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ABSTRACT This article proposes a self-managing architecture for multi-HVAC systems in buildings, based
on the “Autonomous Cycle of Data Analysis Tasks™ concept. A multi-HVAC system can be plainly seen
as a set of HVAC subsystems, made up of heat pumps, chillers, cooling towers or boilers, among others.
Our approach is used for improving the energy consumption, as well as to maintain the indoor comfort,
and maximize the equipment performance, by means of identifying and selecting of a possible multi-HVAC
system operational mode. The multi-HVAC system operational modes are the different combinations of the
HVAC subsystems. The proposed architecture relies on a set of data analysis tasks that exploit the data
gathered from the system and the environment to autonomously manage the multi-HVAC system. Some
of these tasks analyze the data to obtain the optimal operational mode in a given moment, while others
control the active HVAC subsystems. The proposed model is based on standard standard HVAC mathematical
models, that are adapted on the fly to the contextual data sensed from the environment. Finally, two case
studies, one with heterogeneous and another with homogeneous HVAC equipment, show the generality of
the proposed autonomous management architecture for multi-HVAC systems.

INDEX TERMS HVAC system, autonomic computing, data analysis, smart building, multi-objective
optimization, multi-chiller, building management systems.

NOMENCLATURE

ANFIS Adaptive Network based Fuzzy Inference DL Deep Learning

System DMC  Dynamic Matrix Control

Al Artificial Intelligence EA Evolutionary Algorithm

ANN Artificial Neural Networks EEV Electronic Expansion Valve

ACODAT  Autonomic Cycle of Data Analysis Tasks EER Energy Efficiency Ratio

ARIMA Autoregression Integrated Moving Average ETL Extraction Transformation and Load process

ARMAX  Autoregression Moving Average eXogenous FBC Feedback Control

ARX Auto Regression eXogenous FFW  Feedforward Control

BAS Building Automation System FPGA Field-programmable Gate Arrays

BCS Building Control System FAN Fuzzy Adaptive Network

BD Big Data GA Genetic Algorithm

BEMS Building Energy Management System GPC  Generalized Model Control

BMS Building Management System HVAC Heating, Ventilation and Air-Conditioning

cop Coefficient Of Performance IAQ Indoor Air Quality

CVaR Conditional Value at Risk IEC International Electrotechnical Commission

DAT Data Analysis Tasks IoT Internet of Things

The associate editor coordinating the review of this article and approving 150 Inter.natif)nal Organization for Standardization

it for publication was Yi Zhang. JIT Just in Time

123402 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019


https://orcid.org/0000-0003-4194-6882
https://orcid.org/0000-0001-6458-2618

J. Aguilar et al.: Autonomic Management Architecture for Multi-HVAC Systems in Smart Buildings

IEEE Access

LO Linear Quadratic

LOG Linear Quadratic Gaussian

MPC Model (Based) Predictive Control

MOGA Multi-objective Genetic Algorithm

MPSO Multi-Objective Particle Swarm Optimization

NZEB Nearly Zero Energy Buildings

NSGA Non Dominated Sorting Genetic Algorithm

PID Proportional, Integral and Derivative modules

PDF Probability Density Function Approximation

PLC Programmable Logic Controllers

RC Resistive Capacitive

SARIMA  Seasonal Autoregressive Integrated Moving
Average

SQP Sequential Quadratic Programming

SPEA Strength Pareto Evolutionary Algorithm

4SID Sub-Space State Space Identification

SVM Support Vector Machines

TCBM Topological Case Base Modeling

I. INTRODUCTION

The need for saving energy to improve the sustainability of
the Planet is increasingly worrying society and requires to
put significant research on it. Based on recent studies [1],
it is observable that buildings contribute to the 40% of
the world energy consumption, being the HVAC systems
the most demanding. Nations are also acting to mitigate the
impact of an excessive energy consumption, like Europe,
where the Community takes directives about the design of
NZEB, namely 2010/31/EU and 2012/27/EU [10]. Several
strategies address this challenge by retrofitting building archi-
tecture and facilities [11], automating control operations
control [12], or predicting building behavior with advanced
Al and EA techniques [13]-[15]. Working on efficient energy
management solutions in buildings, especially for HVAC
systems, leads to significant economic, social, and environ-
mental improvements [6], [10].

It is far more sustainable and cost effective to improve
the management systems to achieve higher efficiency than
replacing HVAC systems with more efficient modern tech-
nologies [5], [10]. Recent articles emphasize the use of
advanced control algorithms [2]-[4], [6] and the optimiza-
tion of the HVAC system parameters [8], [18], [19], for
improving the energy efficiency in buildings, as an inefficient
operation of HVAC systems can result in excessive energy
consumption.

Therefore, it is fundamental to improve the efficiency of
the existing HVAC systems, in order to decrease energy
usage. The HVAC energy demand is directly related to
the indoor temperature setpoints, the type of building and
the regional climate, among other parameters. Particularly,
in this work are analyzed buildings with multi-HVAC sys-
tems. In this context, it is required the determination of the
optimal functional mode of the multi-HVAC systems for a
given situation, in order to improve their energy consumption,
equipment performance and thermal comfort.
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This research describes a new concept that relies on three
fields of study. The first is about the modeling techniques
of HVAC systems. The second is about multi-objective opti-
mization for obtaining the optimal configurations of HVAC
subsystems for saving energy consumption and cost, maxi-
mizing the comfort and the equipment performance. Finally,
the last one is about self-management architecture for multi-
HVAC systems.

A multi-HVAC system assumes that the system is split
it up in several HVAC subsystems, such as chillers, heat
pumps or boilers, with their associated mechanisms. Each
HVAC subsystem can be turned on or off or regulated,
contributing to generate different operational modes for
the multi-HVAC system. The optimization identifies pos-
sible operational modes and which one best fits the set
of objectives. The proposed architecture is based on the
Autonomous Cycle of Data Analysis Tasks (ACODAT) [34],
[35] paradigm, that defines a set of Data Analysis Tasks
(DATs) [35] that autonomously interact providing intelli-
gent supervision for achieving the pursued strategic goals.
Some DATSs monitor the selected variables (e.g., energy
cost, CO2 emissions) and make decisions that deliver to
other DATS; other DAT's extract knowledge to predict poten-
tial system behaviors; others identify relations between vari-
ables; there are DAT's that search for the optimal multi-HVAC
system operational mode, and others supervise the system
performance. A particular feature of DATS is that they can
extract information from both the system physics formula-
tion or the available historical system data records.

The proposed solution is general for any building, although
requires to be customized for each context. This work ana-
lyzes buildings with heterogeneous multi-HVAC systems
(different heat pumps, chillers, etc.) for testing the versatility
of the paradigm ACODAT to deliver the optimal functional
mode of the multi-HVAC system for any given situation.

