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ABSTRACT Knock is an abnormal combustion phenomenon in gasoline engines. Strong knocks will reduce
the efficiency and durability of engine, while with slight knocks engines can run on a high-efficiency state.
It is necessary to detect knock and control the state of knock in order to improve the thermal efficiency of
engine. This paper proposes a novel approach for detecting engine knocks in various intensities based on
vibration signal of engine block using variational mode decomposition (VMD) and semi-supervised local
fisher discriminant analysis (SELF). Since the quadratic penalty of recursive VMD has a great influence on
decomposition results, the approach establishes the connection between the quadratic penalty and the stop
condition by analyzing a large amount of data and quantifies the relationship by polynomial fitting, which
reduces the complexity and subjectivity of recursive VMD. A multilevel SELF is developed for solving
the problem that SELFs sometimes may not find ideal embedding space under large scale dimensionality
reduction. This method adopts multi embedding spaces, with gradually decreasing dimension, to reduce the
dimensionality of original data by a series of small steps. Verifications show the proposed approach can
achieve high classification accuracy in knock detection and is able to identify the intensity of knock. This
research contributes to the field of engine abnormality detection and can be implemented on vibration-based
faults diagnosis area.

INDEX TERMS Engine, knock detection, semi-supervised local fisher discriminant analysis (SELF),
variational mode decomposition (VMD), vibration.

I. INTRODUCTION
As a major power source, engines are being widely used
in industry, agriculture and transportation, and playing an
important role in economy and daily life. Under global
energy and environmental crisis, the economy and emission
of engines have become hot issues. For this reason, down-
sizing and strengthening techniques, represented by turbo
charge and direct-injection, become one of the main research
directions for engine [1]. However, the following problem
of knock seriously hindered the development of gasoline
engine. Knock is an abnormal combustion phenomenon.
Strong knocks will reduce the efficiency and durability of
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engine, while slight knocks can make it run in approximately
constant volume combustion state so as to increase efficiency
greatly [2]. So, detecting knock to keep engine operating
with slight knock has great value in theoretical research and
engineering application.

In knock detection, cylinder pressure [3], combustion
noise [4] and engine block vibration [5] are widely used. The
cylinder pressure detection method needs expensive sensors
and is usually applied in research. The combustion noise
detection method can be easily interfered by external factors.
The engine block vibration detection is the most popular
method in engineering application because of its low cost and
simplicity.

There is lots of noise in engine block vibration signals,
which has little influence on strong knock characteristics
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but is easy to cover up slight knocks. Many efforts have
been made on signal processing, including traditional time-
frequency analysis, wavelet analysis, empirical mode decom-
position (EMD) and so on [6]–[8]. Sharma et al. [9] used short
time Fourier transform (STFT) to analyze engine vibration
signals and obtained the characteristics of abnormal com-
bustion. Taghizadeh-Alisaraei et al. [10] found 3D Morlet
wavelet scalogram can provide higher resolution in analyz-
ing engine knock. Yadav et al. [11] combined the intrinsic
mode functions (IMFs) decomposed by EMD with fault
features and achieved more accurate results. However, tradi-
tional time-frequency analysis method, such as STFT, cannot
reach a high enough resolution both in time and frequency
domains. Besides, thewavelet analysis is not a self-adaptation
decomposition method either [12]. EMD is a self-adaptation
method, but its native defects, such as mode mixing and
struggling in decomposing IMFs with close frequencies,
brought by recursive model still puzzle researchers [13], [14].
Although ensemble empirical mode decomposition (EEMD)
can solve the mode mixing to certain extent, it is accom-
panied by influences of low efficiency and residual
white noise [15], [16]. To overcome these problems,
Dragomiretskiy and Zosso [17] proposed variational mode
decomposition (VMD) based on variational principle. Essen-
tially the VMD is multilevel Wiener filtering which has
higher accuracy and efficiency because of abandoning recur-
sive model, and has shown great potential in faults detec-
tion [18], [19]. However, several control parameters in VMD,
such as decomposition level K and quadratic penalty α, have
to be determinedmanually, which brings subjective effect and
reduces the accuracy and efficiency of VMD.

