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ABSTRACT Occupants’ comfort perception about the indoor environment is closely linked to their health,
wellbeing and productivity. Improvement of comfort level in office buildings has significant positive impacts
on both employers and employees. Human comfort in indoor environment usually can be assessed in
four aspects: thermal comfort, visual comfort, acoustic comfort and respiratory comfort. In this paper,
we present a literature review on the previous research contributions towards studying various aspects of
human comfort with a special focus on the respective assessment criteria, data collection methods and
data analysis approaches employed by former studies. Previous review work has covered the fundamental
concepts associated with human comfort. However, their studies mainly focus on thermal comfort and there
is limited work that covers other aspects of comfort. Moreover, few of them discuss how the data is obtained,
how to extract useful information from the data and how the data is analyzed. To fill up this gap, this paper
conducts the survey from the data-driven point of view. Through the survey, we find that sensor technology
has been widely used in the data collection for various types of comfort, while so far the machine learning
approaches are mainly applied in the area of thermal comfort study. Finally, some potential future research
areas are proposed based on the current status of the research work. The established knowledge in this paper
would provide useful insights for engineers or researchers who embark on their research in this area.

INDEX TERMS Human comfort, thermal comfort, assessment criteria, data analysis method, sensor
technology, machine learning.

I. INTRODUCTION
The health and wellbeing of employees is of a great con-
cern to business. According to statistics, about 90% of the
overall business operating cost is spent on staff cost includ-
ing medical benefit paid for employee [1]. Therefore, pro-
moting health and wellbeing at work not only contributes
to employees’ active engagement and improved productiv-
ity, but also leads to remarkable savings in operating cost
for employers [2]. For these reasons, one of the require-
ments for green office building is to provide an accept-
able indoor environmental quality (IEQ) in view that it

The associate editor coordinating the review of this article and approving
it for publication was Kemal Polat.

has significant impact on occupant satisfaction, health, and
productivity [3]–[8]. Poor IEQ may lead to increased med-
ical cost resulted from the building-related health issues
and has adverse effects on employees’ work performance,
whereas good IEQ demonstrates positive effect on the busi-
ness in terms of improved recruitment, lower turnover rate
and increased productivity [9].

Indoor environmental quality has direct link to indoor
human comfort which is commonly assessed from four
aspects namely thermal, visual, acoustic and respiratory
comfort. The four types of human comfort and their
respective dependent environmental factors are depicted
in Fig. 1. A more detailed description is given as
follows.
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FIGURE 1. Relationship between environmental factors and human
comfort in indoor environment.

• Thermal Comfort is used to describe ‘‘a condition
of mind that expresses satisfaction with the thermal
environment in which it is located’’ according to
ISO Standard 7730 (1994) and ASHARE Standard 55
(2010) [10], [11]. ASHRAE is a professional association
which makes thermal comfort standards and guidelines.
Among different types of comfort, building occupants
rank thermal comfort to be more important compared
with visual, acoustic and respiratory comfort. It is
reported having greater influence on an occupant’s over-
all satisfaction with IEQ [12]. Another reason why ther-
mal comfort is considered particularly important is the
fact that the operation of HVAC (heating, ventilating and
air conditioning) systems in buildings is mainly driven
by thermal comfort. In developed countries, HVAC sys-
tems typically consume 50%of building energy use [13].
The above-mentioned reasons explainwhy thermal com-
fort has drawn more research interest and extensive
research work has been conducted in this area.

• Visual Comfort is used to describe ‘‘the state of
mind that expresses satisfaction with the visual envi-
ronment’’ [14]. A good visual comfort ensures that
people have sufficient light for the activities or tasks
they are engaged in without exposing the eyes to a
higher light level than which it can adapt to [10]. Either
over-lighting or under-lighting will cause human visual
discomfort.

• Acoustic Comfort refers to ‘‘the capacity to protect
occupants from noise and offer an acoustic environ-
ment suitable for the purpose the building is designed
for’’ [15], [16]. Acoustic comfort in buildings is an
essential factor for ensuring the wellbeing of building
occupants and better work performance.