The main contributions of this article are: i) A proposal
of a general autonomous architecture based on ACODAT
paradigm to manage multi-HVAC systems in buildings, opti-
mizing multiple goals, according to the changing contextual
information; ii) An extension of domain-based models with
data-driven knowledge models, to predict on the fly multi-
HVAC systems context-driven behaviors.

This paper is organized as follows: Section II presents the
related works. Section III describes the proposed autonomous
management architecture, based on the key aspects of multi-
HVAC systems and ACODAT paradigm. Section IV illus-
trates the generality of this approach, applying it to 2 different
case studies. Section V gives the result analysis and compares
with other works and, finally, conclusions and further works
are described in Section VI.

Il. RELATED WORK

Energy consumed in HVAC systems has been widely dis-
cussed in the literature. This research extends the scope by
addressing different fields while proposing a new paradigm.
It starts presenting the progress in modeling HVAC systems,
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because this is determinant for the proposed architecture.
This article outlines some of the recent works on modeling,
centered on mathematical models, data-driven models or sim-
ulated models. Then, some works introduce strategies for
Building Management Systems, being this the appropriate
context for the proposed autonomic architecture. Another
related area is the implementation of advanced control algo-
rithms and the improvement of the design of HVAC sys-
tems to reach the highest possible level of thermal comfort
for the occupants, minimizing the energy consumption. This
section concludes presenting the ACODAT paradigm and its
utilization in different domains. The revision of literature
shows that ACODAT-based autonomic management architec-
ture has not been used in HVAC systems yet and that there
are not approaches for obtaining an efficient context-based
operation of multi-HVAC systems.

A. HVAC SYSTEMS

Modeling HVAC systems deals with complex structures,
including chillers, heat pumps, heating/cooling coils, boilers,
air-handling units, thermal storage systems and liquid/air
distribution systems. Sensors and actuators allow the regu-
lation of the controllable plant variables, such as the ambi-
ent temperature in the occupied zones, the static pressure
in the pipes, the chilled flowing water temperature or the
air fans speed. At this low level, the HVAC system is dif-
ficult to manage, as its physical behavior is dynamic and
nonlinear, such as its high thermal-inertia. The generation
of an accurate and effective model for these systems is still
challenging.

There is a comprehensive work of Afram and
Janabi-Sharifi [22], updated by Afroz et al. [6], in which the
known modeling techniques are evaluated and classified in
three kinds: physics-based -also known as white-box, mathe-
matical or forward-; data-driven -or black-box-; and a combi-
nation of them, known as hybrid -or grey-box-. Physics-based
approaches use governing laws of Physics, such as the flow
balance, the heat transference or the energy-mass balance
to define a set of mathematical equations that describe the
HVAC system. Data-driven approaches collect data from the
system and the context under normal or abnormal utilization,
identifying the relations between the input and output vari-
ables with Al techniques. The grey-box approaches define
the basic model with physics-based methods, and adjust their
parameters with Al-based algorithms. The physics-based
model is normally applied to HVAC system components.
This is illustrated with an example. A chiller is one of the
main HVAC system components, which removes heat from a
fluid in a vapor compression cycle or an absorption cooling
cycle and consumes almost half of the total energy. It has
four modules: a compressor, an evaporator, a condenser, and
an EEV, that is normally modeled separately with the follow-
ing design assumptions [7]:

o The refrigerant properties of each component are
homogeneous.
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o The refrigerant mass flow rate goes through the com-
pressor and is considered constant throughout the
system.

o The expansion process through the EEV/orifice plate is
isenthalpic.

o The temperature of the walls does not vary through the
cross-section, or across the ducts.

Supposing that the refrigerant is in a quasi-steady state,
using the energy balance equations proposed in [6], the heat
transfer rate of the evaporator (Q,) and the mass flow rate of
the refrigerant (i,) can be obtained with:

Qe = eiAei(Tywo — Te) 1
my(h1 — he) = deoAeo(Tye — T,) (2)

where, h; is the enthalpy of the refrigerant at the evapo-
rator outlet-compressor inlet (kJ/kg), hg is the enthalpy of
the refrigerant expansion valve exit/evaporator inlet (kJ/kg),
Agj is the area of the evaporator inlet (m?), Aeo is the area of
the evaporator outlet (m?). Ty, is the return water temperature
(°C), Tye is the temperature of the evaporator wall (°C), Tk is
the temperature of the refrigerant at the evaporator inlet (°C),
o 1s the heat transfer coefficient of refrigerant entering the
evaporator (W/m? K) and o, is the heat transfer coefficient of
the refrigerant leaving the evaporator (W/m? K). In a similar
way, the heat transfer rate of the condenser (Q.) and the other
parameters of the HVAC system, like the dynamic tempera-
ture of the heating/cooling coil, can be obtained applying the
energy balance in the air—water heat exchanger [6].

Given the case that the dynamics of the HVAC system
could be simulated with their differential equations, the actual
behavior would differ from the theoretical construction due to
several factors, like the design assumptions made to simplify
the equations, or the natural equipment feature degradation.

Besides, when considering an HVAC system, which is
already installed in a building, for generating its model for-
mulation, the scarce and unstructured documentation and the
hidden acquired habits by the engineers and operators, make
the data-driven modeling approach interesting to perfect the
mathematical approach. Physics-based systems provide a
good generalization capability, but are not accurate, because
of the significant number of parameters and assumptions
that are defined to work with them and their dynamical
characteristics.

Data-driven models collect HVAC system data under dif-
ferent conditions: normal and abnormal situations. A relation
is also defined between the input and output variables using
Statistics or Al techniques, such as ANNSs [16], or, in some
cases, with DL techniques [17]. Examples of black-box mod-
els are: TCBM, 4SID, PDF, JIT, several ANN architectures,
SVM, FAN, Takagi-Sukeno Fuzzy, ANFIS, Linear and Poly-
nomial Time Series regression, ARX, ARMAX, and ARIMA.

Some authors have recently proposed the utilization of
BD-based techniques to improve the operations of existing
buildings [19]. Several studies addressed the type of buildings
differentiating their use, like residential, commercial, office
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buildings or education facilities [21], limiting the generaliza-
tion capabilities of these methods. Old buildings with their
special requirements [20] have been treated by retrofitting
the HVAC systems, but very few have addressed the con-
trol system for improving their performance and efficiency,
like the case of a museum that requires an environment for
the pictures conservation as an unavoidable physical con-
straint [18]. Other proposals bring useful metaphors for treat-
ing the model behavior, like considering an HVAC system as
a cyber-physical system [20] because of its ‘“‘integration of
computation and physical processes”.