After signals decomposition, characteristic parameters
should be extracted to recognize working conditions. Lots
of characteristic parameters are able to describe signals in
different aspects. In this case, too few characteristic parame-
ters cannot describe the features clearly, while too many will
increase the complexity of classifier without increase in accu-
racy [20]. To solve this problem, dimensionality reduction
method was introduced to process characteristic parameters
to improve the generalization and efficiency of classifier [21].
Principal component analysis (PCA) and local Fisher
discriminant analysis (LFDA) are the two representative
methods widely used in many fields [22], [23]. The LFDA,
a supervised dimensionality reduction method, cannot ensure
a high accuracy if the labeled samples are inappropriate.
On the contrary, the PCA is an unsupervised dimensional-
ity reduction, which is not necessary to get the best results
for the samples with great scaling difference. In 2010,
Sugiyama et al. [24] proposed semi-supervised local Fisher
discriminant analysis (SELF), which could connect PCA
and LFDA smoothly to mitigate their defects. SELF shows
great performance in application, such as face recogni-
tion [25], speech recognition [26], gene expression data
recognition [27] and so on. However, the application
of SELF in engine vibration signals is immature and needs
further adaptive optimization.

To solve the problems mentioned above, this paper pro-
poses a novel approach for detecting knocks in differ-
ent intensities based on engine block vibration. The paper
is organized as follows: Section 1 introduces research
background and significance, Section 2 gives algorithms
details, the experiment is described in Section 3, recursive
VMD is optimized in Section 4, multilevel SELF is proposed
in Section 5, and conclusion and discussion are given in
Section 6.

II. ALGORITHM THEORIES
VMD and SELF are the core algorithms for this work and
their basic theories are introduced in this section.

A. VMD ALGORITHM THEORIES
The purpose of VMD is to decompose an input signal f into
several IMFs uk . Every uk compacts around a center fre-
quencyωk , which is determined by decomposition level. Each
uk has a specific sparsity and all of them could restructure the
input signal f [17].
Firstly, uk should be processed by Hilbert transformation

to get its unilateral spectrum:

H =
[
δ(t)+

j
π t

]
uk (t) (1)

where δ represents Fermi-Dirac distribution, j2 = −1,
k ∈ {1, 2, · · · ,K } and K is the decomposition level.

Secondly, an estimated center frequency, e−jωk t , is blended
into the unilateral spectrum of uk and the frequency domain
of uk will be transformed into baseband:

B =
[
δ(t)+

j
π t

]
uk (t) ∗ e−jωk t (2)

where ∗ represents convolutions.
Then, the bandwidth of uk could be obtained by H1 Gauss

smoothing, i.e. L2 norm:

min
{uk },{wk }

{∑
k

∥∥∥∥∂t [δ(t)+ j
π t

]
uk (t) ∗ e−jωk t

∥∥∥∥2
2

}
,

s.t
∑
k

uk = f (3)

where {uk} := {u1, u2, · · · , uk} and {ωk} := {ω1, ω2, · · · , ωk}

are shorthands of IMFs and their center frequencies, respec-

tively.
∑
k
:=

K∑
k=1

is the summation of all IMFs.

Equation (3) is a constrained variational model and can
be transformed into an unconstrained variational model by
introducing quadratic penalty α and Lagrange multiplier λ.
So the augmented Lagrange formula is:

L({uk} , {ωk} , λ) :

= α
∑
k

∥∥∥∥∂t [(δ(t)+ j
π t

) ∗ uk (t)]e−jωk t
∥∥∥∥2
2

+

∥∥∥∥∥f (t)−∑
k

uk (t)

∥∥∥∥∥
2

2

+

〈
λ(t), f (t)−

∑
k

uk (t)

〉
(4)
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This is a classic method to solve constrained variational
model. The α has a great influence on decomposing results
and the selection of it will be researched in following
contents.

This is a Lagrange saddle point problem and the results are:

_u
n+1
k (ω) =

_

f (ω)−
∑
i6=k

_ui(ω)+
_
λ (ω)
2

1+ 2α(ω − ωk)2
(5)

ωn+1k =

∞∫
0
ω

∣∣∣_uk (ω)∣∣∣2 dω
∞∫
0

∣∣∣_uk (ω)∣∣∣2 dω (6)

_

λ
n+1

(ω) =
_

λ
n
(ω)+ τ (

_

f (ω)−
∑
k

un+1k ) (7)

where τ represents the update parameter.
According to (5), (6) and (7), final results can be obtained

by alternate directionmethod of multipliers (ADMM). At this
point, the detailed workflow of VMD can be given as:

¬ Initialize
{
_u
1
k

}
,
{
ω1
k

}
, and

_

λ
1
, and set the number of

cycles n = 1.
­ Update uk by (5).
® Update ωk by (6).
¯ Update λ by (7).
° Set n = n+ 1, and repeat the steps ­ -¯.
±Output results when cut-off condition is met. The cut-off

condition of VMD is:∑
k

∥∥∥_un+1k −
_u
n
k

∥∥∥2
2
/

∥∥∥_unk∥∥∥22 < ε (8)

In general, ε = 10−7.
As soon as the iteration is completed, K IMFs can be

obtained.

