IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 25, 2019, accepted August 15, 2019, date of publication August 26, 2019, date of current version September 12, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2937528

Amaru: Plug&Play Resilient
In-Band Control for SDN

DIEGO LOPEZ-PAJARES !, (Member, IEEE), JOAQUIN ALVAREZ-HORCAJO !, (Member, IEEE),
ELISA ROJAS 1, A. S. M. ASADUJJAMAN?, (Member, IEEE), AND ISAIAS MARTINEZ-YELMO !

! Departamento de Automatica, University of Alcala, 28805 Alcala de Henares, Spain
2Network Planning Department, Banglalink Digital Communications Ltd., Dhaka 1212, Bangladesh

Corresponding author: Elisa Rojas (elisa.rojas@uah.es)

This work was supported in part by the Comunidad de Madrid through Project TAPIR-CM under Grant S2018/TCS-4496, and in part by
the University of Alcala through Project CCG2018-EXP/076 and the Formacion del Profesorado Universitario (FPU) Program.

ABSTRACT Software-Defined Networking (SDN) is a pillar of next-generation networks. Implementing
SDN requires the establishment of a decoupled control communication, which might be installed either as an
out-of-band or in-band network. While the benefits of in-band control networks seem apparent, no standard
protocol exists and most of setups are based on ad-hoc solutions. This article defines Amaru, a protocol
that provides plug&play resilient in-band control for SDN with low-complexity and high scalability. Amaru
follows an exploration mechanism to find all possible paths between the controller and any node of the
network, which drastically reduces convergence time and exchanged messages, while increasing robustness.
Routing is based on masked MAC addresses, which also simplifies routing tables, minimizing the number
of entries to one per path, independently of the network size. We evaluated Amaru with three different
implementations and diverse types of networks and failures, and obtained excellent results, providing almost

on-the-fly rerouting and low recovery time.

INDEX TERMS SDN, OpenFlow, in-band control, resilient networks, path exploration.

I. INTRODUCTION
Control communication is pivotal for the thriving Software-
Defined Networking (SDN) paradigm, which —by definition—
cracks the network architecture into control (logical) and data
(physical) planes [1]. The main purpose of the control com-
munication is to connect both planes and it may be deployed
either as an out-of-band or an in-band network [2], or even
as a hybrid solution [3]. Out-of-band control is arranged as
a dedicated network, isolated from the data plane links and
devices, thus requiring additional resources; while in-band
leverages the already existing deployment to perform the
communication, hence sharing the resources with the data
plane. Finally, hybrid solutions share the advantages and dis-
advantages of both modes, as control communication might
either be routed through dedicated or —the already existing—
data links.

The justification to implement each approach resides in
diverse aspects [2], which we could summarize as follows:

1) As the network grows in size, in-band control is
more scalable and cheaper. For instance, a dedicated

The associate editor coordinating the review of this manuscript and
approving it for publication was Zehua Guo.

123202

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

out-of-band control network for carrier networks is
almost inconceivable due to its high cost.

2) In-band networks are less prone to congestion due to
the high-capacity nature of the data plane links.

3) In-band networks are more resilient to link failures as
they might provide several routes without extra cost,
while the out-of-band approach is restrained to a single
route per deployed out-of-band network.

4) Bootstrapping is almost immediate for out-of-band
approaches, but requires additional configuration for
in-band communications.

5) Out-of-band networks are usually less vulnerable to
security issues.

The three first statements illustrate clear advantages of in-
band control in Software-Defined Networking (SDN). In fact,
some SDN deployments are only possible using in-band
control [2]. However, differently from out-of-band networks,
no standard or official protocol exists to set up in-band net-
works for SDN. As a consequence, current in-band control
is usually based on inefficient manual configurations, which
hinders the main benefits of the in-band approach, as stated in
the fourth point. Therefore, there is an urge for a (1) resilient
and (2) automatic in-band protocol for SDN.

VOLUME 7, 2019

https://orcid.org/0000-0002-8959-4321
https://orcid.org/0000-0002-8522-9933
https://orcid.org/0000-0002-6385-2628
https://orcid.org/0000-0001-9648-8669

D. Lopez-Pajares et al.: Amaru: Plug&Play Resilient In-Band Control for SDN

IEEE Access

In particular, the former requirement, resiliency, is better
for in-band than for out-of-band, but we should carefully
analyze how the alternative routes are provided. Basically,
the two main fault recovery approaches are protection and
restoration [4], which pre-install and calculate the alternative
routes on-the-fly when failures occur, respectively. Accord-
ing to literature, paths should be recovered within 50 ms to
avoid further issues [5], and recent studies prove that only
the protection mechanism accomplishes this requirement.
However, pre-installing routes might not be scalable, or even
possible, at all times.

The latter requirement, fast —and automatic— bootstrap-
ping, is also a challenge for in-band control in SDN [6], [7],
as most of the current approaches either bootstrap the network
manually, leverage traditional routing protocols, or even rely
on an additional out-of-band control network to configure it,
which increases complexity and bootstrapping time in com-
parison with simple out-of-band networks.

In this article, we define, implement and evaluate Amaru,
a protocol to deploy in-band control for SDN that provides
three main features: (1) fast automatic bootstrapping and
(2) multiple alternative routes to boost resiliency based on the
protection scheme, while (3) reducing the number of table
entries to prevent any scalability issues. To the best of our
knowledge, Amaru is the only existing protocol that provides
these three features. As such, Amaru tries to accomplish the
above-mentioned challenges for in-band control.

The article is structured as follows: In Section II, we review
the current state of the art regarding in-band control deploy-
ments and protocols for SDN. In Section III we define
the Amaru protocol and its core features. Afterwards,
in Section IV, we describe the different implementations
developed to prove the behavior of Amaru. Finally, we eval-
uate and discuss the protocol in Section V, and provide the
main conclusions in Section VI.

Il. RELATED WORK
Beheshti and Zhang [8] formulate one of the first works to
examine the resiliency of in-band control in SDN. Specif-
ically, the authors define a protection metric and evaluate
the algorithms to provide the best protection scheme. How-
ever, they do not question how to pre-install the alterna-
tive routes, its scalability or automatic deployment of the
in-band network. The protection and restoration approaches
are initially compared for in-band OpenFlow networks by
Sharma et al. [4], [9], where the conclusion is that only
protection grants a recovery under the required 50 ms [5].
In order to minimize the overall recovery time, failures should
be detected as fast as possible, independently of how alter-
native routes are provided later on. In the literature, we can
also find fast failure detection algorithms, which are mainly
software-based solutions based on monitoring [10], [11].
Apart from detection time, recovery will also depend on the
protection or restoration scheme in use. In the case of protec-
tion, rerouting is almost immediate, but then minimizing the
number of table entries is crucial. Feng et al. [12] provide

VOLUME 7, 2019

an algorithm for this purpose. Hu et al. [13] investigate pro-
tection with multiple controllers and propose a scheme based
on local rerouting and reverse forwarding. Huang et al. [14]
also investigate an optimizer to provide robust end-to-end
global rerouting while minimizing resource utilization, but
exclusively for single-link failures. While the previous ones
are merely studies, Goltsmann et al. [15] plan to provide
backup routes via direct calculation of the network nodes,
which is faster but it might overload them (as nodes need to be
aware of the whole topology, to perform breadth-first search,
to install their own routes, etc.). However, this latter approach
has only been designed for single-link failures as well.
Chan et al. [16] designed a disjoint path planning to achieve
fast reroute after failure. However, it requires backup con-
trollers and failure detection depends on the monitoring cycle.
Gonziélez et al. [17] provide a resilient OpenFlow channel
through MPTCP, but it requires an out-of-band channel for
the initial setup, hence exclusively using in-band commu-
nication is unfeasible. Also leveraging MPTCP for in-band
control, Raza and Lee [18] design a heuristic algorithm to
compute disjoint and short-lengthed paths, but they leave as
future work the associated protocol definition (that is, the pro-
cedure of constructing the in-band control connections).

Otherwise, if restoration is implemented, i.e. no alterna-
tive route is pre-installed, creation of new paths should be
fast enough. RASCAR [19] intelligently calculates the best
routes considering that shortest-path strategies do not always
minimize recovery time of control paths. A similar approach
is followed by MORPH [20], which reassigns controllers
when the main one is affected by a security attack.

Only a few approaches implement resilient in-band control
via automatic bootstrapping. ResilientFlow [6] is one of the
first works to mention this challenge and it partially addresses
it. It is a distributed control channel module that lets switches
maintain their own control communication channels. Never-
theless, it requires a specific module installed plus an initial
Open Shortest Path First (OSPF) [21] configuration, and also
periodic exchange of network topology maps, increasing the
signaling overhead. FASIC [22] provides a protection scheme
based on OVSDB and automatic setup; but it requires con-
tinuous monitoring and downtime after failure claims to be
around 5 seconds, which is smaller than using standard OVS
configuration, but much higher than the 50 ms requirement.
Medieval [23], [24] also claims to be plug&play, robust (via
the creation of two spanning trees per controller) and self-
stabilizing; however, it requires the pre-installation of diverse
rules in the switches. Renaissance [25], [26] is a distributed
in-band control system that creates one single tree per con-
troller to obtain k-fault-resiliency. Nonetheless, if only one
controller is deployed, only one path is generated and, as a
link-state approach, the authors focus the analysis on its self-
stabilizing properties and they do not evaluate recovery after
multiple failures. Furthermore, bootstrapping requires sev-
eral seconds and depends on the network update interval. The
in-band control approach by Asadujjaman et al. [27] tackles
multiple failures and implements automatic bootstrapping.

123203

IEEE Access

D. Lopez-Pajares et al.: Amaru: Plug&Play Resilient In-Band Control for SDN

Rogers fiber
backbone

@ SDN controller
plus SDN node

o SDN node with
in-band communication

FIGURE 1. The Rogers topology as an example of carrier network for in-band control in SDN.

ISDN Controller|

ISDN Controller|

-[«—— Control traffic
< Data trafic

In-band

FIGURE 2. Example of out-of-band and in-band control in SDN.

