our experiments, we use the Asia and Europe
datasets, which contain 4,002,125 and 9,199,696 data points,
respectively. We note that the sizes of the Asia and Europe
datasets are 32-79 times of that of dataset A (North East
dataset), which was used in subsection VII-A.
In order to check the influence of the number of data

points on the memory consumption and time efficiency,
we gradually increase the number of data points from the
same dataset. For instance, on the Europe dataset, which
has a total of 9,199,696 data points, but we only use the
first 1,000,000 data points in the beginning for the experi-
ments, then gradually increase this number to 9,000,000, with
a step size of 1,000,000. In the experiments, we generate
5,000 random query points (which are spatial NN queries) for
each dataset and fix the query points for all the experiments
on the same dataset. In order to eliminate systematic errors
in measurement due to CPU caching or I/O overhead, we run
each experiment three times and introduce a 3 seconds time-
out between two experiments. Since each experiment will run
three times, we use MAD (Median Absolute Deviation) to
handle possible outliers present so that the reported results
will be more robust.

In Figures 14 and 15, we present the memory consumption
(units are in MB) of GridVoronoi on the Asia and Europe
dataset at varying number of data points and different gran-
ularities of grid cell length. In Figure 15, we observe that,
for the same number of data points, memory usage does not
vary significantly with grid cell length, except at l = L/16
where GridVoronoi consumes significantly more memory
than the rest. On the other hand, for the same grid cell length,
memory usage increases linearly with the number of data
points. Similar observations also hold for the other dataset,
i.e. Asia, as shown in Figure 14.

In Tables 4 and 5, we report the raw values of query
processing time (units are in seconds)and the total running

5https://download.geofabrik.de, accessed on 2019-06-18.

FIGURE 14. Memory consumption of GridVoronoi on the Asia dataset
with varying number of data points and different granularities of grid cell
length.

FIGURE 15. Memory consumption of GridVoronoi on the Europe dataset
with varying number of data points and different granularities of grid cell
length.

TABLE 4. Query processing time of GridVoronoi on the Asia dataset with
varying grid cell lengths (units are in seconds).

TABLE 5. Total running time of GridVoronoi on the Asia dataset with
varying grid cell lengths (units are in seconds).

time (which includes both the off-line index building time
and the on-line query processing time) of GridVoronoi on the
Asia dataset, with varying number of data points and different
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FIGURE 16. Query processing time of GridVoronoi on the Asia dataset
with varying number of data points.

FIGURE 17. The total running time of GridVoronoi on the Asia dataset
with varying number of data points.

TABLE 6. Index building time of GridVoronoi on the Asia dataset with
varying grid cell lengths (units are in seconds).

grid cell lengths. Moreover, we visualize the results in
Figures 16 and 17, respectively. In terms of query processing
time, we see that it is generally anti-monotonic with grid cell
length, thus GridVoronoi obtains the best time efficiency at
l = L/16. In Table 6, we also report the index building
time, by subtracting the corresponding values in the above
two tables. It is interesting to observe that the index building
time of GridVoronoi does not decrease with larger grid cell
length values; on the contrary, it usually increases with grid
cell length. This is due to the reason that there will be more
intersections between the squares and the Voronoi cells when
the grid cell length becomes larger. However, smaller grid
cell length also brings more square units and more entries in
the hashmap structures (thus occupies more memory space).
Hence, there should be an internal balance between the

memory space required by the intersections between the
squares and the Voronoi cells, and the extra memory space
needed by the square units and the hashmap structures. This
can also explain the two exception cases in index building
time between l = L/16 and l = L/8 in the first two rows of
Table 6, where l = L/8 takes less time in building the index.
This also indicates that, the space assigned to the square units
(the keys of the hashmap structures) is not expensive even
when the grid cell length is small, and the most memory-
occupying structures are the values of the hashmap structures
and the data points of the dataset.

On the other hand, both query processing time and index
building time increases monotonically with the number of
data points, as can be observed in Tables 4 and 6. The larger
the number of data points, the bigger the gap in both query
processing and index building time among different grid cell
lengths.

TABLE 7. Query processing time of GridVoronoi on the Europe dataset
with varying grid cell lengths (units are in seconds).

TABLE 8. Total running time of GridVoronoi on the Europe dataset with
varying grid cell lengths (units are in seconds).