B. SELF ALGORITHM THEORIES
SELF is an algorithm for dimensionality reduction, whose
purpose is to obtain low-dimensional representation of high-
dimensional data as well as retain most inner information of
original data [24].

Suppose xi ∈ Rd (i = 1, 2, · · · n) is a d-dimensional vector
and X ∈ Rd×n is the matrix composed of xi:

X := (x1 |x2 |· · · |xn ) (9)

Let z ∈ Rr (1 ≤ r ≤ d) be the low-dimensional representation
of the high-dimensional sample x ∈ Rd , where r is the
dimensionality of reduced space. This can be realized by
transformation matrix T ∈ Rd×r :

z = T Tx (10)

where the superscript T represents the transpose of a
matrix or a vector.

The dimensionality reduction is to solve the transformation
matrix T ∈ Rd×r . Its general form is:

T (OPT )
:= argmax

T∈Rd×r
[tr(T TBT (T TCT )−1)] (11)

where T (OPT )
: represents the optimal transformation matrix.

B is the matrix composed of values that need increasing,
e.g. between-class separability. C is the matrix composed of
values that need reducing, e.g. within-class separability.

Since SELF is a combination of PCA and LFDA, basics of
the two algorithms are given as follows:

1) PCA ALGORITHM
Suppose S(t) is total scatter matrix:

S(t) :=
n∑
i=1

(xi − µ)(xi − µ)T (12)

where µ is the mean of samples: µ = 1
n

n∑
i=1

xi.

The transformation matrix in PCA, T (PCA), is:

T (PCA)
:= argmax

T∈Rd×r
[tr(T TS(t)T (T TT )−1)] (13)

Compared with (11), we can get B = S(t) and C = Id ,
where Id is the identity matrix.

2) LFDA ALGORITHM
Suppose S(lb) is the local between-class scatter matrix and
S(lw) is the local within-class scatter matrix:

S(lb) : =
1
2

n′∑
i,j=1

W (lb)
i,j (xi − xj)(xi − xj)T (14)

S(lw) : =
1
2

n′∑
i,j=1

W (lw)
i,j (xi − xj)(xi − xj)T (15)

whereW (lb) and W (lw) are n′ × n′ matrices defined as:

W (lb)
i,j : =

{
Ai,j(1/n′ − 1/n′yi ) if yi = yj
1/n′ if yi 6= yj

(16)

W (w)
i,j : =

{
Ai,j/n′yi if yi = y
0 if yi 6= yj

(17)

where n′yi represents the number of labelled samples in its
class yi ∈ {1, 2, . . . , c}, n′ is the number of all the labeled

samples, Ai,j = exp(−‖xi−xj‖
2

σiσj
) is the affinity value between

xi and xj based on the local scaling heuristic. The parameter
σi :=

∥∥xi − xki ∥∥ is a local scaling around xi.
The transformation matrix in LFDA, T (LFDA), is:

T (LFDA)
:= argmax

T∈Rd×r
[tr(T TS(lb)T (T TS(lw)T )−1)] (18)

Compared with (11), one can get B = S(lb) and C = S(lw).
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TABLE 1. Main parameters of tested engine.

TABLE 2. Test instruments.

3) SELF ALGORITHM
Suppose S(rlb) is a regularized local between-class scatter
matrix and S(rlw) is a regularized local within-class scatter
matrix:

S(rlb) : = (1− β)S(lb) + βS(t) (19)

S(rlw) : = (1− β)S(lw) + βId (20)

where β ∈ [0, 1] is a trade-off parameter. SELF will become
LFDA when β = 0 and PCA when β = 1.

The transformation matrix in SELF, T (SELF), is:

T (SELF)
:= argmax

T∈Rd×r
[tr(T TS(rlb)T (T TS(rlw)T )−1)] (21)

which also can be given as:

T (SELF)
= (
√
γ1ϕ1

∣∣√γ2ϕ2 |· · · ∣∣√γrϕr ) (22)

where γ and ϕ are the eigenvalues and eigenvectors respec-
tively in generalized eigenvalue problem S(rlb)ϕ = γ S(rlw)ϕ.

III. ENGINE BENCH TEST
The experiment was performed on a turbo charged in-cylinder
direct-injection four-cylinder gasoline engine. Engine param-
eters are listed in Table 1 and the instruments are given
in Table 2.