However, it does not provide protection (understood as pre-
installed backup routes) and controller-to-switch communi-
cation is source-routed, which increases packet overhead.
Bentstuen and Flathagen [7] exclusively focus on the boot-
strapping problem, by outlining several steps to pursue auto-
matic setup.

Finally, we would like to highlight some other relevant
works related with the topic. For example, Hark et al. [28]
propose bilateral communication among SDN controllers via
in-band control implemented with VLANs plus One-Hot-
Coding to reduce the number of table entries. However,
it does not address in-band communication per se, automatic
bootstrapping or resiliency aspects. eTDP [29] presents a
protocol to discovery the topology and initial network deploy-
ment, but it does not analyze runtime in-band control or the
creation of multiple paths for resiliency. Gather [30] presents
a method to reduce the number of table entries for in-band
routing via the use of DNS-like grouping. Their authors
evaluate algorithms to group addresses. Gorkemli et al. [31]
evaluate the performance of dynamic control planes and
introduce the concepts of ‘““control flow table”” and *“control
plane manager”. Nevertheless, it lacks a deeper analysis on
automatic bootstrapping and recovery after failure.

Consequently, the main contribution of Amaru in relation
to the current state of the art is to provide automatic boot-
strapping, enhanced resiliency, while preserving scalability
and low-complexity of in-band networks. So far, none of the
current approaches accomplish all of these requirements.

123204

lll. AMARU

The core principle of Amaru is to strengthen the resiliency of
in-band SDN communication, and —additionally— provide it
via a fast and automatic bootstrapping. To achieve this goal,
it explores all possible paths between any network device
and the ones directly connected to the SDN controller, which
guarantee backup routes after link or node failure. At the same
time, Amaru should not affect network performance and, for
this reason, it tries to reduce the signaling overhead.

As previously mentioned, one particular application of
Amaru are carrier networks, where nodes are located very far
ones from the others. Figure 1 depicts this use case, where
only Toronto is connected to the SDN controller and the rest
are controlled via in-band communication, as deploying out-
of-band control will basically mean duplicating the already
existing network and its associated maintenance cost. The
architectural differences between out-of-band and in-band
control are briefly summarized in Fig. 2. In the in-band
approach, resources are saved (some links are not deployed)
at the cost of leveraging the same data links both for data and
control traffic.

We describe Amaru in detail in the next sections.
Firstly, we explain the hierarchical labels leveraged in
Amaru and the distributed mechanism to assign them,
in Sections III-A and III-B, respectively. Afterwards,
we describe the forwarding logic, in Section III-C, and
the procedure to follow in case of network reconfiguration,
in Section III-D. Then, we describe why Amaru boosts the

VOLUME 7, 2019

D. Lopez-Pajares et al.: Amaru: Plug&Play Resilient In-Band Control for SDN

IEEE Access

[Standard identification|

| Amaru identification |

FIGURE 3. Hierarchical labeling in Amaru.

resiliency and scalability of in-band SDN communication in
Sections III-E and III-F. Finally, we clarify how Amaru can
be applied to multiple root nodes in Section III-G.

A. HIERARCHICAL LABELING

The foundations of Amaru are based on GA3 [32], which
creates multiple paths for data center network based on hier-
archical labels, where labels are unique per node. In Amaru,
the first node or root node obtains an initial label, and then
the label is increased in one field per hop, by simply adding
the identity of the hop traversed. For instance, let us assume
that the first node X is labeled Xjp. If X is directly connected
to Y, then the latter node obtains the composed label X;p.Y;p.
If Y is connected to a third node Z, the label X;p.Yip.Zip
will be assigned to Z, and so on. The key advantage of this
type of labeling is that the node IDs indirectly represent the
connectivity among nodes. For instance, X;p.Y;p.Z;p should
have a direct link to Xjp.Y;p, because they just differ in the
final digit of their label (i.e. Zjp). Accordingly, the added
value of these labels is that they have a hierarchical nature and
they enclose the path traversed from the root node, as depicted
in Fig. 3.

In Amaru, these labels are calculated to mask the real
MAC addresses of each network device (addresses that are
usually meaningless for routing as they only convey manufac-
turing information), without modifying the standard Ethernet
frame, i.e. using the same amount of bytes in the header.
It is important to notice that the MAC addresses of the
SDN switches are usually assigned by the SDN controller
in software. Therefore, it is easy to mask them with new
meaningful MAC addresses in SDN that would not be fea-
sible in case of legacy switches. In fact, with the capabil-
ity of SDN to dynamically assign MAC addresses to any
switch interface, the assumption that MAC addresses should
be non-meaningful globally unique numbers is no longer
valid. In Amaru we evolve the notion of MAC addresses to
capitalize on the aforementioned observation.

To distinguish these masked MAC from standard
addresses, they are identified as Amaru MACs (AMACs),
where the U/L (unique/locally administered) bit in the
address field is set to 1. Afterwards, these AMACSs contain
up to 46 bits (48 of the original MAC minus the broad-
cast/multicast and the U/L bits) to represent the labels, which
could be translated into 6 levels of around 8 bits each,
for example. The number of levels represent the maximum

VOLUME 7, 2019

length of each path (e.g. 6 levels means the longest path will
have 6 hops towards the SDN controller). Accordingly, with
the same frame size, one AMAC conveys the information
towards the roof node, which is the switch directly connected
to the SDN controller in our case.

B. ROOT DISCOVERY AND LABELING PROCEDURE

As the main purpose of Amaru is to provide augmented
resiliency for SDN in-band control, the Amaru protocol aims
to find as many paths as possible from any SDN node towards
the root node, that is, the node directly connected to the SDN
controller. These paths will be generated via the assignment
of multiple AMAC:s by exploration probes. In this way, alter-
native paths can be instantiated on-the-fly if any link, or node,
fails, just by switching the AMAC in use.

To simplify the explanation, we will describe the behav-
ior of Amaru in single-controller networks. The procedure
starts when a node discovers a direct connection to an SDN
controller. This node will claim itself as Amaru Root (ARoot)
and send an Amaru Frame (AFrame) through all of its ports.
This AFrame will explore the whole network and the result
of this process is the assignment of at least one hierarchi-
cal label, or AMAC, per node traversed. This exploration
procedure is implemented in a distributed manner (not as a
centralized algorithm) and follows the principles of Breadth-
First Search (BFS) [33], which explores one path between
a couple of nodes (s, #) in a graph. Amaru extends BFS to
discover multiple paths in a single search.

The procedure is implemented as follows: The first
assigned AMAC represents the ARoot and contains only
one level. The next level in the hierarchy (level-n AMAC)
is identified as a child and it obtains the father’s AMAC
plus an additional ID. Hence, the more fields (i.e. levels)
in the AMAC, the further the node is from the ARoot. For
instance, Fig. 4 portrays an example of Amaru applied to a
SDN network consisting of nine switches (s;, where i > 1 and
i <9). As sl is the ARoot, its AMAC is 1 and it propagates
the next-level AMAC:sS to its children, namely 1.7 towards s2
and 1.2 towards s4. Afterwards, s2 and s4 will propagate new
AMAC:s to their neighbors as well, i.e. they will broadcast
next-level AMACs through all their ports except the input
port. As it is a distributed process, the sending switch decides
the value of the next level (ID) of the hierarchy, which could
be any, with the only condition that it should be unique and
consistent (always the same) per child. Each AMAC obtained
is saved by the switches and it is associated with the port
receiving it.

To guarantee loop prevention, a node only forwards an
AFrame if the AMAC contained in it is not a child of their
own. Hence, the distribution of AMACs continues while
switches receive new AMACSs and ends when nodes receive
AMAC s deriving from them and, therefore, discard them.
This is the key difference of Amaru in comparison with BFS,
as BFS discovers a single path between nodes and stops
the procedure when a node is visited for the second and
later times, while Amaru discovers multiple paths because it

123205

IEEE Access

D. Lopez-Pajares et al.: Amaru: Plug&Play Resilient In-Band Control for SDN

ISDN Controller]

1.2l 1.7.6‘ l

e O
§4)—=(5)—=(6)

1.2.4¢ l

FIGURE 4. Initial propagation of AMACs from the ARoot.

ISDN Controller]

1 1.7 1.7.3
o623
17612 T 1.7.6l$ 1 73.2l $1 7631
PR Wy
@1/ 9764 Q@ﬁfs@@

1.761 .1l T 1_7.6.2l T 1 763.3”
N
8=

N 1.7.6.2.8§-847.6.3.3.1§-9>

FIGURE 5. Propagation of label 1.7 in Amaru.

allows traversing the same node more than once, as far as the
label being propagated is not a child of their own.

To illustrate how the Amaru procedure operates, Fig. 5
depicts the specific propagation of label 1.7 from s1 towards
52 in Amaru. Afterwards, s2 repeats the mechanism and prop-
agates two child AMACSs with values 1.7.3 and 1.7.6 to s3
and s5, respectively. This process continues until, eventually,
a switch receives an AMAC that is a child of their own. For
example, s4 sends 1.7.6.1.4 to s1, which is a child of 1 and,
thus, itis discarded by s1. The same would happen in case that
s2 would receive any AMAC starting with 1.7, for instance.

To understand how the assignment would look like after the
propagation finishes, Fig. 6 represents a simplified version
of the previous network, reducing it to just four nodes. For
instance, s4 has two AMACs, 1.2 and 1.7.6.1, and they
exactly represent the two possible paths towards the ARoot
(s4 — 51 and s4 — 55 — s2 — s1), as well as their associated
costs, one and three hops, respectively.

Finally, Fig. 7 exemplifies what would happen if two addi-
tional SDN switches are attached to the previous network.
The direct consequence is that new paths towards the ARoot
appear, namely 1.2.1.3.1.9 for s2, 1.7.3.2.8.1 for s4 and
1.7.3.2.8 for s5. For instance, now s4 can also reach sl
traversing s4 — s5 — s6 — s3 — 52 — s1 and that is the reason
why s4 obtains a third AMAC from s5 with value 1.7.3.2.8.1,
which represents that exact new route. Note that these
AMAC values are just examples, not fixed by the topology.