In Tables 7 and 8, and Figures 18 and 19, we report the
query processing time and total running time of GridVoronoi
on the Europe dataset, where we have similar observations as
the Asia dataset.

Finally, we find that the time efficiency of GridVoronoi
using a grid cell length of l = L/8 is close to that of l = L/16,
but the former occupies significantly less memory than the
former, as can be seen from Figures 14 and 15.

E. INFLUENCE OF POINT DENSITY OF
A DATASET ON QUERY EFFICIENCY
In the above subsection, we vary the number of data points
from the same dataset to check the influence of the number
of data points on the efficiency of query processing. Since the
data points in the Asia and Europe datasets are not ordered
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FIGURE 18. Query processing time of GridVoronoi on the Europe dataset
with varying number of data points.

FIGURE 19. The total running time of GridVoronoi on the Europe dataset
with varying number of data points.

by their coordinates in advance, the point density of the
dataset gradually will also become larger when we increase
the number of data points with a scale of 1,000,000 data
points. Especially for the Europe dataset, its point density
progressively increases when the number of data points which
varies from 1,000,000 to 9,000,000, with a total of 9 steps.

On the Europe dataset, it is clear that the total running time
of GridVoronoi increases almost linearly with the number
of data points (when we fix the grid cell length), as can be
seen from Table 8 and Figure 19. Similar pattern can be
observed on the Asia dataset, as can be seen from Table 5 and
Figure 17. In terms of query processing time, it also increases
when the point density of the dataset increases, which can be
observed from Tables 4 and 7.

In summary, for the same grid cell length, both query pro-
cessing time and total running time increase monotonically
with the point density of the datasets.

F. SHORTCOMINGS OF GRIDVORONOI
The proposed spatial index GridVoronoi has a few shortcom-
ings that we should point out.

1) GridVoronoi is a combination of a virtual grid of
squares and the Voronoi diagram structure. It relies on
the latter to split the 2D plane into non-overlapping
Voronoi cells. However, when the data points are
inserted or deleted, we need to run Voronoi diagram
from scratch to re-split the 2D plane, since we do not
have a local update technique for Voronoi diagram. The
same issue exists for all the algorithms that rely on
Voronoi diagram.

2) A skewed distribution of data points in a dataset might
cause low query processing efficiency in the ‘‘dense’’
regions. This is because there will be more intersec-
tions between the square units and the Voronoi cells
in the dense regions. In Table 2 and Figure 8 in
subsection VII-A, we present the results with worst
queries, which reside on the edges and vertices of the
voronoi cells. For small grid cell length(e.g. l = L/8),
we infer that the effect of skewness on query processing
is small; but for large grid cell lengths, the increase in
running time (due to data skewness) will be significant.
In fact, in the Asia and Europe datasets, there exist
many dense regions (e.g. cities) of POIs, and many
sparse regions (suburbs and fields).

3) GridVoronoi consumes excessively more memory
space than the other methods. For instance, on the
Europe dataset, it occupies nearly 4 GBmemory space.
This could be tolerated/accepted for applications that
give priority to time efficiency and are equipped with
high performance computing facilities.

4) GridVoronoi requires a huge amount of time for the
off-line index building. Once the index is built, it can
be used for on-line query processing, to process vast
amount of real-time user queries.

5) GridVoronoi currently only applies to 2D datasets.

VIII. CONCLUSION AND FUTURE WORK
This paper approaches an important problem in spatial query
processing, i.e., spatial nearest neighbour search, in a prac-
tical way. We present GridVoronoi which is a Voronoi Dia-
gram complemented by a virtual grid to make the NN search
efficient. It adopts the virtual grid for promptly finding the
grid cell where the query point locates, then employs Voronoi
Diagram which is highly efficient in exploring the local
neighbourhood of the corresponding voronoi cell(s) that con-
tain(s)/intersect(s) the grid cell for spatial nearest neighbour.
Experiments on four real-world data sets have confirmed the
efficiency and effectiveness of GridVoronoi. Through large-
scale experiments, we show that the time efficiency of Grid-
Voronoi depends both on the number of data points and the
grid cell length adopted.

In future work, we will investigate how to extend Grid-
Voronoi to 3D space where the height dimension will be
taken into consideration in spatial NN querying. We will also
extend our techniques to road networks, where we will use
the virtual grid to partition the 2D space; then calculate the
intersections/correspondences between the square units and
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road segments, and store them in the hashmap-like structures
for fast NN processing over the road networks.
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