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ABSTRACT The large scale application of the photovoltaic (PV) systems is significantly beneficial to the
mitigation of energy crisis. The quality and performance of PV systems directly influence the energy yield.
It is necessary to establish more scientific and effective methods to maximize the energy yield. In this paper,
the concept of health status is proposed to describe the performance of PV systems within a certain period of
time. A health status based performance evaluation model is built by the Gaussian mixture models (GMM)
and the empirical mode decomposition (EMD). Then, the health index (HI) of PV array is defined. Under
the outdoor ambient conditions, the proposed model can sensitively detect the slight performance reduction
caused by faults or partial shadings of the PV array in real-time. At last, the proposed method is verified by
the simulations and experiments. Experimental results show that on the sunny day the average daily HI is
1.2 and the average performance ratio (PR) is 0.85, which both show the PV array is healthy. When one of
the PV modules in the PV array is partially shaded, the PR is still approximate 0.9. However, the calculated
HI is greater than the threshold and the fault is reported. The results indicate that the proposed method can
sensitively identify pseudo health status that cannot be identified by the PR. The proposed evaluation method
based on health status provides an alternative option to assess the performance of the PV systems. Combining
with the PR, the comprehensive performance of the PV systems can be reflected more accurately.

INDEX TERMS Empirical mode decomposition, Gaussian mixture models, health status, photovoltaic
system, performance evaluation.

I. INTRODUCTION
With the modern challenges that the fossil fuel resources
continue dwindling, as a form of renewable energy, the solar
energy provides the promising solution for modern energy
supply. The photovoltaic (PV) system is one of the main
application forms of solar energy. The global capacity of
PV system continues increasing in recent decades. How-
ever, the performance of PV system is not only influenced
by the current ambient conditions, but also degrades after
long term outdoor operation. The performance degradation
may be attributed to the aging or mismatch of PV mod-
ules, the low efficiency control strategies, the defects of
design and installation [1]–[3]. Hence, the real-time mon-
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itoring and performance evaluation of the PV systems are
necessary [4]–[6]. At present, many performance evalua-
tion methods of PV systems have been presented. In the
standard IEC 61724, the typical parameters, including the
reference yield Yr, array yield YA, final yield Yf, cap-
ture losses Lc, system losses Ls, performance ratio (PR),
mean PV array efficiency ηA, mean total efficiency ηtot,
are introduced [7]. The detail guidelines and procedures are
also described [7]. Among the above parameters, the ref-
erence yield and final yield are commonly used to quan-
tify the equivalent hours of energy yield under the rated
power of PV system, which already have been used to
assess PV systems [8]–[15]. The normalized losses are
also utilized to evaluate the loss degree of the PV sys-
tem [6], [8]. Besides, the array or system efficiency is
another basic index for assessing performance of PV array
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or system in a specific period of time [8], [10], [11], [14],
[16]–[19]. Other researchers use the daily or monthly
capacity factor (CF) to evaluate the actual energy yield rel-
ative to the energy under the rated power of PV system for
the 24h operation [11], [13], [14]. As a regression method,
the PVUSA rating is used to study the performance of PV
system [9]. Nevertheless, the PR is used as the core criterion
by themost researchers [6], [8]–[16], [20]–[24]. PR is an indi-
cator calculated by the ratio between the final energy yield
and the reference yield [7]. The comprehensive performance
of the entire PV system can be expressed by the PR.