123206

ISDN Controller]|

FIGURE 6. Assignment of AMACs in a four-node network.

ISDN Controller|

FIGURE 7. Extended assignment of AMACs in a six-node network.

The values obtained by s3 and s6 are omitted for simplic-
ity, but we can assume that one of the AMACs assigned at
s6 would 1.7.3.2, for instance.

C. FORWARDING LOGIC

As already introduced in the previous section, each AMAC
represents one possible route towards the ARoot, i.e. towards
the SDN controller. As each field of an AMAC is associated
with a switch port, AMACs indirectly convey the list of
switch ports (i.e. next hops) to be traversed towards destina-
tion. Therefore, when an SDN switch wants to send traffic to
the controller, it just needs to check the available AMACsS,
pick one of them and use it as its own MAC instead of the
manufacturer’s. Afterwards, the forwarding logic follows the
principles of source routing [34], that is, the traffic is sent
through the port whose associated AMAC is related with the
destination AMAC of the packets.

For example, in the case of Fig. 7, if s5 chose 1.7.6 to
forward the traffic, the first step would be sending the traffic
towards s2 indicating 1 as destination and 1.7.6 as source of
the frames. Subsequently, s2 receives this traffic and sends it
through the port associated to 1.7. Eventually these frames
arrive at s1, which simply forwards it to the SDN controller.

In the opposite direction, i.e. controller-to-switch commu-
nication, the only difference is that the SDN controller needs
to be aware of —at least— one of the available AMACsS of a
node to send the traffic. These can be easily resolved via the
ARP/NDP procedure previous to any communication: instead
of providing the real MAC address, SDN switches will mask
it with any of the available AMACs, which will be used
afterwards by the controller for future communications. For
instance, s5 could provide 1.2.1 in Fig. 7 and, accordingly,
all frames from the SDN controller would follow the path
s1 — s4 — s5. As a consequence, paths are not mandatorily
bidirectional.

VOLUME 7, 2019

D. Lopez-Pajares et al.: Amaru: Plug&Play Resilient In-Band Control for SDN

IEEE Access

ISDN Controller]

[@)]
2,
%)
%‘\

FIGURE 8. Reconfiguration and deletion of AMACs after link failure.

It is important to note that source routing does not intro-
duce any type of packet overhead in Amaru, as the frame
size remains exactly the same by simply substituting the real
MAC by one of the associated AMACs, independently of the
hops to be traversed. Thus, the only difference is table look-
up, which is now performed checking if the prefix of the
AMAC is contained in the node, instead of matching a whole
fixed MAC.

D. NETWORK RECONFIGURATION

Diverse events might affect address assignment after startup,
such as links failing or new nodes joining the network.
Amaru performs local reconfiguration based on up/down
event follow-up. The simplest mechanism requires that nodes
periodically exchange Hello messages with their neighbors,
but other procedures might also be appropriate, like trig-
gering the renewal of addresses in Amaru when receiv-
ing a PORT_STATUS message if OpenFlow is the specific
SDN control protocol. Thanks to this event registration,
Amaru nodes are aware of which AMACs should be created,
deleted, or even just temporarily disabled.

1) LINK FAILURE RECONFIGURATION EVENT

As AMACs are assigned to specific ports of Amaru nodes,
when a link goes down, the involved nodes just need to disable
the associated AMAC:s of that port. Accordingly, these nodes
might decide whether to disable the whole tree or wait for the
link to recover. To dismantle the tree of the affected AMAC:s,
the procedure requires sending a AFrame exclusively towards
the leaf nodes. A flag set in the AFrame distinguishes the
deletion from the assignment procedures.

For example, Fig. 8§ illustrates the procedure after link
s1 — s4 fails, where the affected AMAC is 1.2 in s4. This
node could remove that AMAC from the list of possible paths
and propagate its deletion towards all neighbors. Specifically,
the figure shows how 1.2.1 would be deleted at s5 and 1.2.4
at s7. The procedure would continue until all nodes update
their tables.

Once the link is up again, the affected node s4 will repeat
the usual assignment process by sending an AFrame through
the port just recovered, which will eventually reach all the
previously affected nodes, hence recovering the initial state.

VOLUME 7, 2019

2) NODE FAILURE RECONFIGURATION EVENT

A node event produces the same effect as a link event, but
repeated n times, where 7 is the number of links attached to
the node.

E. MULTIPLE PATHS AND ENHANCED RESILIENCY

By definition, Amaru maximizes in-band network resiliency
as it potentially explores all possible paths in the topology.
According to literature, this number easily ranges in millions
of possibilities in networks comprised of twelve or more
nodes [35]. Such a huge amount of possible routes is not
needed in any networking scenario, thus we decided to restrict
the learning of paths (i.e. of AMACs) based on the following
parameters:

o N: indicates the maximum number of AMACs that a
node is allowed to learn. For example, if N = 3, only
three AMACs, and hence paths, will be saved in the
node.

e L: provides the number of fields of the prefix of an
AMAC that should differ from the already learned to be
accepted. For instance, if L = 2 and the node already
has an AMAC with value 1.2.3.4 and a new one arrives
with value 1.2.5.6, the node will not save it as it shares
the first two digits with an already existing one; but if
the value is 1.1.5.6 instead, it will be learned.

To understand how these parameters work, we should con-
sider that each node will be receiving one AMAC at a
time, based on latency from the root. Therefore, AMACs are
assigned in this order and, for example, N = 3 would mean
that only the three first AMACs received would be saved,
discarding the rest and any other associated AFrame. Some
other parameters could be defined as they are orthogonal to
the procedure of Amaru. In the end, the main objective is to
reduce the number of AMACsS, and the number of updates in
case of link failure, while providing enough alternative paths
for enhanced resiliency.

In Amaru, any node might use any of these multiple paths
towards the root at zero cost, as reconfiguration of the AMAC
address assignment is straightforward and based on local
information. In switch-to-controller communications, if an
AMAC is suddenly not available due to link failure, nodes
can use any of the alternative ones with no need of addi-
tional messages or configuration. In the case of controller-
to-switch communications, the ARoot will only have one
AMAC per destination node and the update is not immediate.
Nevertheless, they can obtain the new AMAC after receiv-
ing any message from the destination node. For example,
in OpenFlow-based networks, link failures are notified to the
controller via a PORT__STATUS message, which could serve
this purpose. Additionally, signaling is considerably reduced
as AFrames are only sent when specific events occur, such as
network initialization or link failure.

F. SCALABILITY AND SHORTEST-PATH METRIC

As an exploration protocol, Amaru reduces convergence time,
number of exchanged messages and table entries for in-band

123207

IEEE Access

D. Lopez-Pajares et al.: Amaru: Plug&Play Resilient In-Band Control for SDN

control routing. Regarding convergence time, it is drastically
reduced as it directly depends on the time that the probe frame
requires to traverse the network, without additional messages
for convergence, as the exploration is performed at once.
Accordingly, the number of exchanged messages decreases as
well. Furthermore, Amaru paths are stable at all times, even if
the procedure has not finished. In the case of table entries, one
AMAC (i.e. one table entry) represents one path to the root
node. For example, if a node requires three routes (which is
basically one main and two alternative ones in case of failure),
it will simply install three table entries, independently of the
network size.

Finally, Amaru can potentially work with two different
metrics to perform shortest-path routing from the root: num-
ber of hops and latency. Although, by definition, an AMAC
represents the number of hops (e.g. an AMAC with four levels
traverses three hops until reaching the root), due to the nature
of the exploration AFrame probe, nodes receive AMACs in a
specific order. Thus, the first assigned AMACs represent the
fastest paths from the root towards the node receiving it [36].
Thus, nodes in Amaru could save the fastest AMACs as an
alternative metric to hop count, because fewer hops not neces-
sarily represent minimum-latency paths. The election of one
metric or another is up to the network manager, or could be
even based on artificial intelligence algorithms. For instance,
the path from the root to the node could be the fastest one,
but not necessarily in the opposite direction, so this node
could choose an alternative (non-bidirectional) path towards
the root based on minimum hops instead. For simplicity,
the remainder of the article is strictly based on the minimum-
hop metric.

G. SCENARIOS WITH MULTIPLE ROOT NODES

Diverse ARoots can coexist in Amaru with no additional
logic. If each root node chooses a unique label (e.g. three
ARoots with AMACs 1, 5 and 7), their children will be
clearly distinguished and will cause no conflict. Even if a
label collision between ARoots occurs, the Amaru procedure
can progress as usual, although potencial overlaps of AMACs
might appear at some point in the network. In that case, only
the fastest arriving AFrame will be forwarded, hence reducing
the number of alternative path discovered, but maintaining
robustness.

IV. IMPLEMENTATION

To evaluate the functionality and performance of Amaru,
we have developed three implementations, increasing in com-
plexity and closeness to reality. The first one is a Python-
based simulator, which helped us to prove the assignment
procedure and refine the protocol. With this initial implemen-
tation, we proved that Amaru potentially explores all possible
paths between the root and any other node. After validating
Amaru with the Python-based simulator, a second implemen-
tation with the OMNeT++ simulator confirmed the behavior
of Amaru with packets. Finally, we also developed Amaru in
an SDN software switch to examine its feasibility with real

123208

traffic and scenarios. In the three implementations, the value
of the next AMAC is created by concatenating the output port
to the father’s AMAC. In this way, we ensure the identifica-
tion is unique per child.

Researchers particularly interested in these implementa-
tions are encouraged to check the source code, available in
GitHub [37].

A. PYTHON-BASED SIMULATOR

As a first approximation of the Amaru protocol, an ad-
hoc simulator based on Python was developed to verify the
functionality and correctness of Amaru. This simulator only
models transmission and reception events (which represent a
packet exchange), so latencies are not considered and, hence,
paths are exclusively based on the hop count metric. As input,
it takes diverse topologies generated by the Brite topology
generator [38] and it evaluates each of them by placing the
SDN controller on every possible node. For every node in
each topology, it obtains the number of exchanged packets
and learned AMACs according to the Amaru protocol.