• Respiratory Comfort is closely associated with indoor
air quality (IAQ) which depends on three factors

FIGURE 2. Human comfort driven control system for smart building.

including the amount of pollutants, ventilation rate in the
building and the duration of the pollutants being trapped
within the space [17]. Indoor air quality considers the
following parameters: temperature, humidity, carbon
dioxide, PM2.5, ozone, formaldehyde, volatile organic
chemicals, carbon monoxide etc [18]. The effects of
exposure to poor indoor air quality on human respira-
tory symptoms and diseases have been studied which
provides evidence to support the link [19], [20].

To find the correlation between various environmental
parameters and human comfort, researchers need to col-
lect the human comfort perception data while taking envi-
ronmental measurements concurrently. Data analytics tools
can be applied to identify the relationship between these
two datasets, with environmental data as input and human
comfort perception as output. If a suitable model is identi-
fied to represent such relationship, the model could be used
for online prediction of human comfort based on the input
environmental data. Subsequently, the prediction outcome
can serve as the basis to control the building HVAC sys-
tems in order to improve human comfort. HVAC control
systems enable the building to provide a specified level of
temperature, humidity, ventilation rate and air quality with the
aim to achieve optimization of thermal comfort and energy
consumption [21]–[25]. In such a manner, the three compo-
nents - environment, human and HVAC control work together
as a closed-loop control system that contributes to a smart
building as illustrated in Fig. 2.

Recent advancements in sensor technology and data ana-
lytics have been driving the research forward on study-
ing the relationship between environmental parameters and
human comfort. Advances in sensor technology have enabled
large-scale data collection in a wide spectrum of applica-
tions including indoor human behaviour studies [26]. Sensing
devices are typically employed for collecting measurements
that provide information about occupant comfort perception,
user activity, indoor conditions and appliance consumption
etc [27], [28]. The review work presented in [26] lists the
common sensors that are used for collecting data related to
user behaviour.

On the other hand, the integration of machine learning
algorithmswith automatic control systems in commercial and

VOLUME 7, 2019 119775



Y. Song et al.: Human Comfort in Indoor Environment

residential buildings proves the concept of ‘‘smart buildings’’
with the aim to save energy, ensure security or improve
occupants’ comfort [29]. As an application example in indoor
human behaviour study, data-driven models have been devel-
oped for the estimation of building occupancy which can
assist in emergency response flow and supporting decision
making mechanism [30], [31]. Another example is a rec-
ommendation system proposed in [29] to demonstrate the
use of machine learning techniques for intelligent building
lighting controls that are capable of meeting the needs of
both individual visual comfort and energy efficiency of the
building.

In the context underlined above, the objective of this paper
is to present a literature survey on the previous studies con-
ducted on human comfort analysis in indoor environment
with a main focus on the data collection methods and data
analytics approaches that have been employed by different
research groups. This paper describes the research contribu-
tions driven by technology advances in terms of sensor and
data analytics, in the hope of providing some insights for
researchers or engineers who embark on their research in this
area.

So far, most available literature reviews mainly focus on
thermal comfort and there is limited review work that covers
other aspects of comfort. In terms of content, previous review
work has addressed the fundamental concepts associated with
human comfort or the framework of study. However, few of
them discuss how the data is collected and how the data is
analyzed. The main contributions of our paper are as follows.

• We survey the research contributions from the data-
driven point of view. More focus of our work is given
to review the data collection methods and data analytics
approaches being employed.

• The summarized knowledge in this survey would act as
a good starting point for the researchers working in this
area and facilitate them to organize their thoughts so as
to devise their own research methods.

• Previous work mainly focuses on thermal comfort and
there is limited review work that covers other types of
comfort. We cover both thermal comfort and other types
of comfort. The review of the previous studies may assist
researchers in generating new ideas to solve the existing
problems in this field.

The next sections of this paper are organized according
to the four types of comfort: Thermal, Visual, Acoustic and
Respiratory. Within each section, the following aspects are
discussed: criteria for indoor occupant comfort and relevant
comfort indicators, data collection methods and data analysis
approaches utilized for deriving the human comfort model (if
any). In the conclusion section, we also propose a few poten-
tial areas that future comfort-related research may consider
exploring and extending in.

Specifically, the rest of the paper is organized as follows.
Section II presents thermal comfort. Section III introduces
visual comfort. Acoustic comfort is described in Section IV.

Section V presents respiratory comfort. General validation
methods for machine learning based comfort models are
described in Section VI. The discussion about the previ-
ous studies on human comfort is presented in Section VII.
Section VIII concludes the paper and proposes our future
work.