The above parameters only assess the performance of PV
systems from the macro perspective. They are usually cal-
culated by the monitoring data, including the in-plane irra-
diance, temperature of PV modules, voltage and current of
PV array, voltage and current of the inverter, etc. The large
amount of data cannot identify the detail faults or mismatch
in a PV array. For instance, if few PV modules or a module
in one string of the array are bypassed or affected by the
dust in the air, the above parameters of the whole PV system
are still in the normal range of the criteria. Eventually, due
to unsuccessful detection, the energy continues losing in the
PV system. Besides, the energy losses of a PV system are
mainly attributed to the soiling, aging, partial shadows, dust
of PV modules [1], [12], [14]. Some of these effects are
recoverable, e.g. the partial shadows, soiling. The natural
aging of PV modules or other system components, also result
the slow degradation of system performance. However, these
factors cannot be identified by the conventional performance
indicators. In recent years, the line-line faults, line-ground
faults and arc faults are focused due to the fact that they may
cause catastrophic hazards [25]. In [25], different categories
of faults in the PV system are classified. Corresponding
advanced fault detection and diagnosis methods are surveyed
and compared. In [26], the fault detection for the line-line and
line-ground faults is integrated with maximum power point
tracking (MPPT). In [27], a method for detecting the line-
line fault, line-ground fault and partial shadings is proposed.
The status of the PV array is classified as normal status, fault
and partial shading. In [28], the compatibility of protection
standards for line-line and line-ground faults are investigated
by simulation and experimental results. In [29], the wavelet
packet transform is used to extract features from themeasured
voltage and current of PV array for fault detection. The fault
detection and diagnosis methods are also reviewed for the
line-line and line-ground faults of PV array [30], [31].

In recent years, the artificial intelligence (AI) based meth-
ods are widely applied for the performance evaluation or fault
detection of PV array [32]–[35]. In [32] the current-voltage
(I-V) curves of PV array and the measured ambient meteoro-
logical data are used to train a deep residual network for fault
detection and diagnosis. In [33] the voltage and current of the
abnormal PV array or string are used as samples for training
a random forest to build a real-time monitoring system of
PV array. In [34] the kernel based extreme learning machine
is used to extract key feature from measured I-V curves to

detect faults. In [35], a long short-term memory network is
applied to extract features from raw data of the PV array
and to classify faults. However, for above methods, the suf-
ficient fault data samples are necessary for training the deep
learning networks. These fault data samples should be col-
lected from simulation models or fault experiments of the PV
array. Once the investigated PV array is changed, these fault
data should be replaced and the new fault data samples are
required.

In order to describe and quantify the detail performance of
PV systems for further fault diagnosis, in this paper, the health
status is introduced. The concept of health status is commonly
used in prognostic and health management (PHM) for com-
plex systems [36]. It utilizes the information, e.g. feature data
or evidences sampled by the physical sensors, to discover
the variation of system performance and the potential fault.
Hence, the health status can be used to improve the system
management and maintenance. It has attracted much atten-
tion in the fields of aerospace, electrical devices [37], [38].
PV system is a non-stationary complex system. Only
using two statuses, i.e. normal or fault, cannot comprehen-
sively describe the actual status of PV system. However,
the health status is a promising concept to evaluate the over-
all performance of PV system under the certain ambient
conditions.

In this paper, the indicator health index (HI) for PV systems
is investigated and used to describe the real-time perfor-
mance of PV system. Based on the Gaussian mixture model
and empirical mode decomposition (EMD), a comprehen-
sive performance evaluation model for calculating the HI is
proposed. The performance reduction caused by the soiling,
partial shading and faults, e.g. line-line short-circuit fault, line
open-circuit fault are focused. Furthermore, the simulations
and experiments are implemented to verify the feasibility
and reliability of the proposed method. The proposed per-
formance evaluation method can sensitively identify pseudo
health status that cannot be identified by the performance
ratio (PR). The proposed evaluation method based on health
status provides an alternative option for researchers to assess
the performance of PV systems. Combining with the PR, the
comprehensive performance of PV systems can be reflected
more accurately.

II. METHODOLOGY
A. SELECTION OF CHARACTERISTIC PARAMETERS FOR
THE HEALTH STATUS
In this paper, the concept of health status is applied to analyze
the real-time performance of PV systems. Referring to the
definition of human health, the health of the PV system
is defined as the deviation degree relative to the expected
normal status under various outdoor conditions. The health
status of PV system should reflect the overall status of the
PV system and its subsystems.

Besides, the selection of the reasonable characteristic
parameters is the key to evaluate the health status. The
selected parameters influence the real-time diagnosis of the
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FIGURE 1. Structure of GMM.

operating status of the PV system. The energy generated
from the PV systems is directly influenced by the ambient
irradiance and temperature. The value of voltage and current
of the PV array is the commonly used indicator for reflecting
the output characteristics of PV array. Any minor variation
can be expressed by the measured voltage and current of the
PV array. Therefore, the in-plane irradiance and temperature
of PV modules are selected as the basic ambient factors. The
voltage and current of PV array are used for analyzing the
health status of PV array.