This simulator is based on events that represent a packet
exchange. The initial event starts on the root node, i.e. where
the controller is attached. This event creates as many subse-
quent events as neighbors of the node, which are equivalent
to a packet transmission and handled applying the logic of
Amaru. First, the receiving node checks if it can accept new
AMAC: (the available space is limited by the N parameter)
and, if so, it checks if the AMAC is valid according to the L
parameter. If any of the two checks obtains a negative result,
the node rejects the proposed AMAC address. Otherwise,
the node stores the new AMAC and propagates its children
to all its neighbors.

B. OMNET++ SIMULATOR

A simulation model for Amaru was also developed in the
OMNeT++ 5.3 framework. The nodes defined in the simula-
tor implement an SDN switch and maintain an array with a list
of AMAC address per port. In comparison with the previous
simulator, the purpose of this implementation was three-fold:
(1) to introduce latencies in the links and measure how the
assignment is affected, (2) to assess the communication of
the SDN switches with the controller, and (3) to evaluate the
resiliency of Amaru upon one or more link failures.

In this simulator, upon startup, the SDN controller sends an
initial message to the node connected to it, containing a level-
1 AMAC. This node assumes the ARoot role and floods an
AFrame through all its ports (except the incoming port) with
level-2 AMACSs, where the second level matches with the
output port, as stated in the description of Amaru. Afterwards,
the AFrame is only broadcast if the AMAC address is loop
free and the learning condition results positive according to
the previously described parameters, N and L.

Communication between the controller and switches is
performed by following the next hop based on the AMACs
contained in exchanged messages and according to the stored
information in the AMAC address list. A node considers itself

VOLUME 7, 2019

D. Lopez-Pajares et al.: Amaru: Plug&Play Resilient In-Band Control for SDN

IEEE Access

“——————————— -
[Run Port](—[Run DataPath le |
X |

<N
~ |

_- [m—————=—
~ { J

~
P
< IsAFrame?
-

Send packet

~
- i No
— Isvalid >

S AVMAC? _ -~

~
~--
e

[_ Save AMAC)I_ - —)r Update AFrames J— -)[— Send AFrames J— -

{ @Ofsoftswitch Functions @ Amaru Functions }

FIGURE 9. Flowchart of the Ofsoftswitch13 implementation.

as the destination of a control packet if the next hop matches
one of the AMAC addresses in its list.

In addition, the simulator provides the Link Failure Notifi-
cation (LFN) message to manage network dynamic events,
as explained in section III-D. When a LFN message is
received, the AMAC dismantle procedure is initiated through
the flood of an AFrame with a field that indicates that the
attached AMAC should be discarded instead of learned.

C. OFSOFTSWITCH13 SOFTWARE SWITCH
IMPLEMENTATION

Finally, we developed the address assignment of Amaru in
the Ofsoftswitch13 software switch [39]. We selected this
software switch as it is easy to prototype and implement
protocols on it (in comparison to Open vSwitch [40], for
instance), while still performing reasonably well for real
deployments [41]. In this case, the most significant part of the
implementation was testing real-traffic scenarios and design-
ing the AFrame.

Regarding the implementation of the switch, we modified
the work-flow of the software switch to support the Amaru
protocol (see Fig. 9, which distinguishes the original func-
tions of Ofsoftswitchl3 from the ones added for Amaru).
The modification starts when the switch detects that it is
directly connected to the SDN controller and it identifies
itself as ARoot (see “Is ARoot?”’). Then, it starts the AMAC
address learning procedure. Afterwards, each received frame
is checked (see “Is Amaru Frame?”). If the switch detects
an AFrame, it must verify the correctness of the incoming
AMAC according to the parameters and logic aforemen-
tioned, and propagate it if so or discard it otherwise. The
process continues until all AMACsS are propagated.

Finally, the control frame size of Amaru is illustrated
in Fig. 10, in comparison with the ones of the Rapid Span-
ning Tree Protocol (RSTP) [42] and the OSPF protocol [21]
(two of the best-known protocols for bridging and routing,

VOLUME 7, 2019

respectively), as a reference. Amaru requires the smallest
control frame of them all. Once the paths are created, in-
band control is performed via standard Ethernet packets and
it is important to highlight that Amaru does not introduce
any overhead in them. As a result, the amount of bits avail-
able to represent labels is limited to 46 bits, as stated in
Section III-A. The implementation of Amaru will use one
byte per level, hence representing up to 6 levels of hierarchy
(as most nodes should be within a few hops to the root to avoid
high latencies), which are enough to provide good results,
as illustrated in Section V. In any case, the network manager
could configure the amount of bits to use, as this will not
affect the principles of Amaru.

V. EVALUATION AND DISCUSSION

A. TESTBED

Our hardware infrastructure consists of 7 computers powered
by Intel(R) Core(TM) i7 processors with 24 GB of RAM, all
of which are interconnected via a GbE Netgear GS116 switch,
for emulation and simulation purposes. To validate both the
Python and OMNeT++ simulation models, we have also
evaluated in the same conditions the Amaru software switch
implementation based on Ofsoftswitchl3. This latter evalu-
ation was performed using the Mininet [43] emulation plat-
form, which makes it possible to assess our protocol using a
real Linux TCP/IP stack.

B. EXPERIMENTAL SETUP

The evaluation studies the three core features of Amaru:
automatic bootstrapping, scalability and resiliency. For this
reason, three main tests were scheduled to evaluate them:
convergence time, packet consumption and throughput dur-
ing failure events, respectively. Additionally, an initial test
to validate the tools being leveraged in the tests was also
performed. Table 1 summarizes all of these tests, which we
further describe below.

First, we validate the developed tools for the three feature
tests, which basically consisted in checking that the imple-
mentation of Amaru in three different platforms (from more
abstract to more realistic: Python simulator, OMNeT++
simulator and Ofsoftswitch13 switch) were consistent. The
reason to use these three platforms is because the Python sim-
ulator helped us in prototyping Amaru, while the OMNeT++
simulator had other similar protocols implemented to be com-
pared to, and finally Ofsoftswitch13 because it is a software
switch that could be used for in-band communication in real
SDN deployments.

For the evaluation of the core features of Amaru, the best
option would be to compare Amaru with the current state
of the art. However, no current work accomplishes the
same features than Amaru and their source codes were
not available in all cases. For these reasons, we picked
two of the closest related works: ResilientFlow [6] and
Asadujjaman et al. [27] for comparison. In particular, firstly,
we compare Amaru with RSTP and OSPF for automatic
bootstrapping and scalability, because ResilientFlow is based

123209

IEEE Access

D. Lopez-Pajares et al.: Amaru: Plug&Play Resilient In-Band Control for SDN

14 15 16 17 53 57
Ethernet
RSTP Frame DSAP:|-SAAP: CTRL BPDU FCS
Header
Ethernet Controller AMAC)
Amaru Frame Header MAC Level Direction Padding FCS
14 ~<_ 20 21 27 41 487 T T T m—
Ethernet : Packet
OSPF Frame Header IPv4 Header JVersion | Type Length Router.ID | Area’|D. - Checksum’ . Autype Auth: Data
14 34 35 36 38 42 44 46 48 56
FIGURE 10. Comparison of Amaru, RSTP and OSPF control frames.
TABLE 1. Summary of the evaluation performed for Amaru.
| Proof [Protocols [Platforms | Objective [Measure unit | Reason |
Python :
L To validate the Amaru protocol developed To properly model the protocol
Tools validation Amaru OMNeT++ . . P P Number of packets P p. ym P
- in various platforms/tools and avoid design errors
ofsoftswitch13
. Amaru To measure the time that each protocol . To prove Amaru is faster
Convergence time OMNeT++ . Time .
‘ & RSTP needs to obtain the paths than standard alternatives
Amaru . .
. To measure the number of packets that To prove Amaru optimizes
Packet consumption | RSTP OMNeT++ p Number of packets P P .
OSPE each protocol needs to obtain the paths network resource consumption
‘ Amaru OMNeT++ ‘ To measure the time that each protocol i To compare Amaru with
Recovery Time

| Asadujjaman et al | ofsoftswitchI3 | spends in restoring from a path fail

similar SDN in-band protocols

on OSPF and also because they are standard protocols that
could be leveraged for in-band control in SDN. Secondly,
we evaluate Amaru against Asadujjaman et al. for resiliency.
The three comparison tests were performed in OMNeT++- as
these protocols were implemented using this simulator. Addi-
tionally, we also used the SDN switch Ofsoftswitch13 for
the recovery test to prove that Amaru is also feasible in real
scenarios.

As for the network scenarios used in the tests, we deployed
diverse topologies to evaluate Amaru; specifically three
types, from a symmetric graph to a real network deploy-
ment. Firstly, a synthetic mesh-like topology comprised
of 10 nodes, as depicted in Fig. 11, served as initial proof-of-
concept for Amaru, as it provides multiple paths that should
be learned by the protocol.

Secondly, we employed the Barabasi and Bonabeau [44]
and Waxman [45] topologies from the Brite topology
generator [38]. Although these types of networks are also
synthetic, they claim to illustrate some of the most repre-
sentative topologies of the Internet. The idea behind the use
of these topologies was to evaluate the packet consumption
and convergence time of Amaru. Thus, the experiments were
conducted configuring different average number of links per
node (3, 5, 7) and different network sizes, from 10 to 60 nodes
using 10-node steps. Node placement follows a heavy-tailed
model, which emulates the world population distributions and
the network size is increased incrementally, adding new nodes
to the already existing ones and connecting them, which is
more realistic than populating the nodes randomly in the
scenario. The link bandwidth is constant and the Waxman
parameters to the default values « = 0.15 and B = 0.2.

123210

[------------ Path #1 ----Path#2 Path #3 X Link Failure 1 % Link Failure 2

FIGURE 11. Synthetic topology.

Furthermore, the minimum number of runs per experiment
was set up to 10 to calculate standard deviations. Table 2
presents a summary of these deployments. No background
traffic was included in these experiments as the idea was to
test how Amaru performed in a network deployment from
scratch.

