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ABSTRACT Let Fq be a finite field of odd order q. Let m be a positive integer such that X2m
+ 1 factors

completely into degree-one factors in Fq2 [X ]. The polynomial generators of all negacyclic codes of length
2mpn over Fq are obtained, where p is an odd prime coprime to q.

INDEX TERMS Negacyclic code, irreducible factorization, polynomial generator.

I. INTRODUCTION
Negacyclic codes were initiated in the early 1960’s ([3], [4]),
which have been extendedly studied for their theoretical
importance and practical applications. The issues of algebraic
structures for negacyclic codes, self-dual and self-orthogonal
negacyclic codes have been attractive research topics (e.g. see
[6]–[19]).

In [19], Dinh obtained the polynomial generators of all
self-dual negacyclic codes of length 2ps over Fpm . Bakshi
and Raka in [1] determined the polynomial generators of all
negacyclic codes of length 2n over an odd characteristic finite
field; they also exhibited all self-dual negacyclic codes of the
same length. In [13], Chen et al. obtained the polynomial
generators of all negacyclic codes of length `tps over Fpm ,
where ` is a prime number different from the characteristic p.
Let Fq be a finite field of odd order q and letN be a positive

integer coprime to q. Any negacyclic code of length N over
Fq is identified with exactly one ideal in the quotient algebra
Fq[X ]/〈XN + 1〉. Since every ideal in Fq[X ]/〈XN + 1〉 can
be generated by a monic divisor of XN +1, it follows that the
irreducible factorization of XN + 1 in Fq[X ] determines all
negacyclic codes of length N over Fq.
Obviously, (XN+1)(XN−1) = X2N

−1.We know that the
irreducible factors of X2N

−1 over Fq can be described by the
q-cyclotomic cosets modulo 2N . One can recognize the irre-
ducible factors of X2N

− 1 in Fq[X ] which are corresponding
to the irreducible factors of XN + 1 in Fq[X ]. In other words,
the polynomial generators of all negacyclic codes of lengthN
over Fq can be given by the q-cyclotomic cosets modulo 2N .
Noting those facts, Bakshi and Raka in [1] described the poly-
nomial generators of negacyclic codes of length 2n over Fq by
means of recognizing the q-cyclotomic cosets modulo 2n+1
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which are corresponding to the irreducible factors of X2n
+1.

In the subsequent paper [2], the authors studied self-dual
and self-orthogonal negacyclic codes of length 2pn over Fq,
where p is an odd prime coprime to q. They proceed by first
determining the q-cyclotomic cosets modulo 4pn, which give
the irreducible factorization of X4pn

− 1 over Fq.
Let m be a positive integer such that X2m

+ 1 factors
completely into degree-one factors in Fq2 [X ]. In this paper,
we study negacyclic codes of length 2mpn over Fq, where
p is an odd prime coprime to q and n is a positive integer.
The polynomial generators of all negacyclic codes of length
2mpn overFq are explicitly expressed. This extends the results
given by Bakshi and Raka [2] which considered the case
m = 1. We propose a new approach to obtain the irreducible
factorization of X2mpn

+ 1 over Fq. In brief, we get the
irreducible factorization of X2mpn

+ 1 over Fq by analyzing
the irreducible factors of X2mpn

+ 1 over Fq2; we derive
the irreducible factorization of X2mpn

+ 1 over Fq2 from the
irreducible factorization of Xp

n
−1 over Fq2 , which is accom-

plished by determining the q2-cyclotomic cosets modulo pn.
We mention that,m = 2 also valid under our hypothesis. That
is, one can obtain all self-dual and self-orthogonal negacyclic
codes of length 4pn over Fq by our results.
The rest sections of this paper are organized as follows.

In Section 2, the necessary notations and known results are
presented. All distinct q2-cyclotomic cosets modulo pn are
also provided in this section. In Section 3, we determine the
polynomial generators of all negacyclic codes of length 2mpn

over Fq. We conclude this paper with Section 4.