Finally, grey-box models show better generalization capa-
bility than data-driven models. The main strength is that
are capable to capture any unmodelled effect left out of the
equation and adapt to dynamic changes. Some examples in
the literature are RC Equivalent Circuit, based on genetic
algorithms that discover the resistance and capacitance
parameters; Simulated Zone Model RC whose parameters are
identified by SQP; or Physics-based ARMAX to predict room
temperature.

This research requires to compare the special case of
multi-HVAC architectures, mostly treated in literature as
homogeneous multi-chiller systems, although not fully com-
parable to multi-HVAC systems. Literature discusses about
the modification of the ‘““thermal load” variable in commer-
cial buildings [7], the optimization of the cooling load sharing
of a multi-chiller system using a probability density distribu-
tion profile [4], the optimization of multi-chillers with multi-
phase genetic algorithms [23]. the use of data for evaluating
the performance of a multi-chiller system [24], the use of
a general algebraic method for modelling multi-chiller sys-
tems [25], or a sequencing of multi-chillers [26]. In any case,
the term of multi-HVAC used in this article as an alternative
to multi-chiller includes the heterogeneous characteristics of
the HVAC sub-systems.

B. BUILDING MANAGEMENT SYSTEM

As the complexity of HVAC systems has been growing,
a management system is increasingly required. BMS is the
generic name, but there are also in the literature other different
names that express slightly different approaches. For exam-
ple, BAS synthesizes the building automation technologies,
like ISO/IEC 14543-3 or ISO/IEC-14908. Another example
is BEMS that networks the setpoints, device controllers,
system logic, timers, trend logs, alarms coming from the
different building facilities, or simple controllers, providing
a friendly interface to manage them [5]. The three main
objectives of BEMS are: a) to provide a healthy and pleasant
indoor climate; b) to ensure the safety of users and owners;
and c) to ensure cost-effective operations with respect to both
energy and personnel. The common functionalities are:

o Energy remote monitoring.

o Optimization and control of energized building
facilities.

« Equipment operations according to forecast.

« Energy management information reporting.
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The minimal components of a BEMS are: the cen-
tral station, connected with remote outstations -also called
controllers-. The central station has an interface with the
remote outstations enabling some control functions on them,
depending on the client’s requirements (for instance, energy
savings, security, etc.). It is yet unclear how much an optimal
use of BEMS can reduce energy usage and at what costs.
Estimations about the energy savings differ considerably with
building uses and other considerations. Some authors esti-
mate energy savings up to 27% with BEMS [8], while others
estimate energy savings up to 20% with optimal control
of space heating. Others reduce the benefits up to 10% in
lighting and ventilation [9].

A BMS is a computer-based control system that controls
and manages building’s mechanical, electrical and electrome-
chanical equipment, such as lighting, HVAC systems, fire
systems, elevators or security systems. The BMS is capable
to improve the energy efficiency, the environmental con-
ditions, or the building operations and manageability [15].
Finally, BCS is another name that focuses on simple control
models.

Foreseen evolution directs towards smart buildings with
hyper-connected environments, managed with intelligent
IoT based BMSs, making use of advanced AI analytics.
ACODAT tackles present challenges and its architecture is
prepared for managing these new paradigms.

C. HVAC CONTROL SYSTEMS

HVAC control systems make use of conventional and
advanced methods. It is interesting to know the evolution
as most of them are still in use and object of ongoing
research. The first automation was implemented in pre-
programmed sequences of instructions in PLCs and FPGAs
actuating on the controlled components. Then, PID FBC and
FFW modules provide regulation, minimizing the difference
between the controlled signal and the setpoint and its time-
domain characteristics. PID is still present in 9% of the pub-
lications about HVAC control. Self-tuning techniques, like
gain scheduling (in 9% of publications), decoupler, state-
space representation and transfer functions, have improved
the robustness and adaptation capability of HVAC control.
Most recent advances in control make use of optimization
schemas, like LQ or LQG. Model-based prediction is becom-
ing popular with MPC [3], and its variants, DMC and GPC,
today found in 15% of publications. It is also important to
note the growing multiagent architectures, so useful for large
systems, which are in 14% of publications, and fuzzy logic
control systems to optimize the model and control parame-
ters, which are in 13% of the studies.

An interesting case of two-stage energy management strat-
egy for a commercial building, has tried incorporating the
uncertainty of electricity prices in a model predictive control
(MPC) for the energy management optimization [39]. In this
case, they carry out a power balance between the power sup-
ply and the load on the building, while the operational costs
are minimized. The predicted values for load demand, wind
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power, and electricity price are forecasted with SARIMA
model. In addition, the CVaR value is used to assess the
uncertainty in the electricity prices.

D. MULTI-OBJECTIVE OPTIMIZATION IN HVAC SYSTEMS
The HVAC system operations can be managed to get optimal
performance. The optimization problem seeks to identify the
best system configurations and schedules to save energy,
maximize the comfort and reduce the operating costs [3].
Some authors consider thermal comfort as a constraint and
others, another objective to maximize, preferring the later in
this proposal, adding a degree of freedom to the optimiza-
tion problem. Some works also consider indoor humidity,
subjective TAQ index, retrofit costs, lighting consumption,
plug loads, or visual comfort level [27]. Very few authors
include the equipment performance in the equations, such
as the maximization of the COP for heating, or the EER
for cooling, and their seasonal variations in multi-chiller
systems [28].

For making practicable this multi-objective optimization
process in real-time management, recent literature com-
monly assesses different EAs. Most popular techniques
considered for optimization are based on GAs [3], and
its multi-objective variations, such as MOGA, NSGA or
SPEA [29]. Other considered techniques are MPSO [30],
ANN-based models, Newton-Raphson method or Interior
Point method [3]. Some authors also research on non-
supervised data mining techniques to discover hidden pat-
terns that could eventually improve the energy efficiency in
HVAC systems [31].

E. AUTONOMIC CYCLE OF DATA ANALYSIS

Literature interest focuses on HVAC systems control
improvement with optimization techniques, mainly based on
predicting models [2], grouping the operating elements in
higher layers or orchestrating their control agents to supervise
the whole system [15], or just for automating operations [10],
but none of them deals with a comprehensive autonomic
management architecture for HVAC systems.

ACODAT is a computing paradigm that includes a set
of data-driven tasks, DATs to pursue a common goal for
the managed process [6]. DATs exploit the data collected
from the system to build knowledge models that describe,
optimize and predict its behavior. DATs co-operate among
them and interact with the system according to their specific
roles [35], [36]:

o System inspection: These DATSs extract information
monitoring the system behavior and its context. This
requires systematic ETL processes. DATs generate
an image about the current conditions. Data could
be predicted or estimated with different contextual
information.

o System analysis: These DATs interpret, understand, and
diagnose the current state of the system. They build
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FIGURE 1. Autonomic multi-HVAC management.

knowledge models with the prepared information from
the inspecting DAT's considering the system dynamics.

o Decision making: These DATs impact on the system
dynamics because their decisions are translated into
physical orders for the actuators to activate or regulate
the equipment to reach the desired objectives of com-
fort or deactivate them to save energy.