Finally, we also tested a real network topology adapted
from Rogers fiber backbone network [46], as shown in Fig. 1
and Fig. 16. This topology encompasses 19 nodes connected
by 24 links spanning approximately 4,920 km, with a total
fiber length of approximately 11,183 km [27].

C. RESULTS
In this section, we analyze the results of the four types of tests
previously described.

1) DEVELOPED TOOLS VALIDATION

The first step is to compare the different implementa-
tions detailed in section IV. The main objective is to
ensure the expected behavior of Amaru and to validate the

VOLUME 7, 2019

D. Lopez-Pajares et al.: Amaru: Plug&Play Resilient In-Band Control for SDN

IEEE Access

TABLE 2. Experimental setup for the Brite topologies.

Type of network topologies Barabasi [44] & Waxman [45]

Average links per node (degree) 3,5,7
Number of nodes per topology 10, 20, 30, 40, 50, 60
Node placement Heavy-tailed
Growth type Incremental

Bandwidth channel distribution Constant (equal for all links)
Waxman topology parameters a=0.15&3=0.2
Minimum number of runs 10

Number of Packets
2500

2000 |- =]
z
8 1500 &]
©
1000 |- i
o
=l 1 H I]
T T
10 20 30 40 50 60
2500 : : : ‘ ; ‘
2000 |- & A]
% 53l
§ 1500 |-]
& 1000 |- .
=
500 | H H I |
0 ARl |
10 20 30 40 50 60

Number of Nodes
“:H—"ython Simulator [OMNeT++ [Ofsoftswitch13 ‘

FIGURE 12. Comparison of the average number of packets exchanged for
the three implementations of Amaru.

correctness of the models in the Python and OMNeT++
simulators, particularly in comparison with the behavior of
the Ofsoftswitch13 implementation.

On the one hand, we should guarantee that all imple-
mentations learn a similar amount of AMACsSs, as defined
by the parameters N and L. In fact, we proved it, although
we found out that some of the values of these AMACs
could differ due to the different modeling of the network
delays in each platform. This result is expected since our
Python tool only models the address propagation mechanism,
but it does not consider network delays. OMNeT++ and
Ofsoftswitch13 also differ for two reasons: (1) OMNeT++
cannot exactly model the delay of real platforms and (2) the
order to flood packets in each node is not the same in both
platforms due to their inner internal behavior.

On the other hand, although slight differences exist in
the implementations, the exploration mechanism follows the
same exact procedure and the expected number of pack-
ets should be the same. Therefore, apart from compar-
ing the number of assigned AMACs, we also measured
the average number of exchanged packets in all platforms.
Figure 12 shows how this number is very close among all the
three developed implementations (a maximum difference of
around 5%), as expected.

As aresult, we can conclude that our simulation models are
good enough with respect to a real implementation of Amaru
(the one with Ofsoftswitch13), and hence we can use these
tools to perform more exhaustive experiments as follows.

VOLUME 7, 2019

2) CONVERGENCE TIME

The first core feature of Amaru to be examined is the setup
convergence time. We can define the convergence time as the
time that the Amaru protocol requires to obtain the number
of desired paths according to the parameters N and L. This
convergence time mainly depends on the size of the network
and the average node degree. Although, control and data
plane messages share network links, data plane traffic will
not affect the convergence time of Amaru because no packet
will be usually produced until the setup is finished.

To perform the evaluation, we compare Amaru against
RSTP. The reason for this comparison is that RSTP is a
simple protocol that provides a spanning tree from a root
node, which could be also used to establish an in-band tree
to achieve communication with a controller (though it does
not provide multiple paths). RSTP exchanges periodic BPDU
messages based on a configurable timer, which can be set up
in OMNeT++ to a minimum of 1 second. This parameter
will not affect the convergence time, as part of the protocol
procedure is event-based after the first BPDU messages are
received and, because of this, the convergence time is smaller
than 1 second. Other routing protocols, such as OSPF, are not
examined for this specific metric because they are not pure
plug&play approaches, as they require an initial (and manual)
configuration. Furthermore, the convergence time for OSPF
was considerably higher than both Amaru and RSTP, even
when the timers were set to their lowest values (without
jeopardizing the routing stability).

Figure 13 presents best-case and worst-case results for
Amaru in comparison with RSTP, using the OMNeT++ sim-
ulator for both protocols. The experiments were conducted
in both Barabasi and Waxman topologies for a different
number of nodes and different degrees of connectivity. As
convergence time in Amaru also depends on the predefined
parameters, we consider the best-case scenario to have N = 2
and L = 3 (inyellow), and the worst-case one with N = 8 and
L = 4 (in green). The best case is N = 2 as it is one with the
lowest amount of exchanged messages, and the worst case is
N = 8, as we believe a redundancy of 8 paths is good enough
for the resiliency of the network. The parameter L does not
affect so much the convergence time, and we found out that
a value around 3 and 4 was reasonable for path diversity.
Furthermore, we include the results of RSTP (in blue).

For any set of results, the convergence time increases
with the number of nodes in the network. On the contrary,
an increase in the degree of the network nodes does not
necessarily produce the same behavior. This fact can be ini-
tially counterintuitive, but the reason is that if we increase the
degree of the network nodes, we are not changing the size of
the topology, but only the number of existing connections.
Thus, the number of existing paths also increases but it might
not inexorably lead to a higher convergence time. Actually,
it depends on how the nodes are connected.

We executed 10 runs with different topologies with
the same characteristics to later calculate the confidence
intervals, as shown in Fig. 13. Moreover, it is important to

123211

IEEE Access

D. Lopez-Pajares et al.: Amaru: Plug&Play Resilient In-Band Control for SDN

Average Node Degree: 3

Average Node Degree: 5

Average Node Degree: 7

10° 10° 0®
102 102 102
s @ 10 10" 10°
T E
m -
10° 10° 10°
107 10 10
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
10° 10° 10°
102 102 102
co
g E
52 10 10 10!
=
10° 10° 10°
107 107! 107!

10 20 30 40 50 60
Number of Nodes

10 20 30 40 50 60
Number of Nodes

10 20 30 40 50 60
Number of Nodes

| [JAmaru - Best case [Amaru - Worst case [l RSTP |

FIGURE 13. Comparison of convergence time in Amaru and RSTP.

highlight how Amaru clearly outperforms RSTP, as it con-
verges 500 times faster than RSTP, in average. The small
convergence time of Amaru is due to its exploration approach,
which allows to exchange packets quickly without using
over-dimensioned timers and/or repeated message exchanges
among neighbors, both usually common in link-state proto-
cols. Furthermore, Amaru provides N different paths to each
node while RSTP only provides one.

3) PACKET CONSUMPTION

Another feature to consider in Amaru is its scalability. Thus,
we analyzed the total number of packets required to complete
a full exploration and address configuration procedure in
Amaru. For this evaluation, we leveraged the OMNeT++
simulator and compared Amaru with the OMNeT++- imple-
mentations of RSTP and OSPF.

Figure 14 depicts the comparison of Amaru with respect to
RSTP, as in the case of convergence time. Once again, experi-
ments with Barabasi and Waxman topologies were performed
with values of N equal to 2 and 8, and values of L equal to
3 and 4. Furthermore, different degree of nodes have been
considered, namely 3 (yellow line), 5 (green-dashed line) and
7 (blue-dotted line). RSTP values are represented with mark-
ers to distinguish them from the Amaru ones. Amaru outper-
forms RSTP in most of the cases (in average, RSTP requires
a number of packets 7,7% higher than Amaru) but, what is

123212

more important, Amaru always requires a smaller number of
packets in larger topologies. Additionally, we observed there
is no difference on using values of L equal to 3 or 4 in the case
of Amaru. In general, as the size of the topology increases,
the total number of exchanged packet consumption linearly
increases, independently of the protocol.

In addition to the previous results, we also compared the
required number of packets of Amaru with respect to the
use of OSPF. The reason for this is that Amaru can obtain
multiple paths per root node and RSTP not, while OSPF
obtains the full knowledge of a topology in a distributed way
to later calculate any desired k-shortest paths according to
certain metric. In Fig. 15, we can observe how the number of
packets in OSPF is one order of magnitude larger than Amaru
(note the logarithmic scale), more specifically, OSPF requires
around 30 times more packets than Amaru in average. The
main reason is because OSPF requires recurring updates
from neighbors every time that a new node is reached, while
Amaru conveys all the information at once while traversing
the network, so we could say that OSPF requires around
30 iterations to transfer the same amount of information than
Amaru.

From these results, we can conclude that Amaru offers
good scalability since its packet consumption is smaller than
other alternatives, such as RSTP and OSPF, while offering
multiple low-latency paths. The main reason for this could

VOLUME 7, 2019

D. Lopez-Pajares et al.: Amaru: Plug&Play Resilient In-Band Control for SDN

IEEE Access

Barabasi Waxman
N: 2 N: 8 N: 2 N: 8
7000 7000 7000 o 7000 o
6000 o 6000 ® 6000 6000
ol o
» 5000 'y 5000 < 5000 5000
8 A 8. p S0
S 4000 B] 4000 o) 4000 4000 0.
) O‘Y R Y g]
I Roile 9 b
£ 3000 3000 & /9 3000 3000 ! o
z [2 LI
2000 2000 "'g 2000 2000 e
od .
1000 1000 g% 1000 // 1000 :‘g
0 0
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
7000 7000 7000 & 7000 &
6000 6000) 6000 6000
K (] o
» 5000 5000 & 5000 5000
g S ;P S
S 4000 4000 S o 4000 4 4000 L&
e " iR a8
4 R % . 7
£ 3000 3000 & /9 3000 3000 & o
= 7 S L
2000 2000 fg 2000 2000 &9
1000 1000 g%’ 1000 1000 ,:8
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Num Nodes Num Nodes Num Nodes Num Nodes
| Amaru(3) — — — Amaru(5) sesesssess Amaru(7) RSTP(3) — © — RSTP(5) »+=+0:+=+ RSTP(7) |

FIGURE 14. Comparison of average number of packets in Amaru and RSTP.