B. BASIC THEORY OF GAUSSIAN MIXTURE MODEL
The PV system is a system with non-stationary random
process. The model based on the voltage and current has
high sensitivity and can quickly capture the characteris-
tic of operation status. In this paper, the Gaussian mixture
model (GMM) is applied to evaluate the performance of
the PV system [39]–[41]. The GMM combines the advan-
tages of nonparametric and parametric methods and it is a
nonparametric model which considers the analytical features
of closed mathematical models and the flexibility of non-
parametric models. The modeling of GMM is easy, and its
complexity is determined by the complexity of the studied
problem. Furthermore, the GMMwould not be easily affected
by the size of the data sample. As long as the single Gaus-
sian components are enough to participate in the mixture,
the simple GMM can be used to approximate arbitrary com-
plexity data distributions. The structure of the GMM is shown
in Figure 1.

The GMM uses the weighted sum of the multiple Gaussian
probability density functions to describe the complex distri-
bution in the space of the probability vector. X denotes an
n-dimensional random variable, i.e. X follows single Gaus-
sian probability densities function if its probability density
function is written as:

p(x) =
M∑
k=1

wkpk (x) =
M∑
k=1

wkN (x;µk , 6k) (1)

where M is the number of the single Gaussian probability
density functions. wk is the weight of GMM, and satisfies
0 < wk < 1 and 6wk = 1. N (x; µk , 6k ) represents the
k-th single Gaussian probability density function, it can be
expressed by:

N (x;µk , 6k ) =
1

(2π )n/2|6k |
1/2 e

−
1
2 (x−µk )

T ∑−1(x−µk ) (2)

where µk is the mean of the k-th single Gaussian probability
density function, 6k is the covariance matrix of the k-th
single Gaussian probability density function.

In the finite model parameter estimation, the maximum
likelihood (ML) is applied for measuring a hybrid model. It is
well-known that ML is expressed by:

θ ′ = argmax
θ
{log p(x|θ )} (3)

where θ =
[
w1,w2, . . . ,wM , µ1, µ2, . . . , µM , σ

2
1 , σ

2
2 , . . . ,

σ 2
M

]
,

∑
k
= σ 2

k


1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .

0 0 . . . 1


A common method for obtaining ML estimation of

the mixture parameters is applying the expectation maxi-
mum (EM) algorithm [42]. The EM algorithm is based on
the incomplete data X to acquire estimation values of model
parameters from the training data sequence. Thus, the log-
likelihood function of GMM about xi is:

J (θ) = ln
M∏
i=1

p(xi) =
M∑
i=1

ln
[
wkN

(
x;µk , σ 2

k

)]
(4)

With the Bayesian information criterion (BIC), the poste-
rior probability is defined as the probability when the x is
generated by the k-th Gaussian probability density function,
which can be calculated by:

βk (x) = p(k|x) =
p(k)p(x|k)
M∑
k=1

p(k)p(x|k)

=
wkN (x;µk , σ 2

k )
M∑
k=1

wkN (x;µk , σ 2
k )

(5)

The derivative of equation (5) relative to µk and σk are:

∇µkJ (θ) =
n∑
i=1

βk (xi)

(
xi − µk
σ 2
k

)
(6)

∇σkJ (θ) =
n∑
i=1

βk (xi)

(
(xi − µk )T (xi − µk )

σ 3
k

−
d
σk

)
(7)

When the derivatives are zero, µk and σk are:

µk =

n∑
i=1
βk (xi) xi

n∑
i=1
βk (xi)

(8)
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FIGURE 2. Flow chart of EM algorithm.