II. PRELIMINARIES
Let Fq be a finite field of odd order q. We denote by F∗q the
multiplicative group of non-zero elements of Fq. For β ∈ F∗q
we denote by ord(β) the order of β in the group F∗q ; then
ord(β) is a divisor of q−1, and β is called a primitive ord(β)th
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root of unity. It is well known that F∗q is generated by a
primitive (q− 1)th root ξ of unity, in symbols F∗q = 〈ξ〉.
Assume that n is a positive integer and p is an odd prime

coprime to q. Let Zpn = {[b]pn | b is an integer} be the ring
consisting of all residue classes modulo pn and Z∗pn the unit
group of the ring; it is known that Z∗pn is a cyclic group.
We denote by 〈q〉, the cyclic subgroup of Z∗pn generated
by [q]pn . Let 〈q〉 act on Zpn by the following rule:

qi · [b]pn = [bqi]pn , for any integer i and [b]pn ∈ Zpn .

For any integer t , the orbit of [t]pn under the given action,

Ct = {t, tq, tq2, · · · tqnt−1},

is called the q-cyclotomic coset of t mod pn. Here the elements
in the brace are calculated modulo pn and nt is the cardinality
of the orbit Ct . It is readily seen that nt is equal to the
multiplicative order of q modulo pn

gcd(pn,t) .
We denote by ordp(q) = f , the multiplicative order of q

in Z∗p. Write

qf = 1+ pd z, p - z, d ≥ 1.

For any integer `, 1 ≤ ` ≤ n, we set

λ(`) := fpmax(`−d,0).

One knows that ordp` (q) = λ(`) (e.g. see [2] or [23]). Put

δ(`) = φ(p`)
λ(`) , where φ denotes the Euler’s phi-function. Let g

be a generator of the cyclic group Z∗pn . By [23, Theorem 1],
C0 = {0}, and

Cpn−`gk = {p
n−`gk , pn−`gkq, · · · , pn−`gkqλ(`)−1},

with 0 ≤ k ≤ δ(`)− 1 and 1 ≤ ` ≤ n, consist all the distinct
q-cyclotomic cosets modulo pn. For simplify, we write Cρ0 =
{0} andCρk , 1 ≤ k ≤ h to denote all the distinct q-cyclotomic
cosets modulo pn; it is easy to see that h =

∑n
`=1 δ(`).

Take η to be a primitive pnth root of unity (maybe in
an extension of Fq), and denote by Mρk (X ), the minimal
polynomial of ηρk over Fq, 0 ≤ k ≤ h. It is well known
that (e.g. see [20, Theorem 4.1.1]):

Xp
n
− 1 = (X − 1)Mρ1 (X )Mρ2 (X ) · · ·Mρh (X ), (II.1)

with

Mρk (X ) =
∏
u∈Cρk

(X − ηu), 1 ≤ k ≤ h,

all being monic irreducible in Fq[X ].
We point out that, C0 = {0} and

C−pn−`gk = {−p
n−`gk ,−pn−`gkq, · · · ,−pn−`gkqλ(`)−1},

with 0 ≤ k ≤ δ(`) − 1 and 1 ≤ ` ≤ n, also consist all the
distinct q-cyclotomic cosets modulo pn, where the elements
in the brace are calculated modulo pn. Hence,

Xp
n
− 1 = (X − 1)M−ρ1 (X )M−ρ2 (X ) · · ·M−ρh (X ),

also gives the monic irreducible factorization of Xp
n
− 1

over Fq.