Barabasi Waxman
N: 2 N: 8 N: 2 N:8
166 166 166 166
165 . ‘>3”8 1e5 . ‘>8”8 165 - 1e5 i
o 2 22 & e
2 g g ’8/ ,2?/
™ ;_(é teal o teal o 1ed : 1e4 ;
e e/ d “‘___/,.-./-- d-' d: “_‘_..-.-..
2 K ot L4 o ot
1e3 P D 1e3 o 1e3 P L 1e3 K
600 et 600F o 600 et 600F ¢
o K
b &
50 50 50 b—= 50
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
1e6 1e6 1e6 1e6
1e5 . -8+ 1e5 . 8-S 1e5 -5‘/8 165 -5‘/8
1] ‘>8/8 '}8/8 ;"8/ “5/
R L .2 8
< nﬂ_: 1e4 .,' 1e4 .,' 1e4 Fs 1ed4 75
e & e | i
Z 43 1e3 B 1e3 1e3 s
600 A 600F o 600 et 600F ¢
o &
o &
50 50 : 50
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Num Nodes Num Nodes Num Nodes Num Nodes
Amaru(3) — — — Amaru(5) sssssssass Amaru(7) OSPF(3) — © — OSPF(5) ====@ssss OSPF(7)|

FIGURE 15. Comparison of average number of packets in Amaru and OSPF.

be the same as in the case of the convergence time: the
exploration nature of Amaru, which allows carrying the infor-
mation at once through the network without the need of
multiple message exchanges among neighbors, as RSTP and
OSPF require.

VOLUME 7, 2019

4) RECOVERY TIME

Finally, we performed different tests to evaluate the recovery
time of Amaru, by studying it from two perspectives: switch-
to-controller and controller-to-switch communications. We
leverage the Ofsoftswitch13 implementation to measure the

123213

IEEE Access

D. Lopez-Pajares et al.: Amaru: Plug&Play Resilient In-Band Control for SDN

Controller

Thunder

Victoria Bay

87us
Edmonton Saskatoon

69us
Toronto

Oakville

117us

S0us Winnipeg

Vancouver

90us

168us
Sudbury
75us
33us
Ottawa Montreal

26us

90us

25us

Seattle

126
Calgary H[Regina

[
(

Chicago

|l Milwaukee I|

{Link Failure 1 @ Link Failure 2 []

Link Failure 4 OJ

Link Failure 3 O

FIGURE 16. Rogers topology [46] and evaluated link failures.

To Controller 103 To Switch
00 5%
4464

400 375 4 4025
2 300 288 3
'_
< 200 2

100 1

0 1 2 3 0 1 2 3
—~ 800 800
7 P | e
o) i i
S 600 i 600 + i
— | |
2 400 i 400 - i
= * i
5 200 : 200 - :
c i i
L o Y A oLb—
0 1 2 3 0 1 2 3
Simulation time (s) Simulation time (s)
\ Port 1 Port2 —-—-— Port 3]

(a) Recovery time on synthetic network (Fig. 11)

FIGURE 17. Recovery times of Amaru in the Ofsoftswitch13 implementation.

throughput of in-band traffic, as well as the inter-arrival time
(IAT) between received in-band packets. The IAT will show
an increase in its value after a failure due to the recovery time
required to overcome it. In this case, we leveraged two well-
known topologies as link failures must be scheduled to later
on measure the recovery time; the first topology is symmetric
to measure how fast similar paths are selected, while the sec-
ond one is a real scenario: the Rogers topology [46].

The first experiment uses the topology in Fig. 11, where
the controller is connected to switch H and the link speed
is 1 Gbps. The test consists of evaluating the through-
put from A to H, where the ARoot is connected. Node A
has saved three routes according to the Amaru procedure:
(1)A-C-E-H, (2) A-B-D-F-H and (3) A-G-I-J-H, associated
to ports 1, 2 and 3 of the node, respectively. The first path
established by Amaru for in-band traffic is through port 1.
The first link failure happens at time 1 s and the in-band
traffic is rerouted through the path through port 2. Finally,
a second failure occurs at time 2 s and the traffic is redi-
rected once again, this time through port 3. The throughput is

123214

To Controller 103 To Switch
800 10 X
672
600 615 8 7298
3 100 p 475 5 I 6260 6262
'_
< 4
200 2
O 0 " L n n
0 2 4 6 0 2 4 6
—~ 800 800
[
e /’N T
g 600 600
3 400 400
ey
2
3 200 200
e
F oo 0
0 2 4 6 0 2 4 6

Simulation time (s) Simulation time (s)

(b) Recovery time on Rogers network (Fig. 16)

measured based on a signaling traffic of 750 Mbps, which is
high enough to evaluate Inter-Arrival Times (IATs) with high
granularity, but without exceeding the forwarding capabilities
of the switch.

Figure 17 shows what happens during these failures in
switch-to-controller (left side) and in controller-to-switch
communication (right side). The upper figures illustrate the
IAT from consecutive received in-band packets in microsec-
onds. Both of them present an increase in the IAT exactly
when failures take place. As expected, the IAT in the
controller-to-switch traffic is bigger than the IAT in the
switch-to-controller traffic because of the extra time required
to notify the controller of the failure occurrence. The recov-
ery time is below 400 us in the switch-to-controller direc-
tion and below 5 ms in the controller-to switch direction,
hence smaller than the 50 ms to guarantee a successful
recovery [5]. The differences in time of each direction are
caused by the fact that only switches save all path towards
the controller, so that is why the switch-to-controller recov-
ery is almost immediate (us), but the controller-to-switch

VOLUME 7, 2019

D. Lopez-Pajares et al.: Amaru: Plug&Play Resilient In-Band Control for SDN

IEEE Access

= 60 = 60
g § 73.2ms
[2] |2}
© 40 T 40
[] [&}
g g
5 20 S 20 ¢
E E
© o
oo oo

30 40 50 60 70 80 90

Simulation time (ms)
(a) Failed link

(o))
o

o
o

N
o

Traffic (packets/ms)

o

100 110 120 130 60 90 120 150

Simulation time (ms)
(b) Recovery link

Simulation time (ms)
(c) Controller

FIGURE 18. Recovery times in Amaru from three points of view, after a failure in Victoria-Vancouver link at time 70 ms.

direction requires the reception of traffic from the switch
to be updated. Furthermore, the lower figures clearly depict
how the throughput changes from one port to other port
in switch A after a failure and how throughput is almost
unaffected in the switch-to-controller direction and slightly
affected (negligible in the graph) in the controller-to-switch
direction.

The second experiment follows the same methodology and
setup as the first one, but using the Rogers topology [46]
instead (shown in Fig. 16). Additionally, the number of link
failures is increased to four to check failures at different
distances from the SDN controller. The in-band traffic is
established between the Toronto and Victoria nodes. The
first path goes from Victoria to Vancouver and that link then
fails, redirecting the traffic through Seattle. Three more link
failures are illustrated in the figure, all of them affecting
the current route at each time. The obtained results are very
similar to the previous ones, even considering that this time
the topology is based on a real network deployment. Again,
the switch-to-controller traffic has a smaller recovery time
(always below 700 ws) than the controller-to-switch traf-
fic, which always has a recovery time below 7.3 ms. This
latter value is slightly bigger than the previous one (5 ms)
because the network is bigger and there are more propagation
latencies, but the value is still under the maximum 50 ms.
Moreover, the throughput is again almost unaffected by the
link failures.

It is important to note that the parameters L and N increase
the scalability of Amaru, as it potentially explores all paths,
but they also constrain its resiliency. Though improbable,
a corner case would be if all learned paths used at least
one of the failed links. In this case, none of the learned
AMACs could work as alternative routes and the Amaru
discovery mechanism should be relaunched, either locally
or, in the worst case, globally. In these cases, the recovery
time will be increased up to a time equal to the Amaru
convergence time. The convergence time for the synthetic
10-node topology is around 125 ws and up to 1.9 ms in
the Rogers topology, considering this traffic has priority
above other types. Thus, we can conclude that, even in the
worst case, the recovery time will continue presenting excel-
lent small values, under the required 50 ms according to
literature [5].

VOLUME 7, 2019

Finally, to have a comparison with the closest approach in
the state of the art, we repeated the same simulation scenario
than in the work from Asadujjaman et al. [27] to measure
convergence time after link failure. The results are illustrated
in Fig. 18 and show that, after the Victoria-Vancouver link
failure, the recovery time is 3.2 ms (from the link failure at
time 70 ms, to recovery at 73.2 ms), more than 10% smaller
than the 3.8 ms obtained in the closest related work [27]. This
is because Amaru already knows the end-to-end backup path
when there is a failure, whereas the compared work has to go
through hop by hop signaling upon failure.

D. DISCUSSION
As proved by the evaluation results, the advantages of Amaru
are as follows:

1) Fast automatic bootstrapping: Amaru paths are
populated automatically and its convergence time
is smaller than standard alternatives leveraged for
in-band control, such as RSTP and OSPF, as proved in
Section V-C.2.

2) Good scalability: Amaru provides multiple paths
towards the SDN controller, following a protection
scheme. Moreover, it only requires a single entry per
path, independently of the network size, which dras-
tically reduces the forwarding table size (e.g. 10 dif-
ferent paths towards the controller are represented by
just 10 entries). Additionally, the amount of exchanged
messages to build these forwarding tables is smaller
than RSTP (even considering than RSTP generates
only one path) and much smaller than OSPF, as illus-
trated in Section V-C.3.

3) Enhanced reliability: Amaru implements a protection
scheme (that is 1 primary path + N — 1 backup ones)
that enhances the network reliability are rapidly avail-
able even after multiple failures occur. Recovery times
are below the 50 ms and high throughput is almost
unaffected, as shown in Section V-C.4.

On the other hand, there are some aspects in Amaru that
require further analysis and could be consider its main draw-
backs:

1) New protocol: As a new protocol, it requires some
agent in the switches to support it for implementation.