During bench test, vibration signals of engine were col-
lected near the 2nd, 3rd and 4th cylinders by accelerometers.
A speed sensor was placed at flywheel end to record the
rotatory speed of crankshaft in order to locate top dead center.
Every cylinder has a pressure sensor to measure the cylinder
pressure for subsequent analysis. A microphone was used to
collect the engine knock noise.

The test bench is shown in Fig. 1. The sampling rate was
set as 51.2 kHz to cover the knock frequency. The data were
collected every 400 r/min from 1200 r/min to 5600 r/min and
the testing torque was from 40Nm to 205Nm. Two additional
cases of 1400 r/min and 1500 r/min were tested because
the engine is prone to knock in this speed range. The level

FIGURE 1. Bench test. (a) Engine. (b) Vibration sensors. (c) Cylinder
pressure sensors. (d) Testing system.

of knock was controlled by adjusting the ignition timing
with 2◦ CA step. The normal working condition is that no
knock happens with increasing timing advance until torque
drops.
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IV. OPTIMIZATION OF VMD
An optimal VMD proposed based on recursive model (here-
after called RVMD) in [28] is given as follows:

¬ Calculate the power spectral density (PSD) of input
signal f and find the peak frequency, ωini.

­ Set decomposition level K as 1 and take ωini as the
iterative initial center frequency.

® Take the only one IMF as the first mode u1.
¯ Take f2 = f − u1 as a new input signal and repeat

steps ¬ -® to obtain u1, u2, · · · .
° Suppose the energy of the kth input signal fk is Etot ,

and the energy summation of the kth mode uk and fk − uk
is Ex . According to orthogonality, energy difference Eerr =
Ex − Etot is taken as the stop condition for RVMD. The core
is that: let the energy of the original input signal f be Ef ,
Eerr
Ef

< Rthreshold can be met by looping steps ¬-¯.
Despite a lot of tests, desired results can be obtained when

Rthreshold = 0.007 [28]. However, quadratic penalty α con-
trols the noise in everymode, which has great influence on the
energy of signal. That is to say the quadratic penalty α also
has considerable effect on the stop condition Rthreshold . So
relationship between α and Rthreshold is explored to improve
the RVMD.

In particular, there is generally a most suitable α corre-
sponding to decomposition level K in original VMD. The
RVMD has a fixed K value (i.e. K =1), so a fixed α can
be selected for it. However, it’s difficult to select a suitable α
for RVMD, and this paper will do some signals analysis and
polynomial fitting in following content to solve this problem.

A. VERIFICATION WITH SIMULATED SIGNAL
For verification, RVMD and EMD are employed to decom-
pose the following simulated signal, as shown in Fig. 2.

s1 =

{
200e(−1000∗t) sin(2π f1t) if t ∈ [0.0043, 0.0058]
0 else

s2 = 30 sin(2π f2t)
s3 = 50 sin(2π f3t)
s4 = η
s = s1 + s2 + s3 + s4

(23)

where t ∈ [0, 0.01]. s1 (f1 = 15000) simulates attenuated
high frequency oscillation signal similar to knock compo-
nent. s2 (f2 = 2000) is a high frequency sinusoidal signal.
s3 (f3 = 8000) is low frequency sinusoidal signal.
s4 is 15 dBw Gauss white noise.

Seven IMFs are obtained by EMD but last three of them are
obviously illusive components, so only the first four IMFs and
the corresponding PSDs are shown in Fig. 3. For the RVMD
(α = 2000), only 3 IMFs are obtained, are shown in Fig. 4.
As shown in Fig. 3, IMF1 indicates that EMD cannot

separate attenuated high frequency oscillation signal (s1) and
the high frequency sine signal (s2). IMF3 and IMF4 show
illusive components in the decomposition. As shown in Fig. 4,

FIGURE 2. Simulated signal.

FIGURE 3. Results of EMD. (a) Time domain. (b) Frequency domain.

TABLE 3. Correlation coefficient between decomposition and original
components.

RVMD can decompose the three original components exactly
with desired narrow bandwidth.

To explain the advantages of RVMDquantitatively, the cor-
relation coefficient between decomposition results and orig-
inal components is calculated and listed in Table 3. The
significant difference in correlation coefficient between IMFs
and the corresponding original components further illustrates
the advantage of RVMD.
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FIGURE 4. Results of RVMD. (a) Time domain. (b) Frequency domain.

FIGURE 5. Results of a = 500. (a) Time domain. (b) Frequency domain.