σ 2
k =

1
d

n∑
i=1
βk (xi) (xi − µk)T (xi − µk)

n∑
i=1
βk (xi)

(9)

Because the sum of wk is 1, with the adopted Lagrange
multiplier, a new objective function is defined as follows:

Jnew = J + λ

(
1−

M∑
k=1

wk

)

=

n∑
i=1

ln

[
M∑
k=1

wkN
(
x;µk , σ 2

k

)]
+ λ

(
1−

M∑
k=1

wk

)
(10)

So the derivative of equation (10) relative to wk is:

∂Jnew
∂wk

=

n∑
i=1

wkN
(
xi;µk , σ 2

k

)
M∑
k=1

wkN
(
xi;µk , σ 2

k

) − λ
=

1
wk

n∑
i=1

βk (xi)− λ (11)

When the equation (11) is zero, the final formula of wk
is:

wk =
1
n

n∑
i=1

βk (xi) (12)

µk , σk , wk are iteratively updated until |J (θ ) − J ′(θ )| is less
than ε (ε < 10−5), where J ′(θ ) is the calculated result after
parameters are updated. If the iteration converges, the algo-
rithm will terminate. The detail flow chat of the iteration
process is shown in Figure 2.

FIGURE 3. Relationship between M and BIC.

C. INITIALIZATION AND DETERMINATION OF HYBRID
NUMBER OF GMM
The EM is a classic algorithm of the finite mixture model
for maximum likelihood parameter estimation. However, it is
sensitive to the initial values of the parameters, which sig-
nificantly affect iteration speed of the EM. The poor initial
value may lead the iteration converge to a local optimum.
In this paper, the K-means algorithm is used to initialize the
EM [43].

Besides, the number of the single Gaussian probability
density functionsM is another important parameter of GMM.
In order to accurately fit the actual form of the data distribu-
tion, theoretically the greater value of M is a better choice.
Nevertheless, it is limited by the size of the sampled data.
Moreover, the insufficient mixed components may lead to
the under-fitting and make the GMM difficultly describe the
actual data distribution. Finally, it greatly reduces the accu-
racy rate of recognition. The sufficient mixed composition
may lead to the over-fitting and increase the complexity of
model. Hence, the reasonable selection of mixing degree to
match the data distribution should be studied. In this paper,
the BIC is used to determine the hybrid number M of GMM
for the health status of PV system [44]. It is calculated by:

BIC = 2×max {log (p) (x|θ)} −M × log (n) (13)

where max{log(p)(x|θ )} is the maximum likelihood estima-
tion of GMM. The value ofM corresponding to the maximum
value of BIC is the optimal hybrid number of the GMM. The
BIC is analysed in the range of 2 to 10, as shown in Figure 3.
In this paper, when M is 2, the GMM is optimal to describe
the most accurate data distribution.

After all the parameters of GMM are determined, the value
of voltage and current for a certain operation status of PV
system are standardized and used as an example to build
the GMM. Corresponding complex multi-feature data of the
standardized value of voltage and current are described by
GMM and shown in Figure 4. Besides, the centroids of the
results clustered by the cross entropy (CE) are also calculated
and shown for comparison [45]. Obviously, the cluster results
from K-means and CE are basically the same. Thus, in this
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FIGURE 4. Complex multi-feature data described by GMM.

FIGURE 5. Contour map of GMM.

paper, the K-means is used to initialize the EM. The contour
map of calculated GMM is shown in Figure 5. According
to the actual characteristics of the voltage and current data,
the built GMM can map the nonlinear relationship of health
status for the PV system. Thus, the GMM based on multiple
single weighted mixtures can be used for fitting the nonlinear
data distribution. It is suitable to describe the complicated
health status for the PV system.

D. PERFORMANCE EVALUATION METHOD BASED ON
HEALTH STATUS
In this paper, the proposed real-time performance evaluation
method based on the health status for the PV system is shown
in Figure 6. The detail steps are as follows:
Step 1 (Obtaining Real-Time Data of the Current Status

of PV System): The sampled data is acquired by the monitor
system of the PV system, including the voltage and current of
the each string of the PV array, the meteorological data (the
coplanar irradiance, the temperature of back sheet of the PV
modules).
Step 2 (Obtaining the Data of the Reference Status of PV

System): Based on the measured coplanar irradiance and the
back sheet temperature, the simulation model of PV system
is built in the MATLAB/Simulink to calculate the electrical
parameters of the reference status under the actual outdoor

FIGURE 6. Flow chart of the real-time performance evaluation method
for the PV system based on the health status.