123215

IEEE Access

D. Lopez-Pajares et al.: Amaru: Plug&Play Resilient In-Band Control for SDN

However, we have developed it in Ofsoftswitch13 and
proved that it is feasible in real scenarios.

2) AMAC design: Amaru masks real MAC addresses
with AMACs, which have an available space of 46 bits,
as previously explained. By default, this field is lever-
aged as 6 levels of around 8 bits, which represents
paths of 6 hops with around 28 = 256 neighbors per
switch, but other configurations are also feasible (such
as 12 levels of around 4 bits) and it is up to the network
administrator to decide the most suitable setup.

3) Selection of parameters: Amaru discovers all paths
among all nodes and the SDN controller, which is not
desirable for real networks; thus, the parameters N and
L should be defined prior to deployment. By default,
Amaru is set to N = 8 and L = 4, which provides
excellent performance for the evaluated topologies, but
further scenarios should be analyzed.

VI. CONCLUSION

The Amaru protocol provides automatic bootstrapping,
enhanced resiliency and good scalability for in-band control
in SDN. To the best of our knowledge, only one work is close
to accomplish these three features and Amaru outperforms it.
As an exploration protocol, it follows a completely different
approach to the current literature, which is mostly based on
link-state knowledge. This exploration strategy drastically
reduces the convergence time and the number of exchanged
packets, while guaranteeing the network paths are stable at
any time.

Amaru has been tested via simulation (based on Python and
OMNeT++) and emulation (Ofsoftswitch13 and Mininet),
and results are promising. Furthermore, Amaru potentially
discovers all paths between any couple of network nodes,
but for good scalability we currently limit the learning by
setting two parameters (N and L), which is enough to por-
tray an excellent behavior in carrier networks. Nevertheless,
we aim to further refine this learning by analyzing their
optimal values and implications (number of messages and
table entries), and by applying other types of parameters and
other techniques (such as machine learning), hence saving
only the best routes from the whole set to guarantee resiliency
at any failure event.

In order to deploy Amaru in real SDN scenarios, the only
requirement is to have some SDN software switch or a sim-
ilar agent installed in the switches, as proved by our proof-
of-concept implementation with Ofsoftswitch13. The main
advantage of Amaru is that currently no in-band control
standard exists, so new SDN switches envisioning this feature
could consider Amaru as part of their designs. Additionally,
SDN switches based on P4 could also be programmed to
support it.

Finally, as future work, we will analyze the implications
of deploying Amaru in large-scale networks with high con-
nectivity, as well as in mobile and dynamic networks, specif-
ically with more than one operator involved. Additionally,
the combination of in-band and out-of-band resiliency with

123216

multiple controllers could be also examined [47]. We will also
study the inclusion of the protocol in the ONF community,
as we trust Amaru might contribute as a relevant step forward
in regard to the in-band control of SDN, where there is no
defined standard yet. Additionally, some other envisioned
research topics are leveraging Amaru for multipath routing,
either as a distributed protocol or centralized mechanism (e.g.
to calculate shortest paths in the SDN controller), and we will
also analyze its applications in graph theory, in comparison
with BFS and similar algorithms.

ACKNOWLEDGMENT

The authors thank David Carrascal for developing a topology
parser to test the same scenarios with the different simulators
of Amaru.

REFERENCES

[1] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A compre-
hensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14-76, Jan. 2015.

[2] A. Jalili, H. Nazari, S. Namvarasl, and M. Keshtgari, “A comprehensive
analysis on control plane deployment in SDN: In-band versus out-of-band
solutions,” in Proc. 4th IEEE Int. Conf. Knowl.-Based Eng. Innov. (KBEI),
Tehran, Iran, Dec. 2017, pp. 1025-1031.

[3] R. Amin, M. Reisslein, and N. Shah, “Hybrid SDN networks: A survey
of existing approaches,” IEEE Commun. Surveys Tuts., vol. 20, no. 4,
pp. 3259-3306, 4th Quart., 2018.

[4] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester, ‘‘Fast
failure recovery for in-band OpenFlow networks,” in Proc. 9th Int. Conf.
Design Reliable Commun. Netw. (DRCN), Mar. 2013, pp. 52-59.

[S] B. Niven-Jenkins, D. Brungard, M. Betts, N. Sprecher, and S. Ueno,
Requirements of an MPLS Transport Profile, document RFC 5654, 2009,
pp. 1-31. doi: 10.17487/RFC5654.

[6] T. Watanabe, T. Omizo, T. Akiyama, and K. lida, “ResilientFlow: Deploy-
ments of distributed control channel maintenance modules to recover
SDN from unexpected failures,” in Proc. 11th Int. Conf. Design Reliable
Commun. Netw. (DRCN), Mar. 2015, pp. 211-218.

[7]1 O.I. Bentstuen and J. Flathagen, “On bootstrapping in-band control chan-
nels in software defined networks,” in Proc. IEEE Int. Conf. Commun.
Workshops (ICC Workshops), May 2018, pp. 1-6.

[8] N. Beheshti and Y. Zhang, ““Fast failover for control traffic in Software-
defined Networks,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2012, pp. 2665-2670.

[9] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“In-band control, queuing, and failure recovery functionalities for Open-
Flow,” IEEE Netw., vol. 30, no. 1, pp. 106—112, Jan. 2016.

[10] S.S.W.Lee, K.-Y.Li, K. Y. Chan, G.-H. Lai, and Y. C. Chung, “‘Software-
based fast failure recovery for resilient OpenFlow networks,” in Proc.
7th Int. Workshop Reliable Netw. Design Model. (RNDM), Oct. 2015,
pp. 194-200.

[11] D. Kotani and Y. Okabe, “Fast failure detection of OpenFlow channels,”
in Proc. Asian Internet Eng. Conf. (AINTEC), 2015, pp. 32-39. [Online].
Available: http://doi.acm.org/10.1145/2837030.2837035

[12] S. Feng, Y. Wang, X. Zhong, J. Zong, X. Qiu, and S. Guo, “A ring-
based single-link failure recovery approach in SDN data plane,” in Proc.
IEEE/IFIP Netw. Oper. Manage. Symp. (NOMS), Apr. 2018, pp. 1-7.

[13] Y. Hu, W. Wendong, G. Xiangyang, C. H. Liu, X. Que, and S. Cheng,
“Control traffic protection in software-defined networks,” in Proc. IEEE
Global Commun. Conf. (GLOBECOM), Dec. 2014, pp. 1878-1883.

[14] H. Huang, S. Guo, W. Liang, K. Li, B. Ye, and W. Zhuang, ‘‘Near-optimal
routing protection for in-band software-defined heterogeneous networks,”
IEEE J. Sel. Areas Commun., vol. 34, no. 11, pp. 2918-2934, Nov. 2016.

[15] P. Goltsmann, M. Zitterbart, A. Hecker, and R. Bless, “Towards a
resilient in-band SDN control channel,” Univ. Tiibingen, Tiibingen,
Germany, Tech. Rep., 2017. [Online]. Available: https://ub31.uni-
tuebingen.de/xmlui/bitstream/handle/10900/78147/KuVS-FG-Netsoft17-
7.pdf

VOLUME 7, 2019

http://dx.doi.org/10.17487/RFC5654

D. Lopez-Pajares et al.: Amaru: Plug&Play Resilient In-Band Control for SDN

IEEE Access

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

K. Chan, C. Chen, Y. Chen, Y. Tsai, S. S. W. Lee, and C. Wu, “Fast failure
recovery for in-band controlled multi-controller OpenFlow networks,”
in Proc. Int. Conf. Inf. Commun. Technol. Converg. (ICTC), Oct. 2018,
pp. 396-401.

S. Gonzilez, A. D. la Oliva, C. J. Bernardos, and L. M. Contreras,
“Towards a resilient OpenFlow channel through MPTCP,” in Proc. IEEE
Int. Symp. Broadband Multimedia Syst. Broadcast. (BMSB), Jun. 2018,
pp. 1-5.

A. Raza and S. Lee, “Gate switch selection for in-band controlling in
software defined networking,” IEEE Access, vol. 7, pp. 5671-5681, 2019.
S. S. Savas, M. Tornatore, F. Dikbiyik, A. Yayimli, C. U. Martel, and
B. Mukherjee, “RASCAR: Recovery-aware switch-controller assignment
and routing in SDN,”” IEEE Trans. Netw. Service Manage., vol. 15, no. 4,
pp. 1222-1234, Nov. 2018.

E. Sakic, N. Peri¢, and W. Kellerer, “MORPH: An adaptive framework
for efficient and Byzantine fault-tolerant SDN control plane,” IEEE J. Sel.
Areas Commun., vol. 36, no. 10, pp. 2158-2174, Oct. 2018.

J. Moy, OSPF Version 2, document RFC 2328, Apr. 1998. [Online].
Available: https://rfc-editor.org/rfc/rfc2328.txt

Y.-L. Su, L-C. Wang, Y.-T. Hsu, and C. H.-P. Wen, “FASIC:
A fast-recovery, adaptively spanning in-band control plane in software-
defined network,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2017, pp. 1-6.

L. Schiff, S. Schmid, and M. Canini, ‘‘Medieval: Towards a self-stabilizing,
plug & play, in-band SDN control network,” in Proc. ACM SIGCOMM
Symp. SDN Res. (SOSR), 2015, pp. 1-2. [Online]. Available: http://
eprints.cs.univie.ac.at/5745/

L. Schiff, S. Schmid, and M. Canini, “Ground control to major faults:
Towards a fault tolerant and adaptive SDN control network,” in Proc. 46th
Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. Workshop (DSN-W),
Jun. 2016, pp. 90-96.

M. Canini, I. Salem, L. Schiff, E. M. Schiller, and S. Schmid, “A self-
organizing distributed and in-band SDN control plane,” in Proc. 37th IEEE
Int. Conf. Distrib. Comput. Syst. (ICDCS), Atlanta, GA, USA, Jun. 2017,
pp. 2656-2657.