In this paper, we need to obtain all the distinct
q2-cyclotomic cosets modulo pn according to the above given
q-cyclotomic cosets modulo pn. It requires to consider two
subcases. First, if f is odd, namely λ(`) = ordp` (q) is odd for
each 1 ≤ ` ≤ n, then ordp` (q) = ordp` (q

2), which means
that the cyclic subgroup generated by [q]p` in Z∗

p`
is equal

to the cyclic subgroup generated by [q2]p` , i.e. 〈q〉 = 〈q
2
〉

in Z∗
p`
. In particular, 〈q〉 = 〈q2〉 in Z∗pn . By the definition

of q2-cyclotomic cosets, Cρ0 = {0} and Cρk , 1 ≤ k ≤ h, con-
sist all the distinct q2-cyclotomic cosets modulo pn. It follows
that Formula (II.1) also gives the irreducible factorization of
Xp

n
−1 inFq2 [X ]. If f is even, we deduce that ordp` (q

2) = λ(`)
2

for all 1 ≤ ` ≤ n. It is straightforward to verify thatD0 = {0},

Dpn−`gj = {p
n−`gj, pn−`gj · q2, · · · , pn−`gj · q

2(
λ(`)
2
−1)
},

and

Dpn−`gjq = {p
n−`gjq, pn−`gjq · q2,· · ·, pn−`gjq · q

2(
λ(`)
2
−1)
},

where 0 ≤ j ≤ δ(`) − 1, 1 ≤ ` ≤ n, consist all the distinct
q2-cyclotomic cosets modulo pn. Observe that

Cpn−`gj = Dpn−`gj
⋃

Dpn−`gjq,

for each 0 ≤ j ≤ δ(`) − 1 and 1 ≤ ` ≤ n. For simplify
let Dρ0 = {0}, Dρk and Dρkq, 1 ≤ k ≤ h such that
Cρk = Dρk

⋃
Dρkq, denote all the distinct q2-cyclotomic

cosets modulo pn. By [20, Theorem 4.1.1] again, we have that
Xp

n
− 1 factors into

(X − 1)Nρ1 (X )Nρ1q(X )Nρ2 (X )Nρ2q(X ) · · ·Nρh (X )Nρhq(X ),

with

Nρk (X ) =
∏
u∈Dρk

(X − ηu)

and

Nρkq(X ) =
∏

u∈Dρk q

(X − ηu), 1 ≤ k ≤ h,

all being monic irreducible in Fq2 [X ].
In the rest of this section, we recall some basic con-

cepts and results from negacyclic codes over Fq. Let N
be a positive integer. Any non-empty subset C of FNq is
called a code of length N . If the code C is an Fq-linear
subspace of FNq , then C is called a linear code. A linear
code C of length N over Fq is said to be negacyclic if
for any code word (c0, c1, · · · , cN−1) ∈ C we have that
(−cN−1, c0, c1, · · · , cN−2) ∈ C .

Any element of the quotient algebra Fq[X ]/〈XN + 1〉 is
uniquely represented by a polynomial a0 + a1X + · · · +
aN−1XN−1 of degree less than N , hence it can be identified
with a word (a0, a1, · · · , aN−1) of length N over Fq. In this
way, any negacyclic code C of length N over Fq is identified
with exactly one ideal of the quotient algebraFq[X ]/〈XN+1〉,
which is generated uniquely by a monic divisor g(X )
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of XN +1. In this case, g(X ) is called a polynomial generator
of C . Specifically, the irreducible factorization of XN + 1 in
Fq[X ] determines all negacyclic codes of length N over Fq.
For any negacyclic code C of length N over Fq, its dual

code C⊥ is defined as C⊥ = {u ∈ FqN | u · v = 0,
for any v ∈ C}, where u · v denotes the standard Euclidean
inner product of u and v in FqN . The code C is said to be self-
orthogonal if C ⊆ C⊥ and self-dual if C⊥ = C . It turns out
that the dual of a negacyclic code is again a negacyclic code.

III. NEGACYCLIC CODES OF LENGTH 2mpn OVER Fq
Let Fq be a finite field of odd order q and F∗q = 〈ξ〉 as before.
We first adopt the following notations.
Notation 1: Let p be an odd prime coprime with q and n

a positive integer. Write q − 1 = 2sc with c being an odd
positive integer. We assume further that m is a positive integer
such that X2m

+ 1 factors completely into degree-one factors
in Fq2 [X ].
Suppose that f (X ) is a polynomial with leading coefficient

an 6= 0; we denote by f̂ (X ), the monic polynomial such that
f̂ (X ) = a−1n f (X ).