ACODAT paradigm requires the following elements to
work [36]:

o Multidimensional data model to store the data
collected from different sources that characterize the
system behavior for the DATSs.

« Platform to host the tools for DATSs to use data mining,
semantic mining or linked data.

o Multi-adaptive and polyvalent mechanisms to respond
in real time to new inputs and conditions (e.g., outdoor
changes, climate change, new uses, new rules, etc.)

ACODAT-based architectures are prepared to use data
mining or semantic mining techniques and allow advanced
types of knowledge representations, like ontologies or cog-
nitive maps. Particularly, when data comes in streaming,
it is necessary to use ETL combined with data min-
ing mechanisms. When ACODAT reads data from offline
sources, like Web repositories, then uses data collection and
curation processes with semantic mining and linked data
tools.

Ill. AUTONOMOUS ARCHITECTURE

A. GENERAL MODEL

The first goals of ACODAT paradigm for the management
of building’s multi-HVAC systems is to identify its optimal
operation point, done with the Optimization Module, and
adapt the multi-HVAC system to accomplish this optimal
operation, done with the BMS and Control modules. This
is shown in Figure 1. The first module explores different
combinations of HVAC sub-systems and selects the best one
for the current conditions. The second module then translates
the decision made into specific orders to the Control and
BMS Modules. The proposed architecture works perfectly
with different Al techniques to solve this problem.
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B. DETERMINATION OF MULTI-HVAC OPERATIONAL
MODES

1) EXPLORING POSSIBLE MULTI-HVAC OPERATIONAL
MODES

The Optimization Module identifies the best operational
mode of the multi-HVAC system to minimize the energy
consumption and cost, and maximize the ambient comfort
and the equipment performance. The problem is defined as a
multi-objective optimization. This section sets out the objec-
tive cost functions and shows how the knowledge models
based on Al exploit the data of the context. These knowl-
edge models will be used in a future ACODAT architec-
ture functionality for supervision, detection and diagnosis of
multi-HVAC systems.

a: DEFINITION OF THE MULTIOBJECTIVE OPTIMIZATION
PROBLEM

As seen in previous sections, buildings’ multi-HVAC sys-
tem have several combinable HVAC subsystems for heat-
ing or cooling generation. The optimization model requires
to define those possible operational modes and identify the
optimal one that maximizes energy savings with the highest
possible indoor comfort, leading to resolve a multi-objective
optimization problem with conflict among the objectives.
Thus, the proposed approach is to search of non-dominated-
Pareto optimal- solutions [18].

The main decision variable is the HVAC 04e, that defines
the optimal combination of multi-HVAC subsystems to be
used in a given time, t. The multi-objective optimization
problem is formulated as follows:

Mingyac modEat(P consumed (HVACode, 1) ,
Cost, (HVACoge, t) , COP global (HVACiode, 1) ,

Comfort(HVAChmode, 1)) (3)

where, the cost functions to be optimized are:

o Pconsumed (HVAChode, t) is the total power required by
the current mode of the multi-HVAC system, defined
as [7]:

Peonsumed (HVACmode: t )
= > Panitter (> 1) + Per ()
+ Pewp () + Pwpp () s Vj € HVAC jpqe 4

where, Pchijer (j, t) is the power required by j‘h chiller,
Pcr (j) is the power required by j™ cooling tower, Pewp (j) is
the power required by j™ cooling water pump, and Pupp ()
is the power required by j primary circuit chilled water
pump. Typical fluids in HVAC subsystems are water
and gas, condensing water or air [32]. The variables of
Equation (4) are specific for water and when the fluid
is air, the variables P.yp, and Pct are not applicable -
equals O in this model-. Pct (j) is obtained from the cool-
ing tower manufacturer’s technical specifications, while
Pewp () and Pypp (j) are defined in the design of the
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HVAC system. Pchiier (§, t) is:

Pehiter (j, 1) = CC(j, 1)/ COPpaker (j)

Ofuid (7, 1) * Heat gyia G) * Pfiwia §)
*ATHVAC (j, l) s if < CAP(])

CAP(j), otherwise

CC(,t) =

COPuker(j) 1s the coefficient of performance of the jth
chiller, CAP(j) is the capacity of the j'™ chiller, both obtained
from the manufacturer’s technical specifications, Qfpyia (j, t)
is the flow rate of the jth chiller, Heatfyiq (j) is the spe-
cific heat capacity of the fluid in the j® HVAC subsystem,
Pfwia (j) is the density of the fluid in the j" HVAC subsystem,
ATgvac(, t) is the difference between the input and the
output temperatures of the j® HVAC subsystem.

o Coste(HVAC04e, t) is the cost of the energy, and it is
obtained with:

Coste (HVACmode, t)

= Pconsumed HVACmode, ) *TE;, fort €i 5)

where, TE; is the tariff rate applied to the energy consumed
in Period i corresponding to moment t.

o Comfort(HVACode, t) is the comfort perceived in the
different building zones (offices, halls, etc.) and grows
as the difference between the setpoints and the current
room temperatures in each zone (AT comfors (z0nes, t))
gets smaller. The optimization problem seeks to mini-
mize this difference. The equation transforms comfort to
demanded power (P gemanded (t)) in t to the HVAC system
to reach the thermal comfort in each zone:

VA
Piemanded (t) = Heat gir * pgir * Zz:l
X (Qgir (2, 0) % AT comfors (2, 1) (6.2)

where Z is the number of zones in the building. The
minimization of Pgemanded(t) implies the maximization of
Comfort(HVACode, t), hence allowing to replace the later
with Pgemanded(t) in Eq. (3).