M. Canini, I. Salem, L. Schiff, E. M. Schiller, and S. Schmid, ‘“Renais-
sance: A self-stabilizing distributed SDN control plane,” in Proc. IEEE
38th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2018, pp. 233-243.
A. Asadujjaman, E. Rojas, M. S. Alam, and S. Majumdar, “Fast con-
trol channel recovery for resilient in-band OpenFlow networks,” in
Proc. 4th IEEE Conf. Netw. Softw. Workshops (NetSoft), Jun. 2018,
pp. 19-27.

R. Hark, A. Rizk, N. Richerzhagen, B. Richerzhagen, and R. Steinmetz,
“Isolated in-band communication for distributed SDN controllers,”
in Proc. IFIP Netw. Conf. (IFIP Netw.) Workshops, Jun. 2017,
pp. 1-2.

L. Ochoa-Aday, C. Cervell6-Pastor, and A. Ferndndez-Fernindez,
“ETDP: Enhanced topology discovery protocol for software-defined net-
works,” IEEE Access, vol. 7, pp. 23471-23487, 2019.

Y. Yan, J. Bi, Y. Zhou, and C. Zhang, “Gather: A way to optimize
the routing process of in-band control network,” in Proc. SIGCOMM
Posters Demos, 2017, pp. 12-14. [Online]. Available: http://doi.acm.org/
10.1145/3123878.3131969

B. Gorkemli, S. Tatlicioglu, A. M. Tekalp, S. Civanlar, and E. Lokman,
“Dynamic control plane for SDN at scale,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 12, pp. 2688-2701, Sep. 2018.

E. Rojas, J. Alvarez-Horcajo, 1. Martinez-Yelmo, J. M. Arco, and
J. A. Carral, “GA3: Scalable, distributed address assignment for dynamic
data center networks,” Ann. Telecommun., vol. 72, no. 11, pp. 693-702,
Dec. 2017. doi: 10.1007/s12243-017-0569-4.

E. Arjomandi and D. G. Corneil, “Parallel computations in graph the-
ory,” in Proc. 16th Annu. Symp. Found. Comput. Sci. (SFCS), Oct. 1975,
pp. 13-18.

M. C. Hamner and G. R. Samsen, ‘“Source routing bridge implementation
(LANs),” IEEE Netw., vol. 2, no. 1, pp. 33-36, Jan. 1988.

B. Roberts and D. P. Kroese, “Estimating the number of s-t paths in a
graph,” J. Graph Algorithms Appl., vol. 11, no. 1, pp. 195-214, 2007.

E. Rojas, G. Ibanez, J. M. Gimenez-Guzman, J. A. Carral,
A. Garcia-Martinez, I. Martinez-Yelmo, and J. M. Arco, “All-path
bridging: Path exploration protocols for data center and campus networks,”
Comput. Netw., vol. 79, pp. 120-132, Mar. 2015.

Open Source Implementation of Amaru. Accessed: Aug. 20, 2019.
[Online]. Available: https://github.com/gistnetserv-uah/Amaru/

VOLUME 7, 2019

(38]

(391

(40]

[41]

(42]

[43]
[44]
[45]

[46]

(47]

A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: Universal
topology generation from a user’s perspective,” Dept. Comput. Sci.,
Boston Univ., Boston, MA, USA, Tech. Rep., 2001. [Online]. Available:
https://www.cs.bu.edu/brite/publications/usermanual.pdf

CPqD: OpenFlow 1.3 Software Switch. Accessed: Aug. 20,2019. [Online].
Available: https://github.com/CPgD/ofsoftswitch13

B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross,
A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado, “The design
and implementation of open vswitch,” in Proc. 12th USENIX Symp. Netw.
Syst. Design Implement. (NSDI), Oakland, CA, USA, 2015, pp. 117-130.
E. L. Fernandes, E. Rojas, J. Alvarez-Horcajo, Z. L. Kis, D. Sanvito,
N. Bonelli, C. Cascone, and C. E. Rothenberg, “The road to BOFUSS:
The basic OpenFlow user-space software switch,” 2019,
arXiv:1901.06699. [Online]. Available: https://arxiv.org/abs/1901.06699
IEEE Standard for Local and Metropolitan Area Networks—Common
Specification. Part 3: Media Access Control (MAC) Bridges—Amendment
2: Rapid Reconfiguration, IEEE Standard 802.1w-2001, 2001.

Mininet. Mininet: An Instant Virtual Network on Your Laptop (or Other
PC). Accessed: Aug. 20, 2019. [Online]. Available: http://mininet.org/
A.-L. Barabdsi and E. Bonabeau, “Scale-free networks,” Sci. Amer.,
vol. 288, no. 5, pp. 60-69, 2003.

B. M. Waxman, “Routing of multipoint connections,” IEEE J. Sel. Areas
Commun., vol. 6, no. 9, pp. 1617-1622, Dec. 1988.

Rogers Fibre Backbone. Accessed: Aug. 20, 2019. [Online]. Available:
https://www.rogers.com/enterprise/wholesale#network

T. Hu, P. Yi, Z. Guo, J. Lan, and Y. Hu, “Dynamic slave controller
assignment for enhancing control plane robustness in software-defined
networks,” Future Gener. Comput. Syst., vol. 95, pp. 681-693, Jun. 2019.

DIEGO LOPEZ-PAJARES (M’16) received the
master’s degree in telecommunications engineer-
ing, in 2016. He has been a Researcher with the
GIST-NETSERV Research Group, University of
Alcala, since 2015, focusing on topics related
to delay-tolerant and SDN networks, specifically
low-latency routing solutions and the multipath
problem. These topics comprise the basis of his
Ph.D. In addition, he actively participates in sev-
eral GIST-NETSERV research projects, such as

TIGRES-CM, TAPIR-CM, EsPECIE, and SIMPSONS.

cols.

JOAQUIN ALVAREZ-HORCAJO (M’17) received
the master’s degree in telecommunications engi-
neering from the University of Alcala, in 2017.
After having worked at Telefonica as a Test Engi-
neer for COFRE and RIMA networks, he was
awarded a Grant for University Professor Train-
ing (FPU) from the University of Alcala, where
he is currently a Researcher. His research inter-
ests include software defined networks (SDN),
Internet protocols, and new generation proto-
At present, he is especially interested in topics related to advanced

switches and SDN networks. He has participated in various competitive
projects funded through the Community of Madrid Plan, such as TIGRES-
CM and TAPIR-CM.

ELISA ROJAS received the Ph.D. degree in infor-
mation and communication technologies engi-
neering from the University of Alcala, Spain,
in 2013. As a Postdoctoral Researcher, she was
with IMDEA Networks and, later on, as a CTO of
Telcaria Ideas S.L., and an SME dedicated to both
research and development of virtualized network
services. She has participated in diverse projects
funded by the EC, such as FP7-NetIDE or H2020-
SUPERFLUIDITY. She is currently a Professor

with the University of Alcala. Her current research interests include SDN,
NFV, high performance and scalable Ethernet, the IoT, and data center
networks. She was involved in three different areas in relation with SDN:
as a Researcher in several EU projects, as a Designer and Developer in an
SDN project for a Network Operator, and as a Professor.

123217

http://dx.doi.org/10.1007/s12243-017-0569-4

IEEE Access

D. Lopez-Pajares et al.:

Amaru: Plug&Play Resilient In-Band Control for SDN

123218

A. S. M. ASADUJJAMAN (M’17) received the
M.Sc. degree in information and communication
technology (ICT) from the Bangladesh Univer-
sity of Engineering and Technology, in 2017. He
is currently a Core Network Lead Engineer with
Banglalink Digital Communications Ltd., Dhaka.
His research interests include computer network
reliability and performance. He is currently inter-
ested in software defined network (SDN) reliabil-
ity and performance.

ISAIAS MARTINEZ-YELMO received the Ph.D.
degree in telematics from the Carlos III University
of Madrid, Spain, in 2010. After working as a
Postdoctoral Assistant at the Carlos III University
of Madrid, he became and remains a Teaching
Assistant with the Automatics Department, Uni-
versity of Alcala, Spain. His research interests
include peer-to-peer networks, content distribution
networks, vehicular networks, NGN, and Internet
protocols. Nowadays, he is especially interested

in advanced switching architectures and software defined networks (SDN).
He has participated in various competitive research projects funded by
the Madrid Regional Government (Medianet and TIGRE5-CM), National
projects (CIVTRAFF), and European projects (CONTENT and CARMEN).
His research papers have been published in high impact JCR indexed
research journals, such as Communications Magazine, Computer Commu-
nications, and Computer Networks. He was a Technical Program Committee
Member of IEEE ICON from 2011 to 2013. In addition, he has been a
Reviewer for high quality conferences (i.e., IEEE INFOCOM) and scientific
journals IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, Computer Commu-
nications, and ACM Transactions on Multimedia Computing.

VOLUME 7, 2019

	INTRODUCTION
	RELATED WORK
	AMARU
	HIERARCHICAL LABELING
	ROOT DISCOVERY AND LABELING PROCEDURE
	FORWARDING LOGIC
	NETWORK RECONFIGURATION
	LINK FAILURE RECONFIGURATION EVENT
	NODE FAILURE RECONFIGURATION EVENT

	MULTIPLE PATHS AND ENHANCED RESILIENCY
	SCALABILITY AND SHORTEST-PATH METRIC
	SCENARIOS WITH MULTIPLE ROOT NODES

	IMPLEMENTATION
	PYTHON-BASED SIMULATOR
	OMNET++ SIMULATOR
	OFSOFTSWITCH13 SOFTWARE SWITCH IMPLEMENTATION

	EVALUATION AND DISCUSSION
	TESTBED
	EXPERIMENTAL SETUP
	RESULTS
	DEVELOPED TOOLS VALIDATION
	CONVERGENCE TIME
	PACKET CONSUMPTION
	RECOVERY TIME

	DISCUSSION

	CONCLUSION
	REFERENCES
	Biographies
	DIEGO LOPEZ-PAJARES
	JOAQUIN ALVAREZ-HORCAJO
	ELISA ROJAS
	A. S. M. ASADUJJAMAN
	ISAIAS MARTINEZ-YELMO