B. ANALYSIS OF QUADRATIC PENALTY
To analyze the relationship between the quadratic penalty and
the stop condition, α = 500 and α = 10000 are used to
compare with the case of α = 2000 (Fig. 4). The α = 2000
is default parameter in VMD, and the values 500 and 10000,
which are far from 2000, are selected to show and analyze the
great influence of α on decomposing results.

As shown in Fig. 5 and Fig. 6, there are large errors
in two sinusoidal signals. For smaller α, overlaps with the
attenuated high frequency oscillation signal can be found. For
larger α, extra component is introduced, which means over-
decomposition occurs.

It can be concluded that, the smaller the α is, the higher
the noise in signal will be, and vice versa. It is why a small
α leads more noise and complex components. On the other
hand, it is easier to punish noise excessively when the α is
lager and decompose a wide band component into several
extra modes. There should be an optimal α value to avoid
high noise and over-decomposition at the same time. This is
a guarantee of decomposition accuracy of vibration signals
and the following recognition rate of knock detection.

FIGURE 6. Results of a = 10000. (a) Time domain. (b) Frequency domain.

FIGURE 7. Measured vibration signal. (a) Time domain. (b) Frequency
domain.

C. OPTIMIZATION OF QUADRATIC PENALTY
In this section, a real vibration signal, measured from
the 3rd cylinder at 1600 r/min speed with 85 Nm torque
and 8.25 ◦CA timing advance increment, is used to investi-
gate the relationship between quadratic penalty α and stop
condition Rthreshold .

The time history and frequency spectrum of the signal is
shown in Fig. 7. The firing order is 4-2-1-3. Based on the
cylinder pressure, the 2nd cylinder is found under strong
knock condition, the 3rd cylinder is under slight knock con-
dition, and the 1st and 4th cylinder are in normal working
condition.

As mentioned above, it is supposed the ratio of the energy
difference at desired stop condition (Eerr−threshold ) to origi-
nal signal’s energy (Ef ) is Rthreshold and ratio of the energy
difference when iteration stopping (Eerr−k ) to Ef is Rk . Let
Rnor = Rk/Rthreshold , and Rnor will be used to investigate
the influence of quadratic penalty α. Rk must be less than
Rthreshold so that Rnor < 1, which means Rnor can express the
relationship between quadratic penalty and results clearly.

In processing themeasured vibration signal, the stop condi-
tion Rthreshold increases from 0.005 to 0.020 by 0.001 and the
quadratic penalty α increases from 1000 to 10000 by 100.The
results of Rnor is shown as Fig. 8.
When signals are decomposed with RVMD, it is desirable

that Rnor can be stable and close to 1. The stability can
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FIGURE 8. Results of Rnor in different conditions.

TABLE 4. RMSEs of fitting formulas.

provide good consistency of decomposition, and the value
close to 1 means it’s no need to punish noise by α and
Rthreshold excessively. Under these considerations, Rnor =
0.80− 0.90 is appropriate. A required continuous area exists
in Fig 8 as marked with black dashed line. In this area, the α
and Rthreshold are corresponding to each other and can be
shown in two-dimensional coordinate system. All of these
points are extracted and shown in Fig. 9.

As shown in Fig. 9, the relationship between α and
Rthreshold can be expressed by curve fitting. Because of the
great magnitude difference between α and Rthreshold , they
are fitted by their natural logarithms. To find the best fitting
formula, Root Mean Square Error (RMSE) is used.

RMSE =

√√√√1
n

n∑
i=1

(yi − ŷi)2 (24)

where n is the number of samples, yi is the original value and
ŷi is the fitted value.
In this paper, 1st-6th polynomial fittings are calculated and

the RMSEs are listed in Table 4.

FIGURE 9. Scatter plot of required points.

FIGURE 10. Results of 3rd polynomial fit.

As shown in Table 4, the RMSE does not decline obvi-
ously with increasing order higher than 3. However, with the
increasing of order, the complexity increases obviously. Upon
comprehensive consideration, the 3rd polynomial is reason-
able choice and the 3rd fitting result is shown as Fig. 10.

The fitting formula is:

ln(α) = 1.015[ln(Rthreshold )]3 + 14.154[ln(Rthreshold )]2

+66.838 ln(Rthreshold )+ 115.121 (25)

That is:

α = e1.015[ln(Rthreshold )]3

+14.154[ln(Rthreshold )]2

+66.838 ln(Rthreshold )+ 115.121 (26)
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FIGURE 11. Verification signal. (a) Time domain. (b) Frequency domain.