Comfort (HVACyode, t) can also be redefined consider-
ing that the multi HVAC system has a maximum power
Prax (HVACode) = ZjeHVAC,,m .. CAP ()), delimiting the
maximum temperature change (7}, (HVACpode ), Which can
be obtained from the manufacturers’ specifications. This idea
allows to determining AT o (HVACyode) as the difference
between the global temperature setpoint and the maximum
temperature that the current HVAC 04 can supply. Some
authors call the global setpoint as social setpoint, and has
different ways to be obtained [37]. The demanded thermal
power to the current HVACode (Pihermic(HVACmode, 1)) for
the thermal comfort is:

Pihermic (HVACmOdev t)
= (AT comforr HVACode, 1) *

x> CAP(j))/ATci(HVACmoze)  (6.b)
jeH VAC nmode
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where (AT copforr HVACmode, 1) is the global temperature
desired in the building (social setpoint) at time t. In this
case, the minimization of Permic(HVAChode, t) implies
the minimization of AT comfors, hence the maximization
of Comfort(HVACode, t), so that it can be replaced by
Pehermic(HVACpoge, ©) in Eq. (3).

e COPgiopar (HVACmode, t) is the current coefficient
of performance of the multi-HVAC system for the
selected operational mode, which is the ratio between
the supplied thermal power (Pgemanded(t)) Ot Pihermic
(HVACode, 1)), and the electrical power that the multi-
HVAC system consumes (Pconsumed (HVACmode, £):

Piemanded (t)

Pconsumed (HVACmodeﬂ t)
(7.a)

COPg1opal(HVACmode, ) =

or
Prhermic (HVACmode, 1)

Pconsumed (HVACmodm t )
(7.b)

COPgiopal (HVACmoge, t) =

With this set of equations (4, 5, 6, and 7) the multi-objective
optimization problem is defined generating a Pareto front, i.e.
a set of optimal solutions, for each possible HVACode.

b: DATA-DRIVEN APPROACHES IN THE DEFINITION OF THE
OPTIMIZATION PROBLEM

The previous objective functions are defined according to
specific mathematical models. In this section, the mathemat-
ical expressions are complemented using data-driven models
that identify the actual conditions from the data captured from
the multi-HVAC system.

« Data model for Equation (4). Historical records have
the Pconsumed (HVACode, ) simultaneously with other
variables, which it could depend on. To incorporate these
possible relations, the equation is redefined as

Peonsumed (HVACmodey n=Vvl (]) (8)

where, V1 (j) is a predictive model based on the historical
data of the j" HVAC subsystem. It is of significant interest
to note that this hybrid approach, not only refine the results
of the pure mathematical model, but also allows the inspec-
tion of the performance degradation throughout the lifecycle
of the j'" HVAC subsystem, impossible to obtain otherwise
(see equation (4)).

o Data model for Equation (5). This equation can be
improved in different ways. In some countries, the pric-
ing period could be contracted in real time auctions.
In this case, the historical price evolution and the cli-
matic conditions could be used to predict the optimal
tariff rate periods to hire energy, modifying Equation (5):

Cost, (HVACmode, Hiremode , 1)
= PMax,i * TP; (Hiremode)
+ Peonsumed HVACmode, 1) * TE j(Hirepoq.), fort €

C))
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where, Hirenyoge indicates if tariff rates are fixed or auctioned,
and TPj(auction) and TE;(auction) are predictive models
based on historical data from the auctions and climatic con-
ditions. This model optimizes the energy contractual cost and
can be automated the auction process.

The other possible extension of the mathematical model is
to obtain the optimal moments to activate the HVAC subsys-
tems according to the tariff period i, which will be studied in
next works.

« Data model for Equations (7.a) and (7.b). Global COP,
COPgiopal (HVACmoge, 1), is also registered or easily
obtained from historical records coming associated with
variables, which it could depend on. This allows building
a model of this variable using these variables to predict
future COP values. The expression can be redefined as:

COPgjopai(HVAC e, ) = V2()) (10)

where V2 (j) is a predictive model based on the historical
data from each HVAC subsystem. COPgjopa(HVACyoge, t)
can be redefined as an unknown function F(j) between the
variables defined in Eq. 7.a or 7.b. In this case, it is necessary
to define this function F(j), which is an identification model
based on the historical data of COPg1ppa(HVACmoge, 1), and
these variables. Again, this model is also capable to capture
the performance degradation of the j" HVAC subsystem
according to the current behavior of these variables, which
is not done with just the mathematical definition.

The enhancement of the mathematical optimization prob-
lem with these data-driven models improves predicting capa-
bilities, in order to bring new functionality and capabilities,
such as the analyses of the subsystem’s degradation or the
automation of power tariff contracting.

2) SELECTION OF THE MULTI-HVAC OPERATIONAL MODE
TO IMPLEMENT

The previous phase identified a set of solutions for each
operational mode -individuals on Pareto front- obtained with
any of the possible multi-objective optimization techniques.
Now, the optimization problem must consider multiple Pareto
fronts to select the optimal operational mode. An individ-
ual in a Pareto front represents an optimal solution for a
given operational mode, where some of the objective func-
tions are weighted to get optimal nondominated solutions.
For example, one of the solutions could only minimize the
COP g1opal(HVACoge, t). Several solutions are therefore pos-
sible for this problem. One particular Pareto Front could be
obtained from the intersection of the different Pareto Fronts
of the different operational modes, considered together to
build a single Pareto Front from them that can be seen as
a convex hull. This case is solved using classical multi-
objective optimization techniques. Another solution analyzes
the behavior of each Pareto Front of each HVAC mode
with respect to the high level optimization requirements
and then select one of them. This section explores these
alternatives.
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a: DETERMINATION OF ONE GENERAL PARETO FRONT

In Equation (3), the multi-objective problem is defined for
only one Pareto Front, analyzing different HVAC modes that
could be used in the current multi-HVAC system, where
each HVAC mode represents the combination of HVAC
subsystems used in Equations (4), (5), (6.a) or (6.b), and
(7.a) or (7.b). Thus, Equation (3) is general, evaluates the
HVAC modes and uses a general Pareto Front to analyze
them.

b: ANALYSIS OF EACH PARETO FRONT

This section proposes an intelligent decision system based
on the results of the previous phase and some other relevant
information to select the HVAC mode. The general structure
of the intelligent decision system is:

If(decision_condition) then (individual;)

where decision_condition is a set of weights that defines
the importance of each objective function, and individual;
is the selected solution from the proposed Pareto Front with
the multi-objective optimization technique. Each weight is
set in real-time according to the relevance of each objective
function for the current context and are defined as fuzzy
variables as follows:

o WI(P) defines the importance of the minimization
of Pconsumed- It is a fuzzy variable that depends on the
current values of AT;VACG, t)'s of the j™ chiller in the
current HVAC mode. With this information, Wi( P) is
defined as:

If AT}, (1,0 and ... AT}, -, ©) then WI(P),
Vj € HVAC mode

where ATJ;IVAC(j, t) is a fuzzy variable with values {high,
average, low}, and so does WI(P).

o W2(Cos;,) defines the importance of the minimization
of Cost e, and it is a fuzzy variable that depends on
the current values of TE{ and ATfHVAC(j, t)'s. With this
information, W2(Cost, ) is defined as