In this section, the polynomial generators of all negacyclic
codes of length 2mpn over Fq are obtained. As mentioned
in the introductory section, Bakshi and Raka determined the
polynomial generators of all negacyclic codes of length 2pn

overFq. Note thatX2
+1 always factors completely inFq2 [X ].

In this sense, our results give a natural generalization of the
results of [1].

We continue the discussion of negacyclic codes of length
2mpn over Fq with two subsections. In the first subsection,
we give the polynomial generators of all negacyclic codes
of length 2mpn over Fq under the condition s ≥ 2, i.e. 4 |
(q−1); then in the second subsection, we give the polynomial
generators of all negacyclic codes of length 2mpn over Fq
under the condition s = 1, i.e. 4 - (q− 1).

A. NEGACYCLIC CODES OF LENGTH 2mpn

OVER Fq WITH 4 | (q− 1)
As mentioned above, in this subsection, we assume that
q − 1 = 2sc with c being odd and s ≥ 2. Take α = ξ c.
Then 〈α〉 is the Sylow 2-subgroup of F∗q . Since p is odd, it is
clear that the following map gives an isomorphism of group:

θ : 〈α〉 −→ 〈α〉

x 7→ xp
n
. (III.1)

One knows that the irreducible decomposition ofX2m
+1 over

Fq is given by:

X2m
+ 1 =



2m+1∏
j=1,
2 - j

(
X − ϑ j

)
, if m < s,

2s∏
j=1,
2 - j

(X2m−s+1
− αj), if m ≥ s,

where ϑ = ξ2
s−m−1c is a primitive 2m+1th root of unity

for m < s. We just mention that, the fact X2m−s+1
− αj

with 2 - j is irreducible in Fq[X ], is a direct consequence
of ( [22, Theorem 3.75] or [24, Theorem 10.7]). By our
hypothesisX2m

+1 factors completely into degree-one factors
in Fq2 [X ], we get m ≤ s.

Form = s, we take a primitive 2s+1th root of unity β ∈ Fq2
such that β2 = α, then X2

− αj = (X − β j)(X + β j) for each
1 ≤ j ≤ 2s with 2 - j. In Fq2 [X ], we have

X2spn
+ 1 =

2s∏
j=1,
2 - j

(Xp
n
− β j)(Xp

n
+ β j).

At this point we deduce that there exists a unique element
γ in the Sylow 2-subgroup of F∗

q2
such that γ p

n
β = 1. In

the next lemma, we proceed by first giving the irreducible
factorization of X2mpn

+ 1 in Fq2 [X ]. Then, we recognize the
irreducible factors of X2mpn

+ 1 over Fq by analyzing the
irreducible factors of X2mpn

+ 1 over Fq2 .
Lemma 2: With respect to the above notations, we have

that
(i) If m < s, then the irreducible decomposition of X2mpn

+ 1
over Fq is given by:

X2mpn
+ 1 =

2m+1∏
j=1,
2 - j

h∏
k=0

M̂ρk (λ
j
1X );

(ii) if m = s and f is odd, then the irreducible decomposition
of X2mpn

+ 1 over Fq is given by:

X2mpn
+ 1 =

2s∏
j=1,
2 - j

h∏
k=0

M̂ρk (λ
j
2X

2);

(iii) if m = s and f is even, then the irreducible decomposition
of X2mpn

+ 1 over Fq is given by:

X2mpn
+ 1 =

2s∏
j=1,
2 - j

(X2
− λ
−j
2 ) ·

2s∏
j=1,
2 - j

h∏
k=1

(
H j
k (X )K

j
k (X )

)
.

where λ1 is a unique element in the Sylow 2-subgroup of F∗q
such that λp

n

1 ξ
2s−m−1c

= 1while s > m, λ2 is a unique element
in the Sylow 2-subgroup of F∗q such that λ

pn

2 α = 1, H j
k (X ) =

N̂ρk (γ
jX )N̂ρkq(−γ

jX ) and K j
k (X ) = N̂ρkq(γ

jX )N̂ρk (−γ
jX ).