FIGURE 12. Result the of a = 2860. (a) Time domain. (b) Frequency
domain.

To verify the accuracy and adaptability of fitting for-
mula (26), another measured signal is used, which is collected
under 1400 r/min with timing advance increment of 6.00 ◦CA
as shown in Fig. 11. When decomposing knock signals by
RVMD, α is calculated by fitting formula (26) as 2860 in the
case of Rthreshold = 0.007, and the result is shown as Fig. 12.

As shown in Fig. 12, the fitted α give desired result
by extracting every component exactly without under-
decomposition and over-decomposition. The result proves
that the fitting formula proposed has ability to choose appro-
priate α for RVMD. This work can insure the accuracy of
decomposition and guarantee to recognize knock in different
intensities.

V. MULTILEVEL SELF ALGORITHM
In consideration of knock characteristic frequency, the com-
ponents in 5 kHz-20 kHzwill be restructured. After decompo-
sition and restructuration, knock intensity can be recognized
by calculating characteristic parameters.

Single kind of characteristic parameter can hardly
characterize knock due to lack of information. So stan-
dard deviation, skewness, kurtosis, peak to peak, square
root amplitude, average amplitude, RMS, Shannon entropy,
the largest singular value and fourth-order cumulant are

FIGURE 13. 3-dimensional samples of 1-level dimensionality reduction,
where the blue ‘‘•’’ represents labeled samples of normal condition,
the blue ‘‘©’’ represents unlabeled samples of normal condition, the red
‘‘�’’ represents labeled samples of slight knock, the red ‘‘�’’ represents
unlabeled samples of slight knock, the black ‘‘N’’ represents labeled
samples of strong knock, the black ‘‘M’’ represents unlabeled samples of
strong knock.

calculated. Their calculation principles and physical signif-
icances are shown in Appendix.

Specially, the advantages of SELF have been proved in [24]
and it is not shown in this paper for limited space. The
multilevel SELF proposed in this paper will be expressed in
detail as follows.

102 data sets of normal condition, slight knock condition
and strong knock condition signals are selected respectively
according to maximum amplitude of pressure oscillation
(MAPO). For each condition, 2 sets of signals are selected
randomly as labeled samples and the rest 100 sets of each
condition are taken as unlabeled samples to calculate recog-
nition rate.

A. SELF ANALYSIS
To describe multilevel SELF algorithm clearly, a brief anal-
ysis and an example are shown in this section. The trade-
off parameter β is selected as 0.5. The 10-dimensional sam-
ples are reduced to 3-dimensional ones by SELF directly
(see Fig. 13) and the results are shown in their natural loga-
rithms because of great scale difference. The low-dimension
characteristic parameters are named as CP.

As shown in Fig. 13, there are several embedded spaces can
transform 3-dimensional samples into 2-dimensional ones.
Fig. 14 shows the 2-dimensional samples transformed by
SELF directly from original 10-dimensional ones. In Fig. 14,
the 2-dimensional samples can be understood as reducing
dimensionality from those in Fig. 13 by the embedded space
composed of CP1 vector and CP2 vector approximately.
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FIGURE 14. 2-dimensional samples of 1-level dimensionality reduction,
where the blue ‘‘•’’ represents labeled samples of normal condition,
the blue ‘‘©’’ represents unlabeled samples of normal condition, the red
‘‘�’’ represents labeled samples of slight knock, the red ‘‘�’’ represents
unlabeled samples of slight knock, the black ‘‘N’’ represents labeled
samples of strong knock, the black ‘‘M’’ represents unlabeled samples of
strong knock.

FIGURE 15. 2-dimensional samples of 2-level dimensionality reduction,
where the blue ‘‘•’’ represents labeled samples of normal condition,
the blue ‘‘©’’ represents unlabeled samples of normal condition, the red
‘‘�’’ represents labeled samples of slight knock, the red ‘‘�’’ represents
unlabeled samples of slight knock, the black ‘‘N’’ represents labeled
samples of strong knock, the black ‘‘M’’ represents unlabeled samples of
strong knock.

To investigate other embedded spaces, it is tried to process
original samples by 2-level dimensionality reduction which
the first level is 3 dimensions and the second level is 2 dimen-
sions. That is reducing the 10-dimensional original samples
to 3-dimensional ones, and then reducing the 3-dimensional
samples to 2-dimensional ones. The 2-dimensional samples
are taken as final results, and are shown as Fig. 15.