If TE and (AT, (1, O and ... AT}, -G, 0)
then W2(Cost,)

where W2(Cost,) can be {high, average, low} and TE]; values
are{coming in, in, going out}.
e W3(COP) defines the relevance for maximizing
the COP. It is a fuzzy variable that depends on the
current yalues of Pzeman ded () OT P{hermic (HVACode, )

and AT’;_IVAC g, t)/ s. With this information, W3(COP) is
defined as

If (PZemanded (1) or P{hermic (HVACmOde’ t)))

and AT, (1,0 and ... AT}, G, 0) then W3(COP)
where P/ 4 or P

demande nermic HHVACmode, 1)) are fuzzy vari-
ables with the values {high, average, low}; and W3(COP)

with {high, average, low}.
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o W4(Comfort) defines the importance for maximizing the
comfort. Itis a flz>zy variable that depends on the current
restrictions of ATjgomfm (zones, t), which can be {high,
not}. This information defines W4(Comfort):

Hf

If AT, omfort (zones, t) then W4(Comfort)

— . . .
where AT, omfort (zones, t) is a set of fuzzy variables with val-
ues {very strict, strict, normal, not strict}; and W4(Comfort)
can be {high, average, low}. W4(Comfort) can also be calcu-
lated considering AT comforr HVACyoqe, ) as a fuzzy vari-
able defining the social setpoint of the building at time ¢ [37].

C. TRANSLATION OF SELECTED OPERATIONAL MODE TO
THE MULTI-HVAC SYSTEM

This module translates the operational mode obtained in the
previous module to a set of control signals to operate the
multi-HVAC system. Chillers generally work with discrete
ON/OFF or PID controllers. They could perform at their level
improvements for energy efficiency, as shown in the previous
section. Particularly, RC model is quite popular method for
modeling thermal dynamics based on MPC. The first order
RC modeling HVAC dynamics is formulated as:

T —Tiy T;;

Tj: —
R; +Zje/v(i> Ry

CTi, =

where N(i) are neighboring zones of zone i, C; and Tj are the
thermal capacitance and room temperature of zone i, T, is the
outside dry bulb temperature, P;; is the energy consumption
at time t, and R; and Rj; are the thermal resistance for zone i
against the outside and the neighboring zone j. Once calcu-
lated C;, R;, Rjj for every zone, there is a 1st order system that
models the thermal dynamics.

At time t, the building’s running profile is X := [Xf‘f; X%
X?thy]T, where T is the rolling horizon; X)”tC denotes a collec-
tion of uncontrollable measurements, such as zone tempera-
ture, lighting schedule, in-room appliances schedule or room
occupancies; X denotes a collection of controllable mea-
surements, such as zone temperature setpoints or appliances
working schedule; Xﬂhy denotes the set of physical mea-
surements or forecast values, such as dry bulb temperature,
humidity and radiation level. Since Tj € X" and T, € XPhy
equation (10) can be reformulated by summing the P; for all
zones to get the overall building thermal dynamics:

Pe = freXi—13 ... Xi) (11)

Equation (12) is further used in the optimal control
problem:

T
C 0
minimizex; _xc,, E P, (12)
=0

where T denotes the rolling horizon of the predictive model.
X' and X¢ have constraints.

This research considers an intelligent controller based on
Al techniques that automatically makes changes according to
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weather parameters, and will be developed in future works.
The data driven control method replaces the traditional MPC
controller, building the dynamic model as it takes data from
the multi-HVAC system.

IV. CASE STUDIES

A. HETHEROGENEOUS MULTI-HVAC SYSTEM IN OLD
BUILDINGS

1) BACKGROUND

This case study is the HVAC system in Madrid Opera, known
as Teatro Real, in Madrid City, Spain. The floor size is
65,000m? (700,000ft?), the theatre occupancy is 1,746 seats.
The stage area is 1,430m” (15,400ft>) operated with an
advanced rigging system that fully changes scene resources.
The building has 11 lounges for events, 4 rehearsal rooms,
7 studios, a surrounding office area, warehouses and technical
areas.

Madrid climate is predominantly dry with cold winters,
with day average 0°C (32°F) in January, and hot summers
with temperatures above 35°C (95°F).

The building is used from September to July and recently
opens for specific events in August, requiring heating and
cooling. The multi-HVAC system has two water-air heat
pumps with 195kW of nominal thermal power each for heat-
ing and cooling, and two water-water chillers with 350kW
each for extra cooling. Each HVAC machine could be seen as
a HVAC subsystem. The multi-HVAC system is supervised
and operated with a BMS that collects the temperatures from
sensors located all over the zones and writes the instructions
on the actuators regulating the water or air flow rates and fluid
temperature. The BMS supervises 1,824 digital and analog
variables.

The diversity of uses of the theater, rehearsal rooms and
lounges in different seasons and hours of the day make the
HVAC operation complex and require routines established
beforehand for the field operators. They receive an order
sheet with the schedule, setpoints and the HVAC subsystems
to activate for the events. The engineering department takes
the schedule of activities, labor hours and weather forecast
to prepare the order sheet, which is a set of basic start/stop
instructions that, once they are grouped in the different sub-
systems, can be mapped into an operational mode of the
multi-HVAC system.

Figure 2 depicts the existing working scenario in which
the field operator executes the instructions of the order sheet.
BMS are generally versatile and can be programmed accord-
ing to the timetable or optimization policies, however, in prac-
tice, this is so complicated that only a little functionality is
used.

The BMS saves records with 169 variables, like outdoor
temperature, room temperatures, electrical supplied power,
thermal energy generated by each subsystem and their current
COP, sampling every 15 minutes, in a persistent database.
The BMS also stores 45 additional temperatures read from
different zones of the building, sampled every hour in another
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FIGURE 3. Instantiation of ACODAT in opera building.

table of the database. Another table keeps other variables read
from subsystem components only during the theater shows
and rehearsals from another 69 sensors every 10 minutes.

2) INTRODUCTION OF ACODAT IN EXISTING HVAC
INSTALLATION

Figure 3 shows the instantiation of ACODAT in the Opera
HVAC. In this case, the different components of the optimiza-
tion module are incorporated into the multi-HVAC system,
except the Control Module that resides in the BMS. The
selection of the multi-HVAC operational mode is essential
and uses the strategies and equations defined in Section III.B.
The Optimization Module can use the historical data stored
in the BMS for data models.

a: EXPLORATION OF POSSIBLE MULTI-HVAC

OPERATIONAL MODES

The first activity is to define the existing HVAC subsystems
in the Opera building to identify then the possible operational
modes of the multi-HVAC system. This requires the defini-
tion of the next variables for each HVAC subsystem:
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TABLE 1. Some characteristics of the chillers obtained from manuals.

Heatwater () 4.186 J/g°C
pWater(j) 1 Kg/l
CAP(Chiller) 350 KW

TABLE 2. Tariff periods (TE) of the power.

Tariff Period | Period | Period Period | Period | Period

price 1 2 3 4 5 6

KW 39,1394 | 19,5866 | 14,3341 14,3341 | 14,3341 | 6,5401
27 54 78 78 78 77

TABLE 3. Utilization of the TEs during the year.