Proof: (i). Since X2m
+ 1 =

2m+1∏
j=1,
2 - j

(
X − ϑ j

)
, then

X2mpn
+ 1 =

2m+1∏
j=1,
2 - j

(
Xp

n
− ϑ j

)
, (III.2)

where ϑ = ξ2
s−m−1c is a primitive 2m+1th root of unity

in Fq. It suffices to determine the irreducible factors of each
term on the right hand side of Formula (III.2). We know that
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Cρ0 = {0}, Cρ1 ,Cρ2 , · · · ,Cρh are all the distinct
q-cyclotomic cosets modulo pn, then

Xp
n
− 1 =

h∏
k=0

Mρk (X ),

gives the irreducible factorization of Xp
n
−1 over Fq. Since p

is odd and ord(ϑ) = 2m+1, then ϑ ∈ 〈ξp
n
〉. This implies that

there exists a unique element λ1 in the Sylow 2-subgroup of
F∗q such that λp

n

1 ϑ = 1. We have the following Fq-algebra
isomorphism:

ϕ : Fq[X ]/〈Xp
n
− 1〉 −→ Fq[X ]/〈Xp

n
− ϑ j〉,

which maps f (X )+〈Xp
n
−1〉 to f (λj1X )+〈X

pn
−ϑ j〉. Hence,

Xp
n
− ϑ j = ϑ j

h∏
k=0

Mρk (λ
j
1X ),

gives the irreducible factorization of Xp
n
− ϑ j in Fq[X ].

Therefore,

X2mpn
+ 1 =

2m+1∏
j=1,
2 - j

h∏
k=0

M̂ρk (λ
j
1X ),

with all the factors on the right hand side being irreducible
over Fq. This completes the proof of (i).

Recall that X2s
+ 1 =

2s∏
j=1,
2 - j

(X2
− αj), where α = ξ c is a

primitive 2sth root of unity in Fq. We take a primitive 2s+1th
root of unity β ∈ Fq2 such that β2 = α, then X2

− αj =

(X − β j)(X + β j) for each 1 ≤ j ≤ 2s with gcd(2, j) = 1. In
Fq2 [X ], we have

X2spn
+ 1 =

2s∏
j=1,
2 - j

(Xp
n
− β j)(Xp

n
+ β j).

(ii). Now we prove the case m = s and f is odd. Since f is
odd, then Cρ0 = {0}, Cρ1 ,Cρ2 , · · · ,Cρh are all the distinct
q2-cyclotomic cosets modulo pn. Hence, for each 1 ≤ j ≤ 2s

with gcd(2, j) = 1,

Xp
n
− β j = β j

h∏
k=0

Mρk (γ
jX ),

where γ ∈ F∗
q2

such that γ p
n
β = 1. Similarly,

Xp
n
+ β j = −β j

h∏
k=0

Mρk (−γ
jX ).

It is clear that γ is a primitive 2s+1th root of unity in Fq2
and we have the following monic irreducible factorization of
X2mpn

+ 1 in Fq2 [X ]:

X2mpn
+ 1 =

2s∏
j=1,
2 - j

( h∏
k=0

M̂ρk (γ
jX )M̂ρk (−γ

jX )
)
.

On the other hand, note that γ 2pn
= β−2 = α−1; we take

λ2 ∈ Fq2 such that γ 2
= λ2. This gives λ2 ∈ Fq and

λ
pn

2 α = 1. Therefore, for each 1 ≤ j ≤ 2s with gcd(2, j) = 1,

Xp
n
− αj = αj

h∏
k=0

Mρk (λ
j
2X ),

is the irreducible factorization of Xp
n
− αj in Fq[X ]. We get

that

X2pn
− αj = αj

h∏
k=0

Mρk (λ
j
2X

2).