As shown in Fig. 15, different structures can be found
after 2-level dimensionality reduction. When the dimension

FIGURE 16. Workflow of SELF algorithm, where m is the level of
multilevel SELF, and n is the dimensionality of samples.

reduced is high, SELF sometimes may not find the best
transformation matrix. That means a multilevel dimension-
ality reduction may have better chance to find the best low-
dimensional space by several transformation matrixes with
descending dimensions. Based on that, multilevel SELF algo-
rithm can be proposed.

B. MULTILEVEL SELF ALGORITHM
The process of multilevel SELF algorithm is given as follows:

¬ For n-dimensional data X , reduce its dimensionality to
n1-dimensional by SELF and obtain low dimension data X1,
where n1 < n, and n1 is a positive integer.

­ Let the natural logarithm of X1 as ln(X1), and take ln(X1)
as input for subsequent computations.

® Reduce the dimensionality of ln(X1) to n2 by SELF and
obtain the result X2, where n2 < n1, and n2 is a positive
integer.

¯ With reasonable structural design, several descending n
values are selected, n2 > n3 > · · · > nm, to repeat step ®
until the final result Xm with nm-dimensional is obtained.
Specifically, the n2 > n3 > · · · > nm are not continue

positive integers instead of abrupt change ones. Only X1 is
calculated its natural logarithm.

The workflow of multilevel SELF algorithm is shown
in Fig. 16.

C. STRUCTURE AND VERIFICATION OF MULTILEVEL SELF
ALGORITHM
More accurate results can be obtained by multilevel SELF
structure, but the efficiency reduces when structure becomes
more complex. With a lot of testing and adjusting, the struc-
ture of 5-3-1 shows the best performance. The dimensionality
reduction result of original data is shown as Fig. 17.

As shown in Fig. 17, different working conditions can be
clearly observed from the result of multilevel SELF. In order
to analyze the accuracy quantitatively, an unsupervised
classifier fuzzy c-means clustering (FCM) is introduced to

122036 VOLUME 7, 2019



F. Bi et al.: Knock Detection Based on Recursive VMD and Multilevel SELF

FIGURE 17. Result of multilevel SELF, where the blue ‘‘•’’ represents
labeled samples of normal condition, the blue ‘‘©’’ represents unlabeled
samples of normal condition, the red ‘‘�’’ represents labeled samples of
slight knock, the red ‘‘�’’ represents unlabeled samples of slight knock,
the black ‘‘N’’ represents labeled samples of strong knock, the black ‘‘M’’
represents unlabeled samples of strong knock.

TABLE 5. Classification rate of multilevel SELF with 5-3-1 structure.

evaluate the distinguishability of the results. FCM is a classi-
cal classifier, the reason for selecting it is that the FCM has
high efficiency and does not need training by labeled samples.
These advantages accord with the demands of using as few as
possible labeled samples to detect knock quickly.

For clear comparison, the classification rate is defined as:
Classification Rate = datar

dataa
, where dataa is the number of

samples recognized in a certain class by FCM, where dataa ={
dataa if dataa ≥ 100
100 if dataa < 100

, and datar is the number of samples

recognized correctly in this certain class.
As shown in Table 5, the result of the multilevel SELF with

5-3-1 structure shows high accuracy in knock detection. All
classification rates are over 90%, and the classification rate
of strong knock is over 95%.

To verify the effectiveness and practicability of multilevel
SELF, original SELF and several multilevel SELF algorithms
with different structures are used to process the samples.
In Table 6, the structure with only one level is the original
SELF, and the number of structure (such as 3-1) represents
the reduced dimensionality in each level.

As shown in Table 6, the original SELF algorithms, such as
structures ‘‘3’’, ‘‘2’’, and ‘‘1’’, have generally lower accuracy
compared with multilevel SELF algorithms. The multilevel
SELF with simple structure ‘‘3-1’’ is more accurate than the
original SELF. For structure ‘‘9-7-5-3-2-1’’ and ‘‘9-8-7-6-
5-4-3-2-1’’, their accuracies are the same as the proposed
structure ‘‘5-3-1’’, but they are less efficient.

TABLE 6. Classification rate of SELF with different structures.

TABLE 7. Classification rate of single characteristic parameter.

To verify the necessity of SELF, classification rate of knock
detection for every single characteristic parameter is also
evaluated. The results are shown as Table 7.

As shown in Table 7, using single characteristic parameter
cannot recognize different intensities of knock accurately.
In opposite, using all the ten original characteristic param-
eters is not able to well detect knocks either.