II. THERMAL COMFORT
To assess the performance of a building system, the occu-
pants’ thermal comfort has been one of the major criteria in
the evaluation [32]. It’s partly because thermal comfort can
serve as the basis for designing intelligent HVAC (heating,
ventilation and air conditioning) control systems. In order to
realize thermal comfort control, first of all, indices need to be
established to relate occupants’ comfort to the surrounding
physical parameters of the indoor environment [33]. A com-
prehensive review on indoor thermal comfort models and
indicators was presented in [34].

A. CRITERIA FOR THERMAL COMFORT AND THERMAL
COMFORT INDICATORS
Thermal comfort is mainly related to environmental fac-
tors and human factors. According to the literature, two
major different models can be adopted to measure ther-
mal comfort, namely the PMV/PPD model and the adaptive
model [15], [35]. The classical PMV model considers six
main factors which directly affect thermal comfort. These
factors are grouped into environmental factors (mean radiant
temperature, air temperature, relative humidity and air speed)
and personal factors (clothing insulation and metabolic
rate) [36]. The PMV/PPD model is applicable for the build-
ings equipped with air conditioning and ventilation systems,
whereas the adaptive model is more suitable for the naturally
conditioned buildings without mechanical systems [37]. The
details of the commonly adopted thermal comfort indices are
summarized as follows.

1) PREDICTED MEAN VOTE (PMV)
The Predicted Mean Vote (PMV) model [38] was devel-
oped based on the heat balance between the human body
and the environment. The model was derived by using heat
balance principles, and the data was collected from chamber
experiment where the indoor conditions could be controlled
precisely. PMV model provides a mathematical model for
predicting the thermal sensation of a large group of subjects in
terms of four environmental factors and two personal factors
as mentioned above. It is the default thermal comfort model
adopted for building design and operation nowadays.

The PMV index is applied by ASHRAE for predicting the
mean response of a large group of people on a 7-points ther-
mal scale from cold (−3) to hot (+3) [39] which is termed as
‘‘ASHRAE scale’’. Zero represents thermal neutrality which
is an ideal value. A user would state a value close to 0 for the
PMV in an environment that he/she deems comfortable. Typ-
ically, the recommended thermal comfort range is between
−0.5 and +0.5 [37].
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2) PREDICTED PERCENTAGE DISSATISFIED (PPD)
The Predicted Percentage Dissatisfied (PPD) is an indicator
that is used to predict the percentage of people who are dissat-
isfied with a certain thermal condition, for feeling either too
warm or too cold as suggested from their PMV values above
and below zero (thermally neutral) [40]. Thus, PPD index is
closely related to PMV and this dependency is demonstrated
in the equation developed by Fanger [38].

Both PMV and PPD indices can be applied to estimate
the human thermal perception in indoor environments with
mechanical cooling system for the space [15].

3) ADAPTIVE MODEL
The adaptive comfort model [41], [42] was developed based
on the data collected from field studies that allowed building
occupants’ interaction with their environment by controlling
clothing, windows or fans etc [41]. In the model, the comfort
indoor temperature was expressed as a function of outdoor
effective temperature while taking into consideration that
the occupants may change the physical factors and adjust
their clothing, activity level or expectation accordingly so as
to adapt to the environment [43]. It provides an alternative
thermal comfort model for naturally-conditioned space.

The thermal adaptions of human in indoor environment
are commonly classified into three types: physiological, psy-
chological and behavioral [35]. The in-depth review and
discussion on the contributions dealing with adaptive model
methods are presented in [44], [45].

4) EXTENDED PREDICTED MEAN VOTE (EPMV)
The Extended Predicted Mean Vote (ePMV) was proposed
in [46].While the PMVmodel can be applicable for the build-
ings equipped with air-conditioning system, ePMV is only
suitable for buildings without air-conditioning or ventilation
systems, in warm and humid climates of regions where the
indoor air temperature increases remarkably [34].

5) EMPIRICAL PMV MODELS (EPPMV)
The original PMV model is not practically useful for either
real-time control systems or for design purposes due to the
complex nature of the model and unavailability of certain
input parameters [47], [48].

These constraints have been calling for the development
of new empirical models which express the PMV based on
variables that can be measured easily from an indoor envi-
ronment. For instance, Kansas State University developed
an empirical equation which expressed the PMV index as
a function related to temperature and partial vapor pressure
only and it had been adopted by ASHRAE [33], [49].