Hence,

X2mpn
+ 1 =

2s∏
j=1,
2 - j

(X2pn
− αj) =

2s∏
j=1,
2 - j

h∏
k=0

M̂ρk (λ
j
2X

2). (III.3)

We claim that Formula (III.3) gives the irreducible
factorization of X2mpn

+ 1 over Fq. Observe that
λ
pn

2 = α−1 = β−2 = γ 2pn , then λ2 = γ 2. Obviously,
C2ρ0 = {0}, C2ρ1 ,C2ρ2 , · · · ,C2ρh also consist all the distinct

q-cyclotomic cosets modulo pn. Then Xp
n
−1 =

h∏
k=0

M2ρk (X )

gives the irreducible factorization. This leads to

X2mpn
+ 1 =

2s∏
j=1,
2 - j

h∏
k=0

M̂2ρk (λ
j
2X

2).

We deduce that

M̂ρk (γ
jX )M̂ρk (−γ

jX ) = M̂2ρk (λ
j
2X

2).

It is straightforward to verify that

M̂ρk (γ
jX ) ∈ Fq2 [X ], M̂ρk (−γ

jX ) ∈ Fq2 [X ],

and

M̂ρk (γ
jX ) 6∈ Fq[X ], M̂ρk (−γ

jX ) 6∈ Fq[X ].

This forces M̂2ρk (λ
j
2X

2) to be a monic irreducible polynomi-
als in Fq[X ]. We get that

X2mpn
+ 1 =

2s∏
j=1,
2 - j

h∏
k=0

M̂ρk (λ
j
2X

2),

is a monic irreducible factorization of X2mpn
+ 1 over Fq.

(iii). Finally, we are left to prove the case m = s and f is
even. As indicated in Section 2, all the distinct q2-cyclotomic
cosets modulo pn are given by Dρ0 = {0}, Dρj and Dρjq for
1 ≤ j ≤ h. Hence, Xp

n
− 1 has the irreducible factorization

over Fq2 as follows:

Xp
n
− 1 = (X − 1)

h∏
j=1

(
Nρj (X )Nρjq(X )

)
,
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where Nρj (X ) =
∏

k∈Dρj

(X −ηk ) and Nρjq(X ) =
∏

k∈Dρjq
(X −ηk )

with η being a primitive pnth root of unity in some extension
field of Fq. Then

Xp
n
− β j = β j(γ jX − 1)

h∏
k=1

(
Nρk (γ

jX )Nρkq(γ
jX )
)
,

Xp
n
+ β i = −β i(−γ jX − 1)

h∏
k=1

(
Nρk (−γ

jX )Nρkq(−γ
jX )
)
.

We get the irreducible factors of X2mpn
+ 1 in Fq2 [X ]:

X2mpn
+ 1 factors into

2s∏
j=1,
2 - j

(
(X − γ−j)(X + γ−j)

)

·

2s∏
j=1,
2 - j

h∏
k=1

(
N̂ρk (γ

jX )N̂ρkq(γ
jX )N̂ρk (−γ

jX )N̂ρkq(−γ
jX )
)
.

Obviously, (X − γ−j)(X + γ−j) = X2
− λ
−j
2 . By γ q = −γ ,

we deduce that

N̂ρk (γ
jX )N̂ρkq(−γ

jX ) ∈ Fq[X ]

and

N̂ρkq(γ
jX )N̂ρk (−γ

jX ) ∈ Fq[X ].