condition, including the output voltage, current and power of
each string in the PV array.
Step 3 (Data Processing and Feature Extracting): The

sampled data and reference data of PV system are
pre-processed to determine the reasonable data interval and
to filter abnormal data points. Then, the data is extracted to
obtain the reference and testing status samples by the EMD.
The outdoor weather has the variability and instantaneity.
In different time of the same day, the cloud coverage and
the surface water evaporation are not exactly the same. These
factors directly affect the absorbed solar radiation of the PV
system. The output characteristics of PV system are changing
with the ambient condition sensitively. Thus, in this paper,
the original electrical data is extracted by the EMD at first.
The EMD is a time domain analysis method that is widely
used in the field of mechanical and electrical system for the
fault diagnosis. It is suitable for analysing and processing
non-stationary signals [46], [47]. In EMD, the composite
signals are assumed to be the superposition of intrinsic mode
functions (IMFs). The EMD algorithm is detailed as follows:

(1) At first, the maximal and minimal points are interpo-
lated with the cubic spline curve to obtain the upper
envelope E1 and the lower envelope E2 of the signal
x(t). The mean envelopem1 is calculated as the average
of the upper E1 and lower envelopes E2. Then, the IMF
candidate h1 is extracted from the original signal x(t),
as h1 = x(t)− m1.

(2) If the h1 satisfies the IMF conditions, it is considered
as IMF1, and IMF1 = h1. If not, h1 will replace the
original signal x(t), and the procedures (1) and (2)
will be restarted to get a new the mean envelope m11.
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Next the new IMF candidate is computed with h1 and
m11, h11 = h1 − m11. If the h11 is not matching
the IMF conditions,the iteration will continue until the
last h1k satisfies the IMF conditions (k is iterations
number), h1k = IMF1k. Where the IMF need to meet
the following conditions:
1) The extreme points of the signal are equal to the

zero crossing points or at most one difference
form the zero crossing points.

2) At any time, the mean value between the upper
and lower envelopes determined by the minimal
and maximal values of the signal is zero.

(3) The residue signal R1 is calculated by subtracting the
first IMF from the original signal, R1 = x(t) − IMF1.
The procedures (1) to (3) are repeated with n iterations
until the residue signal Rn becomes a monotonic func-
tion from which no IMFs can be extracted.

R1 − IMF2 = R2
...

Rn−1 − IMFn = Rn

(14)

Finally, according to the fluctuations or trend of different
characteristics scale (or frequency), the original signal x(t) is
decomposed to the n number of IMFs and the residue signal
Rn:

x(t) =
n∑
i=1

IMFi + Rn (15)

In this paper, the whole voltage and current data are con-
sidered as the original signal x(t) to be extracted with EMD.
As shown in Figure 7 and 8, after the data of trend term
are obtained, the interference factors are eliminated. Then
the non-stationary time series is transformed to a stable time
series.
Step 4 (Training GMM Model): Samples of the reference

and testing status are used to obtain the model parameters for
building theGMMof reference status and theGMMof testing
status, respectively.
Step 5 (Calculating the Health Index (HI).): The mean

value is an important parameter of the GMM. The position
diversity represents the difference between different GMMs,
as shown in Figure 9. If the system works normally, the data
regions of testing and reference status are basically overlap.
If the system is abnormal, a significant deviation between two
regions may exist.

Thus, the HI is defined as the Euclidean distance between
the GMM of the reference status and the GMM of the testing
status:

HI =

√√√√ M∑
i=1

(
µ0 − µ1

)
(16)

where µ0 is the mean vector of GMM of the reference status,
µ1 is the mean vector of GMM of the testing status.

FIGURE 7. Results of EMD and the trend term.

FIGURE 8. Extraction results.

FIGURE 9. Calculation principle of health index.

Step 6 (Judging the Health Status of the PV System):A less
value of HI indicates that the coincidence degree between the
testing and the reference status is higher, i.e. the system is
healthier, and the vice versa.
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TABLE 1. Calculated HI under different dust conditions.