B. DATA COLLECTION METHODS FOR THERMAL
COMFORT STUDY
To study human thermal comfort in indoor environment,
a few research teams prefer questionnaires to existing com-
fort models such as PMV and PPD as they believe that
comfort is a subjective matter [50], [51]. Nevertheless, most
of the research groups choose to apply either the conventional

FIGURE 3. The network configuration of the real-time PMV
measurement [55].

comfort models (covered in section II-A) or their own model
derived from training machine learning algorithms to predict
thermal comfort.

When applying the existing comfort models, some research
studies leverage on publicly available datasets to perform
analysis [52]–[54], while other groups collect the data by
employing wearable or non-wearable sensors. Their data col-
lection methods are briefly described as follows:

The study presented in [33] adopted an empirical PMV
model from the ASHRAE Handbook which expressed the
PMV index as a function of air temperature and partial
vapor pressure only. In order to include control variables and
architectural parameters as predictors, a two-stage regres-
sion representation of the ASHRAE empirical PMV model
was proposed. The environmental data was collected from
a building that was equipped with a sensor network and
HVAC control system. Vast amount of current and past data
measured from the HVAC systemwas supplied to validate the
proposed regression model.

It was reported in [55] that a distributed sensor network
was used in an office environment to perform real-time mea-
surement of PMV. Real-time computation of PMV values
has long been considered challenging due to the complex
nature of PMV index. To achieve thermal comfort-driven
control of the air conditioning system, it is necessary to
develop a practical measurement system that is capable of
providing real-time PMV values in office environments. The
real-time measurement system proposed in [55] consists of
three types of sensors which were radiation sensors, air tem-
perature sensors and PMV sensors. These intelligent sensors
were distributed across various locations in the office and
linked to network shown in Fig. 3. The measured data was
transferred via network and gathered in the PMV sensor to
process and integrate the data. Subsequently, PMV values
were derived by using a table lookup method. The solution
provided amore efficient way to obtain real-time PMVvalues
by reducing the computational load associated with solving
the PMV equations. Laboratory experiments and a case study
were conducted to examine the feasibility and economic
benefit of the proposed novel PMV measurement system.
The study results revealed that by integrating the new PMV
measurement system with the air-conditioning control in an
office, it helped to achieve better occupants’ thermal comfort
and energy saving of 5.8% as well under typical operating
condition [55].
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A new measurement system was developed which inte-
grated multiple sensors on Arduino platform for collect-
ing data related to thermal, acoustic, visual and respiratory
comfort [10]. Sensor combos named ‘‘Comfort Box’’ was
employed to measure the following parameters: temperature,
humidity, wind speed, illuminance, sound level, CO2 level,
presence of the user. The sensing system was designed based
on the index of Predicted Mean Vote (PMV) to compute the
thermal comfort.

Acknowledging the challenges present in the measurement
of parameters for PMV comfort model that requires bulky and
expensive equipment, some researchers [32] explored the fea-
sibility of adopting wearable devices to measure and monitor
human thermal comfort in indoor environment. To derive the
thermal comfort model, their work attempted to collect envi-
ronmental data and human physiological data by integrating
a mobile application with the sensors in mobile phones and
wearable devices. The captured parameters included air tem-
perature, location, relative humidity, perspiration rate, heart
rate and skin temperature. The experimental results suggested
variation in the accuracy of the existing sensors in wearable
devices.

Another application example of wearable devices was
demonstrated in [56] where such devices were employed to
measure personal sensory data. A mobile application was
developed to serve as the central hub for gathering human
heart rate data and environmental data [56]. The human sub-
jects’ heart rate was collected from both a smartwatch and
a compatible chest strap which were connected to a mobile
app via Bluetooth Low Energy (BLE). The temperature and
humidity values were measured from the sensors worn by
the human subjects. In the study, heart rate was chosen as
the proxy for the metabolic rate in view of the research
findings reporting the close correlation between heart rate and
metabolic rate [41]. The metabolic rate of the human occu-
pant was one of the required inputs for PMV model which
was closely related to thermal comfort [57]. However, it was
relatively difficult to measure. Thus, they selected heart rate
as a surrogate to facilitate autosensing. Other than gathering
raw sensor data, the mobile app was also meant for capturing
the occupants’ thermal comfort perception data by allowing
the user to vote on the 7-point ASHRAE scale. That data was
used as ‘‘ground truth’’ data for training the comfort model.