We get the desired result.
The following theorem gives the polynomial generators of

all negacyclic codes of length 2mpn over Fq with 4 | (q− 1).
Let εi, ε

j
i and ε

j
i be equal to 0 or 1 when i, j range over the

subscripts and superscripts respectively.
Theorem 3: Notations as in Lemma 2. Then all the nega-

cyclic codes of length 2mpn over Fq with 4 | (q−1) are given
by:
(i) if m < s,

〈 2m+1∏
j=1,
2 - j

h∏
k=0

M̂ρk (λ
j
1X )

ε
j
k

〉
;

(ii) if m = s and f is odd,

〈 2s∏
j=1,
2 - j

h∏
k=0

M̂ρk (λ
j
2X

2)ε
j
k

〉
;

(iii) if m = s and f is even,

〈 2s∏
j=1,
2 - i

(X2
− λ
−j
2 )εj ·

2s∏
j=1,
2 - j

h∏
k=1

(
H j
k (X )

ε
j
kK j

k (X )
ε
j
k

)〉
.

B. NEGACYCLIC CODES OF LENGTH 4pn

OVER Fq WITH 4 - (q− 1)
Let Fq be a finite field of odd order q and F∗q = 〈ξ〉 as before.
Recall that q − 1 = 2sc, where c is an odd positive integer.
In the previous subsection, we have given the polynomial
generators of all negacyclic codes of length 2mpn over Fq
with s ≥ 2. In this subsection, we continue to give the
polynomial generators of all negacyclic codes of length 2mpn

over Fq with s = 1, i.e. 4 - (q − 1); we further assume that
2a || (q+ 1), where the notation 2a‖(q+ 1) means 2a | (q+ 1)
but 2a+1 - (q+ 1). It is readily seen that a ≥ 2.
Let e be a positive integer. It is remarkable that, the irre-

ducible factorization of X2e
+ 1 over Fq has been character-

ized precisely (see [5, Theorem 1] or [13, Remark 2.2]). We
reproduce it here. Set U1 = {0}; recursively define

Ui =
{
±(

u+ 1
2

)
q+1
4
∣∣ u ∈ Ui−1} ,

for i = 2, 3, · · · , a− 1; and set

Ua =
{
±(

u− 1
2

)
q+1
4
∣∣ u ∈ Ua−1} .

Then

X2e
+ 1 =


∏
u∈Ue

(X2
− 2uX + 1), if e ≤ a− 1;∏

u∈Ua

(X2e−a+1
− 2uX2e−a

− 1), if e ≥ a.

All the factors in the above products are irreducible over Fq.
It is plain that m ≤ a by our hypothesis X2m

+ 1 factors
completely into degree-one factors in Fq2 [X ]. If m < a, then
X2m
+1 =

∏
u∈Um

(X2
−2uX+1) is the irreducible factorization

over Fq. Let βu be a primitive 2m+1th root of unity in Fq2 such
that X2

− 2uX + 1 = (X − βu)(X − β−1u ), then

X2mpn
+ 1 =

∏
u∈Um

(Xp
n
− βu)(Xp

n
− β−1u ).

We take γu ∈ Fq2 such that γ p
n

u βu = 1. Note that βqu = β−1u ,
which implies γ qu = γ−1u .
Lemma 4: Notations as given above.
If m < a and f is odd, then the irreducible factorization of

X2mpn
+ 1 over Fq is given as follows:

X2mpn
+ 1 =

∏
u∈Um

h∏
j=0

Iuj (X ),

where Iuj (X ) = M̂ρj (γuX )M̂ρj (γ
−1
u X ).

If m < a and f is even, then the irreducible factorization
of X2mpn

+ 1 over Fq is given as follows:

X2mpn
+ 1 =

∏
u∈Um

(X2
− 2uX + 1) ·

∏
u∈Um

h∏
j=1

Suj (X )T
u
j (X ),

where Suj (X ) = N̂ρj (γuX )N̂ρjq(γ
−1
u X ) and T uj (X ) =

N̂ρj (γ
−1
u X )N̂ρjq(γuX ).
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Proof: Since f is odd, then Cρ0 = {0}, Cρ1 ,
Cρ2 , · · · ,Cρh are all the distinct q

2-cyclotomic cosets mod-
ulo pn. Hence

Xp
n
− βu = βu

h∏
j=0

Mρj (γuX ),

Xp
n
− β−1u = β

−1
u

h∏
j=0

Mρj (γ
−1
u X ).