III. SIMULATION AND ANALYSIS
In order to verify the accuracy and feasibility of the proposed
method based on the health status, the simulation model of a
5×2 PV array is built in MATLAB/Simulink [48], as shown
in Figure 10. Then, several commonly occurred faults of PV
array are simulated and investigated. In this paper, the calcu-
lated HI is compared with the PR of PV array. Only consid-
ering the performance of the PV array without the inverter,
the PR of PV array, i.e. DC PR, is expressed as [7], [49]:

PR =
YA
Yr
=

τr ×
(
6dayPA

)
/P0

τr ×
(
6dayGI

)
/GI,ref

(17)

where YA is the array yield, Yr is the reference yield, τr is the
sampling interval of the monitored data, PA is the measured
power of PV array, P0 is the rated power of PV array,GI is the
measured in-plane irradiance, GI,ref is the reference in-plane
irradiance of PV module.

A. SIMULATION ANALYSIS OF DIAGNOSIS OF SURFACE
DUST OF PV MODULES
At first, the irradiance is respectively set to 756W/m2,
456W/m2 and 156W/m2 to analyse the influence of different
dust thickness for PV modules. The reference irradiance is
assumed as 1056W/m2, and the temperature of PV modules
is 30◦C. In this paper, the transient PR is compared with
the proposed method. The results are shown in Table 1.
Table 1 reveals that with increment of the surface dust thick-
ness of PV modules, the equivalent irradiance is gradually
reduced. The thicker dusts lead to less generated current of
the PV array. Hence, the HI increases with the thickness of
dusts. This result is consistent with the trend of PR under the
same conditions.

B. SIMULATION ANALYSIS OF BYPASSED PV MODULES
Bypassed modules are PV modules that are bypassed by the
wire or bypass diode. For simulating short circuit of PV
modules, the bypassedmodules in the simulation are replaced
by diodes directly. The bypassed modules are assumed as
PVM1, PVM2 in Figure 10 (a). The irradiance for other
PV modules is set as 1056W/m2 and the temperature of PV
module is 30◦C. The simulation results are shown in Table 2.
With the increasing number of the bypassed PV modules,
the HI increases significantly. The reason is that when the PV
modules are bypassed, the output voltage of PV array drops
dramatically and results to higher HI. It should be pointed
out that, when a PV module is bypassed, the PR is 0.82 and

FIGURE 10. Structure and model of the 5×2 PV Array. (a) Structure of the
5×2 PV array. (b) Simulation model of the 5×2 PV array.

TABLE 2. Calculated HI when PV modules are bypassed.

the system is mistaken to be considered as health. Under this
circumstance, the proposed performance evaluation method
based on health status can identify pseudo health status that
is diagnosed as normal status by the PR.

C. SIMULATION ANALYSIS OF PARTIALLY SHADED PV
MODULES
The irradiance of PVM2 is set to vary from 200W/m2 to
1000W/m2 with 200W/m2 interval, the irradiance of other
PV modules are kept to 1000W/m2, and the temperature of
PV modules is 30◦C. The output characteristics of PV array
are shown in Figure 11.

In Table 3, the lowest HI corresponds to the result of
the highest PR under G=1000W/m2, T=30◦C. The shaded
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FIGURE 11. Output characteristics of PV array under shaded Condition.
(a) Current curve of PV array. (b) Voltage curve of PV array.

TABLE 3. Calculated HI under different partial shading conditions.

PVM2 is not bypassed under the equivalent irradiance
G=800W/m2 and G=600W/m2. When the equivalent irra-
diance reduces to 400W/m2, the voltage of PV array reduces
significantly and the current of PV array recovers to normal.
The reason is that the PVM2 is bypassed. In above two
conditions, the PR is not changed obviously. Thus, the PR
cannot identify the change of operation status of PV array in
real-time. However, the HI can rapidly reflect the variations.

FIGURE 12. 10kWp distributed PV system for experiments.

TABLE 4. Specification of PV module TMS-PC05.

IV. EXPERIMENTS AND APPLICATION
A. EXPERIMENTS UNDER NORMAL OPERATING
CONDITION
A 10kWp distributed PV system on the roof is studied in
this paper, as shown in Figure 12. It locates at north latitude
30◦ 125’ and east longitude 11◦ 6’. The tilted angle is 27◦.
The PV array is formed by 4 strings connected in parallel.
Each string is formed by 10 PV modules connected in series.
The specification of the PV module TSM-PC05 is shown
in Table 4. Then, the PV array is connected to a 10kW three-
phase grid-connected PV inverter.