Rate Periods

Months Hours

1 23 45 6 7 8 91011 1213 14 15 16 17 18 19 20 21 22 23 24
JANUARY P6 P2 Pl P2 Pl P2
FEBRUARY P6 P2 Pl P2 Pl P2
MARCH P e T
APRIL P6 P5
MAY P6 P5
JUNE (1-15) P6 (2] P3
JUNE (15-30) P6 P2 Pl P2
JULY P6 P2 Pl P2
AUGUST P6
SEPTEMBER P6 P4/ P3 [ S
OCTOBER P6 P5
NOVEMBER P e I
DECEMBER P6 P2 Pl P2 Pl P2

o Specific heat capacity of the fluid in Subsystem j,
Heat fuiq (j)

« Density of the cooling fluid in Subsystem j, pfuia ()

o Maximum electrical power consumed in Subsystem j,

e Maximum temperature provided with Subsystem j,
Tmax (j)

o Thermal capacity of Subsystem j, CAP(j)

These values are normally available in manufacturers’
specifications. ACODAT also requires tariff rates in period
i, TE;, to calculate the energy cost. The tariff scheme varies
throughout the year (see Tables 2 and 3).

The Opera HVAC system has two similar heat pumps and
two similar water-water chillers. Some of the characteristics
of the chillers are given in Table 1.

The model also requires the zone’s size -lounges, rehearsal
rooms, studios, offices, theater- to specify the demanded
thermal power.

Data driven models use the historical data in the
BMS database (see Section IV.A.1) to predict behaviors
and identify deviations of the different components of the
multi-HVAC system. The management is not only reduced
to immediate operations, but also allows mid- and long-term
functionality, such as monitoring the performance degrada-
tion of the equipment, which will be developed in next works.

b: SELECTION OF THE MULTI-HVAC OPERATIONAL MODE
TO BE LAUNCHED

In this case study, the selection of the operational mode
also depends on contextual variables, like weather forecasts,
events schedule, which naturally suppose different weights
for the cost objectives. A fuzzy intelligent decision system,
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as proposed in Section III.B, will select the convenient mode
for each situation.

The event scheduling portraits information about the date,
hour, duration of the required temperature setpoints for each
zone. With this table and weather forecasts, fuzzy variables
that weight the importance of each objective cost are defined:

o WI(P) i; defined with the values of variables Pconsumed
and AT G, s

« W2( Cos}e) is defined with the values of variables TEi
and ATy cGs s

e W3(COP) is defined with the values of vari-
ab]e,s Pfiemtmded (1) or Pfhermic (HVACmOde’ 9] and
AT e Gi 0 .

o W4(Comfort) is defined with the importance of the
restrictions (ATJ; omfort (zones, t)).

Thus, this system is context-aware, capable to change the
weights based on contextual information (events, working
hours...) and sensed variables, to evaluate different states
of the system. The Fuzzy Intelligent Decision Module can
autonomously select the optimal multi-HVAC mode for each
state. The system selects one non-dominated individual,
according to the real scenario and changes the system behav-
ior accordingly.

¢: TRANSLATING THE SELECTED OPERATIONAL MODE

FOR THE MULTI-HVAC SYSTEM

At the end of the process, the output of the fuzzy intelligent
decision module directly feeds the BMS at the right time, with
the necessary instructions to activate the optimal multi-HVAC
mode, closing the control loop with the low-level instructions
to operate each multi-HVAC subsystem. This requires that
the recommended optimal multi-HVAC mode obtained in the
Fuzzy Intelligent Decision Module to be translated in a set
of values necessary for the BMS to accomplish the mode by
activating, deactivating or regulating the addressed elements
of the multi-HVAC system.

B. HOMOGENOUS MULTI-HVAC SYSTEM IN A NEW
BUILDING

1) BACKGROUND

This second case study introduces ACODAT for San Pedro
Hospital HVAC at Logroii o City, Spain. The HVAC system is
composed of 4 chillers, three with 3.5MW of thermal power
and another with IMW and 5.8 EER and, again, ACODAT
determines the optimal operational mode. Figure 4 depicts the
HVAC system functional diagram.

The Logrofi o’s climate is warm and temperate, with sig-
nificant precipitations. Temperatures are higher on average
in July, 21°C (70°F), and lower in January with temperatures
averaging 5°C (41°F).

Hospital zones include patients’ rooms with 630 hospital
beds, 12 examination rooms, 30 operating rooms, 18 recovery
posts, 21 monitoring boxes, 16 emergency boxes, 4 resus-
citation beds, radiology and scanning areas, kitchen, café,
pharmacy, assembly hall with 200 seats, chapel room,
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administrative offices. The total floor size is 126,057m?
(1,356.866ft2).

2) INTRODUCTION OF ACODAT IN EXISTING HVAC
INSTALLATION

The ACODAT can be also used to determine the multi-HVAC
operational mode to be deployed, as it was explained in
Section III. In addition, the data driven approaches allow
exploiting the prediction models previously defined for this
system, to make the optimization model more robust.

a: EXPLORATION OF THE POSSIBLE MULTI-HVAC
OPERATIONAL MODES

Again, the first activity is to define the different HVAC sub-
systems in the Hospital, considering the similarities of three
of the chillers. Thus, it is necessary the definition of the dif-
ferent variables as of Section III in this context. Particularly,
the next variables must be defined for each HVAC subsystem:
Heatpyia G), pfwia ()» Tmax () and CAP(j). It is necessary to
define the foreseen hospital zones, such as operating rooms,
patient rooms, etc. The Hospital tariff scheme has a single
rate.

On the other hand, data driven models built for predicting
energy consumption of the Multi-HVAC system can be used,
with the data driven approach defined in Section III, to solve
the optimization problem. Equal to the first case study, these
models can be used for determining the degradation of the
equipment.

b: SELECTION OF THE MULTI-HVAC OPERATIONAL MODE
TO BE LAUNCHED

The hospital has only one type of HVAC subsystem, water-
water chillers, 3 of them with the same capacity. The objective
reduces to determine the number of chillers to use. Thus, it is
necessary a general Pareto Front, resolvable with classical
multi-objective optimization techniques, using the equations
defined in Section III.B.2.

3) TRANSLATING THE SELECTED OPERATIONAL MODE FOR
THE MULTI-HVAC SYSTEM

The multi-objective optimization technique identifies the
operating mode of the multi-HVAC system. This information
provides the control commands to execute the optimal multi-
HVAC mode in the Hospital. The previous module deter-
mines the optimal multi-HVAC mode in the current context,
which is then translated in the setpoints and control signals
that govern the control system and equipment.