Apart from PMV comfort model, a new method called
Predicted Thermal State (PTS) model was introduced to eval-
uate human thermal comfort in indoor environment [58]. That
model was used to predict the subject’s thermal state based on
the peripheral skin temperature and the corresponding gradi-
ent features extracted from a single body location. Experi-
ments were conducted on human subjects by measuring each
subject’s skin temperature using a sensor device while simul-
taneously recording the indoor and outdoor environmental
parameters. Indoor air temperature, air velocity and relative
humidity were measured with an air velocity meter, while
outdoor air temperature and relative humidity were obtained
from the weather station nearby through Weather@SG

service. The experimental results suggested the great poten-
tial of that method for evaluating building occupants’ thermal
state. Another work presented in [59] aimed to provide amore
straightforward method for thermal state prediction. In that
study, the thermal state (Discomfort/Comfort) of human sub-
jects was evaluated according to the input features of per-
sonal physiological parameters. The features included skin
conductance, skin temperature, oxygen saturation, pulse rate,
and blood pressure which were extracted using wearable sen-
sors. To evaluate the prediction performance, new prediction
models were compared with the existing models using the
available validation dataset.

The classical PMV comfort index is a statistical predic-
tion measure that is applicable for a large group of people,
though the actual thermal perception of an individual occu-
pant could vary significantly from the predicted value derived
from this model. In view of the constraints mentioned above,
considerable research effort has been put in developing per-
sonalized comfort models. Such personalized models would
be useful for developing personalized conditioning systems
which aim to fulfil the individual comfort needs and mean-
while to achieve energy consumption on demand. The review
contribution from [60] discussed how various personalized
conditioning systems affected human thermal comfort and the
performance of building energy. The following part of this
section lists a few example studies in developing personalized
comfort models.

The work reported in [3] attempted to make use of
individual occupant’s heating and cooling behaviour as a
new way of feedback to develop personal comfort models.
A personal comfort system (PCS) was designed to pick up
the individual heating and cooling behaviour. In that way,
each individual subject was taken as the stand-alone unit of
analysis instead of a large group of people. The collected
field data included environmental conditions, PCS control
behaviour and mechanical system settings. Particularly, air
temperature, relative humidity, heating/cooling intensity (in a
scale from 0 to 100%), heating/cooling location (seat, back)
and chair occupancy were recorded by each PCS chair. Six
machine learning algorithms were explored on processing the
data to develop the personal thermal comfort model.

A neural network-based method was presented in [61] to
establish predictive models for its application in controlling
personalized heating systems. The study carried out in [24]
introduced a human-building interaction framework to incor-
porate occupants into the control loop of HVAC. Room tem-
perature data was collected via a sensor network and occu-
pants’ comfort perception data (in terms of comfort votes)
was collected via participatory sensing. Those data were used
to learn the personalized comfort preferences which served
as the basis to control the HVAC system. In terms of similar
data acquisition methods, some research groups [53], [62]
also reported using various sensors to pick up environmental
data and human subject data (parameters related to clothing,
metabolic rate) while concurrently collecting participants’
thermal sensation votes to predict individual thermal comfort.
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Following adaptive model approach, a study reported
in [63] explored the reliability of adopting an IoT platform
integrated with machine learning algorithm for assessing and
improving personal thermal comfort of building occupants.
In that study, the researchers employed a nearable device built
from low-cost sensors (placed nearby an occupant) tomonitor
indoor environmental parameters such as air temperature,
relative humidity while using a wearable device (wristband)
for measuring the physiological data from the occupants. The
wristband was a wearable medical device equipped with sev-
eral sensors including a photoplethysmography (PPG) sensor
for heart rate detection. Six parameters were considered in
the model, namely operative temperature, relative humidity,
skin surface temperature, heart rate, electrodermal activity
and user. A web-based survey was designed for collection of
occupants’ thermal sensation vote.

The review work presented in [25] highlighted the possi-
bility of transforming normal buildings into smart buildings
by deploying sensors and Internet of Things (IoT). Working
with machine learning and big data analytics, such buildings
would provide a lot of automated services to create a com-
fortable indoor environment for the occupants. Their work
summarized various types of sensors that could be employed
in smart buildings.