The sampled data from 8:00 to 17:00 on March 16th,
2016 are analysed. The weather is sunny. The time interval
for sampling is 5 seconds. The output characteristics of the
PV system are shown in Figure 13. The evaluation result is
shown in Figure 14. The average HI for the entire day is 1.2,
which indicates the PV system is healthy on March 16th. The
average PR is approximate 0.85 and also shows that the PV
system operates normally. Hence, the evaluation result of HI
is equivalent to PR under the normal operation status.

B. ABNORMAL OPERATION CONDITION
In this section, the proposed evaluation method under three
abnormal conditions is studied, including the open circuit of
one string, one shaded PV module and two shaded PV mod-
ules in one string. At first, the PV system operates under the
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FIGURE 13. Measured power of the PV system on March 16th, 2016.

FIGURE 14. Calculated HI and PR on March 16th, 2016.

normal status without any artificial faults. The average PR of
PV system is 0.85 and indicates the PV system operates well
enough. Then, the open circuit is artificially implemented
by disconnecting one PV string from the PV array. Finally,
the shaded PVmodules (including artificially shaded one and
two PV modules) are imitated to cover the PV module in one
PV string by the black transparent polyvinyl chloride film and
keep other PV strings operating normally. Figure 15 reveals
the power curve of PV array from 8:00 to 12:00 on April 8th,
2016. In order to show the normal operating status of the
PV array as a reference, the normal power of PV array is
calculated by 4 multiplies the measured power of one normal
PV string. In Figure 15, the power of PV array decreases
dramatically for the open-circuit fault than other conditions.
Besides, the loss of power for the condition of two shaded PV
modules is greater than that of one shaded PV module.

In Figure 16, the HI agrees with the trend of PR and the
actual status. Due to the fact that the power loss is the most
obvious under the open circuit condition, the corresponding
PR is the least and the calculated HI reaches the great-
est. Comparing the diagnosis results under different shaded
conditions, the HI under the condition of one shaded PV
module is less than that under the condition of two shaded

FIGURE 15. Power curve under abnormal conditions.

FIGURE 16. Diagnosis results under abnormal conditions.

PV modules, i.e. the PV system performance of the former
condition is healthier. Besides, when the PV system is under
the condition of one shaded PV module, the PV system is
evaluated as normal status by the PR, which is approximate
0.9. However, the HI is greater than the threshold value 2.
Thus, though few PV modules have faults and cause slight
performance variation of the whole PV system, the accuracy
and sensitivity of the proposed model is better than that of
PR.

It should be pointed out that the proposed evaluation
method relies on the accuracy of themeasuredmeteorological
and electrical data of PV system. If the measured data is
precise enough, the proposed evaluation method not only
can evaluate the real-time performance in a certain period of
time, but also it can be extended to long-term performance
evaluation and fault diagnosis of PV systems.

V. CONCLUSION
In this paper, the concept of the health status of PV system
is proposed to describe system performance. Then, the volt-
age and current are reasonably selected as the characteris-
tic parameters of the health status. Furthermore, a real-time

VOLUME 7, 2019 124063



K. Ding et al.: Health Status-Based Performance Evaluation Method of PV System

performance evaluation model based on health status is built
with GMMand EMD. The estimation and selection of param-
eters of GMM are investigated. The established GMM can
accurately map the complicated characteristic information
of the PV system and describe its health status. In order
to verify the effectiveness of the proposed real-time perfor-
mance evaluation model, the simulation and experiments are
implemented and analyzed. Experimental results show that
on the sunny day the average daily HI is 1.2 and the average
performance ratio (PR) is 0.85, which both show the PV
array is healthy. When one of the PV modules in the PV
array is partially shaded, the PR is still approximate 0.9.
However, the calculated HI is greater than the threshold and
the fault is reported. The experimental results indicate that the
proposed performance evaluation model can not only achieve
the same effect as PR under normal operating status of the PV
system, but also accurately identify the pseudo health status
that cannot be detected by the PR. The proposed evaluation
method based on health status provides an alternative option
to assess the performance of PV systems. Combining with
the PR, the comprehensive performance of PV systems can
be reflected more accurately.
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