V. DISCUSSION AND COMPARISON WITH PREVIOUS
WORKS

This section presents a comparison of the proposed
approach with previous works, based on the next questions
(see Table 4):

A. Do the articles propose an autonomic process of manage-
ment for HVAC systems?
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TABLE 4. Comparison with other works.

Works vs. Criteria A B C D
[5], [11], [13], [14] X
[17],[20], [25], [26] X
[27], [29] X
[3],[10] X
[4] X
[18] X X
[15] X X
This proposal X X X X

B. What is the scope of the proposal when considering
other tasks beyond control and optimization (supervision,
maintenance, etc.)?

C. Is it possible to exploit data from HVAC systems to
build knowledge models (classification, state recognition,
prediction)?

D. Is it possible to expand the study to different contexts
(smart buildings, malls, museums)

The selected references have the closest topics to the pro-
posed HVAC concept, including multi-objective optimiza-
tion, control systems, energy optimization, multi-chiller sys-
tems, BMS and data-driven predicting models.

This research and [4] are the only ones that propose an
autonomic management for HVAC systems. In this proposal,
the analytical tasks can be shared with other autonomic cycles
with different goals, such as the HVAC system supervi-
sor or the self-configurator for mitigating faults and degrada-
tions throughout the lifecycle. Most works are very context
specific and, therefore, not generalizable as the proposed
solution.

This approach can use any possible Al method dur-
ing the instantiation of the paradigm and is adaptable
to multi-HVAC or single-HVAC systems, either central-
ized or distributed. It also defines self-improving scenarios,
steadily monitors the equipment performance degradation,
provides correction measures to reconfigure the operations
autonomously or reports recommendations to the system
administrator. This is based on an ongoing learning from the
gathered data that minimizes the impact of initial bad opera-
tions habits, and provides a wider view of tactic and strategic
functionalities, reducing the cost of operations. In conclusion,
ACODAT management does not only control, but also fore-
casts, plans, organizes or commands. This approach does no
need to invest in retrofitting the existing HVAC installations,
changing facilities or redesigning the building.

The proposed approach is also the only work that com-
bines a mathematical formulation of the optimization prob-
lem with data-driven models of prediction, which can be used
to solve performance degradation problems, get better tariffs,
etc. while the architecture searches for the best multi-HVAC
configuration.

Finally, this work includes the maximization of the COP
for heating or the EER for cooling, which have been rarely
considered for multi-chillers in the literature [28]. This
information about these coefficients, not only improves the
optimization, but also detects the degradation of the

VOLUME 7, 2019



J. Aguilar et al.: Autonomic Management Architecture for Multi-HVAC Systems in Smart Buildings

IEEE Access

Chiller 3 ':

Condenser Circuit
Water Pumps

S A A <

>

—[& Chiller 1 @ <

—[%:‘r [ cuer2 =g
-
I_©_l

Evaporator Circuit
Water Pumps

FIGURE 4. HVAC system of the Granada hospital.

HVAC system components throughout the time, becoming an
original contribution of this article.

In general, ACODAT paradigm improves the energy con-
sumption, the indoor comfort and the equipment perfor-
mance. It allows the determination and selection of the opti-
mal operational mode of the multi-HVAC system, i.e. the
optimal combination of HVAC subsystems for a given con-
text. It is the only work that considers multi-HVAC systems
and proposes the full management of the closed loop (opti-
mization and control phases). There are many approaches for
controlling HVAC systems for improving energy efficiency
depending on the building uses -commercial, residential-,
such as the predominant nonlinear adaptive controls or
MPC [2]. Others just focus on comfort control in the energy
optimization strategy [5], assuming normal occupancy con-
ditions [3], or applying deep learning to predict complex user
behaviors [17].

At this moment, as far as we know, there is not any other
architecture in the literature of self-management for multi-
HVAC systems in a building, preventing from comparing
the outcomes of the proposed model with previous models.
It is observable that previous works are: 1) normally HVAC
system centered [2], [6], [13]; 2) Some of them are focused
on delimited problems, like control or optimization prob-
lems in HVAC systems [3], [10], [13], [14], [18], [27], not
considering their integration in an autonomic architecture;
3) with datasets of specific HVAC systems, and normally
not for buildings with multi-HVAC systems [4], [25]. Thus,
the proposed autonomic management architecture for multi-
HVAC systems is a novelty that integrates autonomous tasks
that not only solve the brought up problems so far, but also
improves itself and is ready for effectively incorporate new
functionality at any level to improve its efficiency. Section IV
details how to use this architecture in different building types
with heterogeneous or homogeneous multi-HVAC systems,
showing with 2 case studies the versatility of the proposed
approach.
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VI. CONCLUSION

This paper proposes an autonomous management architec-
ture for multi-HVAC systems for buildings, based on the
ACODAT concept. This architecture determines the optimal
operational mode of the multi-HVAC systems, this is the set
of HVAC subsystems to be activated, deactivated or regulated
in a given context, in real time.

Specifically, ACODAT allows self-optimizing multi-
HVAC systems. The optimization problem has multiple
objectives to explore each feasible multi-HVAC operational
mode (combination of HVAC subsystems), to maintain the
comfort and improve the energy efficiency in a given context.
The architecture is then complemented with data-driven mod-
els for prediction, to inspect performance degradation or to
work with better tariff rates when the architecture searches
for the possible multi-HVAC modes. This brings up another
interesting problem: the selection of the best individual from
the set of Pareto Fronts obtained for each possible operational
mode. This work proposes two alternatives to solve this prob-
lem, either the utilization of fuzzy decision systems to select
the best individual from the Pareto Fronts weighting fuzzy
variables according to current contextual policies, or the uti-
lization of a global Pareto Front as a consequence of joining
the different sets of Pareto Fronts.

ACODAT uses/develops different models of knowledge,
such as predictive, identification or optimization models.
These data-based knowledge models can be also used in other
contexts, for example, with supervisory tasks, or inspecting
tasks that determine the performance degradation of multi-
HVAC system components. ACODAT can be extended fur-
thermore to incorporate more goals, even for improving itself
like self-healing or self-security.

Next works will focus on the development of data-driven
knowledge models (predictive and identification models)
and the implementation of multi-HVAC system optimization
strategies, particularly, the fuzzy decision system to select the
best individual from the set of Pareto Fronts. Other case stud-
ies will also be considered to test the scalability and versatility
of the architecture. It is also in consideration to evaluate how
it works in distributed multi-HVAC system, where maybe
some ideas about multiagent systems orchestration could be
used [33], [38]. The modularity of ACODAT will also make
possible to adapt and test it in IoT, smart building, big data
scenarios. Finally, this research foresees future study on the
necessary inclusion of indoor humidity and the subjective
IAQ index, the retrofit costs, lighting consumption, or the
visual comfort.
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