It follows that

X2mpn
+ 1 =

∏
u∈Um

(Xp
n
− βu)(Xp

n
− β−1u )

=

∏
u∈Um

h∏
j=0

M̂ρj (γuX )M̂ρj (γ
−1
u X ).

By γ
q
u = γ−1u , one can show that Iuj (X ) =

M̂ρj (γuX )M̂ρj (γ
−1
u X ) is a polynomial in Fq[X ]. We obtain the

desire result.
Similarly, we obtain the irreducible factorization of

X2mpn
+ 1 over Fq in case m < a and f is even.

On the other hand, if m = a, then X2m
+ 1 =∏

u∈Ua
(X2
− 2uX − 1) is the irreducible factorization over Fq.

Let νu be a root of X2
− 2uX − 1. Clearly, νu is a primitive

2a+1th root of unity in Fq2 such that X2
− 2uX − 1 =

(X − νu)(X + ν−1u ). Therefore, in Fq2 [X ], we have

X2mpn
+ 1 =

∏
u∈Ua

(Xp
n
− νu)(Xp

n
+ ν−1u ).

Take θu ∈ Fq2 such that θp
n

u νu = 1. Note that νqu = −ν−1u ,
which implies θqu = −θ−1u .

Taking arguments similar to those used in Lemma 4,
we have the following result.
Lemma 5: Notations as given above.
If m = a and f is odd, then the irreducible factorization of

X2mpn
+ 1 over Fq is given as follows:

X2mpn
+ 1 =

∏
u∈Ua

h∏
k=0

Puk (X ),

where Puk (X ) = M̂ρk (θuX )M̂ρk (−θ
−1
u X ).

If m = a and f is even, then the irreducible factorization
of X2mpn

+ 1 over Fq is given as follows:

X2mpn
+ 1 =

∏
u∈Ua

(X2
− 2uX − 1) ·

∏
u∈Ua

h∏
k=1

Auk (X )B
u
k (X ),

where Auk (X ) = N̂ρk (θuX )N̂ρkq(−θ
−1
u X ) and

Buk (X ) = N̂ρkq(θuX )N̂ρk (−θ
−1
u X ).

Combining Lemma 4 with Lemma 5, we obtain the poly-
nomial generators of all negacyclic codes of length 2mpn over
Fq with 4 - (q− 1).
Theorem 6: Notations as in Lemma 4 and Lemma 5. Let

εi, ε
j
i and ε

j
i be equal to 0 or 1 when i, j range over the

subscripts and superscripts respectively. Then the polynomial
generators of all negacyclic codes of length 2mpn over Fq
with 4 - (q− 1) are given by:
(i) if m < a and f is odd,〈 ∏

u∈Um

h∏
k=0

Iuk (X )
εuk

〉
;

(ii) if m < a and f is even,〈 ∏
u∈Um

(X2
− 2uX + 1)εu ·

∏
u∈Um

h∏
k=1

Suk (X )
εuk T uk (X )

εuk

〉
;

(iii) if m = a and f is odd,〈 ∏
u∈Ua

h∏
j=0

Puj (X )
εuj

〉
;

(iv) if m = a and f is even,〈 ∏
u∈Ua

(X2
− 2uX − 1)εu ·

∏
u∈Ua

h∏
j=1

Auj (X )
εuj Buj (X )

εuj

〉
.

IV. CONCLUSION
In this paper we determine the generator polynomials of all
negacyclic codes of length 2mpn over Fq by assuming that
X2m
+1 factors completely into degree-one factors in Fq2 [X ].

It would be interest to find all self-dual or self-orthogonal
negacyclic codes of length 2mpn over Fq in future works.
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