VI. CONCLUSION AND DISCUSSION
A. CONCLUSION
In order to detect engine knock in different intensities, a novel
approach is proposed:

1) A 3rd order polynomial fitting function is developed to
reduce the subjectivity of quadratic penalty α in RVMD
based on analyzing the relationship between quadratic
penalty α and energy difference stop condition.

2) A multilevel SELF composed of several embedding
spaces with decreasing dimensions is proposed, which
can reduce the dimensionality of original samples
gradually.

3) In application, vibration signals are decomposed by
RVMD and then knock characteristics are restructured.
Ten characteristic parameters of the reconstructed
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signal are calculated. High-dimensional samples are
processed bymultilevel SELF and recognized by FCM.
A ‘‘5-3-1’’ multilevel SELF is found of best knock
recognition performance.

The method proposed in this paper can recognize knock
in different intensities accurately and has certain theory and
engineering practice significances.

B. DISCUSSION AND OUTLOOK
There is also more work worth further research:

1) In term of the fitting function of quadratic penalty for
RVMD, extra points can also get desired results. The
objective of this paper is to find a concise method to
describe the relationship between quadratic penalty α
and energy difference stop condition, which makes it
possible that values within the margin can get same
results. In future work, the determination of exact α
value can be explored depending on the investigation
of signals’ physical significance.

2) For multilevel SELF, the classifier is chosen as
FCM because its efficiency and conciseness for labeled
samples. However, FCM is traditional and simple, and
more advanced classifiers will be studied in the suc-
ceeding work.

APPENDIX
THE CALCULATION PRINCIPLES AND PHYSICAL
SIGNIFICANCES OF CHARACTERISTIC PARAMETERS
Suppose X = [x1, x1, . . . xn] is a set of random variable, so:

1) STANDARD DEVIATION

S =

√√√√ 1
n− 1

n∑
i=1

|xi − x̄|2

where ¯x = 1
n

n∑
i=1

xi, i.e. the mean of X .

The standard deviation can describe the dispersion of data
and can be understood as impact strength.

2) SKEWNESS

sk =

1
n

n∑
i=1
(xi − x̄)3

S3

The skewness can describe the lopsidedness of data and
can be understood as directional tendency.

3) KURTOSIS

k =

1
n

n∑
i=1
(xi − x̄)4

S4

The kurtosis can describe the degree of deviation from
normal distribution and can be understood as the abnormity
degree of data.

4) PEAK TO PEAK

p− p = |max (X)− min (X)|

The peak to peak is the difference between the minimum
and maximum values, and can be understood as the biggest
change in data.

5) SQUARE ROOT AMPLITUDE

sra =

(
1
n

n∑
i=1

√
|xi|

)2

The square root amplitude is part of margin index and can
describe the signal-to-noise ratio.

6) AVERAGE AMPLITUDE

|X | =
1
n

n∑
i=1

|xi|

The average amplitude is the measurement for overall
amplitude of data.

7) ROOT MEAN SQUARE (RMS)

RMS =

√√√√ n∑
i=1

x2i

The RMS can be understood as the effective value of data.

8) SHANNON ENTROPY

Suppose the chance of xi exists in X is pi, and
n∑

i=1
pi = 1.

So the Shannon Entropy of X is: Sha =
n∑

i=1
pi ln pi.

The Shannon Entropy can describe uncertainty of data.

9) THE LARGEST SINGULAR VALUE
Suppose A is a m × n matrix, and there must be orthogonal
(or unitary) matrix UTU = Im and V TV = In let Am×n =
Um×n6m×nV T

m×n, where the
∑

is orthogonal matrix, which∑
= diag(λ1, λ2, . . . λr ) and rank(A) = rank(

∑
) = r . The

diagonal elements of
∑

is the singular values of A and the
largest singular value is the largest of them.

The largest singular value can be understood as the maxi-
mum growth rate of disturbance in a certain period of time.

10) FOURTH-ORDER CUMULANT
Suppose the probability density function ofX is f (x), and then
the first eigenfunction of X is:

8(ω) = E{ejωx} =
∫
∞

−∞

f (x)ejωxdx

The kth derivative of it is:

8k (ω) =
dk8(ω)
dωk

= jkE{xkejωx}
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Let ω = 0, the kth order moment of X is:

mk = 8k (0) = E{xk}

Let 9(ω) = ln8(ω), so the kth order cumulant of X is
defined as the value of the kth derivative of 9(ω) at ω = 0:

ck =
dk9(ω)
dωk

|ω=0

The fourth-order cumulant can be understood as the degree
of deviation from Gaussian noise.
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