C. DATA ANALYSIS METHODS FOR THERMAL COMFORT
STUDY
There are significant research achievements on exploring
applying machine learning algorithms to establish human
thermal comfort model for the indoor environment. Most of
them adopt supervised machine learning algorithms which
are generally grouped into two major methods, namely
Regression and Classification. Regression refers to the pro-
cess of estimating the relationship between a dependent vari-
able and one or more independent variables. It is usually used
to make predictions of continuous outcomes [64]. Classifica-
tion refers to the process of training an algorithm to recognize
and categorize certain types of objects based on past sample
data [65]. The most commonly used supervised algorithms
include Linear Regression, Logistic Regression, Neural Net-
works, Support Vector Machines (SVM), Gradient Boosting
Trees, Random Forest, Decision Trees, Nearest Neighbor and
Naive Bayes [64], [65].

The following content of this part summarizes the algo-
rithms employed in studying thermal comfort. They are
mainly divided into three categories: Regression, Classifica-
tion and Other Algorithms.

1) REGRESSION ALGORITHM
Following the regression method reported in [66], a two-
stage regression representation of the empirical PMV
model (epPMV) was proposed which included architectural
parameters and control variables [33]. The epPMV regression
model was developed in two stages and it was evaluated
with the data in the validation set. Their research findings
suggested the capability of the proposed two-stage regression

FIGURE 4. Framework of artificial neural networks [32].

models in terms of predicting the PMV in short term or long
term with good accuracy. The author highlighted the adaptive
feature of the model that allowed it to be updated when
there was any change in HVAC control strategy or operation
profiles. A machine learning approach was proposed in [56]
to analyse the combined dataset of human heart rate and
environmental data (room temperature, humidity data) so as
to automatically derive human thermal comfort from the raw
sensor data. To find the relation between the thermal comfort
and measured data, the researchers used two regression meth-
ods: linear regression (outputs values on continuous scale)
and logistic regression (outputs values on discrete ASHRAE
scale). The analysis results showed it was possible to achieve
high accuracy of prediction when the regression model was
trained using individual thermal sensation data. A conclusion
drawn from the study was that thermal perception reflected
a personal experience which should not be generalized for
other people.

The study presented in [32] built an Artificial Neural Net-
work (ANN) to analyse the correlation between the estimated
PMV index and the input parametersmeasured fromwearable
devices which include human physiological data and indoor
environmental parameters. Fig. 4 showed the framework of
the ANN that was composed of three layers: input layer,
hidden layer and output layer. The indoor environmental
parameters and human physiological parameters served as
the input variables, while the predicted PMV was the output
variable of the ANN. The authors had identified the input
parameters of the bestmodel whichwere air temperature, skin
temperature, heart rate, square root of the summation of per-
spiration and air temperature, summation of perspiration and
relative humidity. Experimental result suggested the potential
of building new models to predict the PMV index by employ-
ing the data collected from wearable devices. Nevertheless,
variation in the accuracy of the existing sensors in cell phone
and wearable devices informed the need for increasing the
accuracy and reliability of such sensors. Another application
example of ANN was reported in [61] where dynamic recur-
rent nonlinear autoregressive neural network with exogenous
inputs (NARX) was used to develop thermal comfort models
for controlling the heating settings automatically. Through
online testing of the models, it revealed that the human par-
ticipants expressed their satisfaction with the heating settings
automatically controlled by the prediction model.
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In consideration of individual differences in thermal
perception and its dynamic nature, a novel method was
introduced in [62] for online modeling of the personalized
and dynamic human thermal comfort. Their work followed
the general framework proposed in [38] that related human
comfort perception to environmental factors and applied
Recursive Least Square Estimation with forgetting factor
method to learn the personal thermal comfort profile. Vali-
dation and comparison results supported the conclusion that
the model accurately depicted the individual differences and
dynamics present in thermal comfort. A personalized thermal
comfort model proposed in [52] was developed with a kernel
based method which was termed as Robust Locally Weighted
Regression with Adaptive Bandwidth (LRAB). The model
was trained with the historical data to learn individual occu-
pant’s thermal comfort profile. Publicly available data was
used to validate the prediction performance of the newmodel.
As compared with PMV and other standard kernel method
(Nadaraya-Watson method), the analysis results proved that
the proposed model provided a significantly more accurate
prediction on individual comfort sensation. It demonstrated
the valuable potential of that model to be incorporated into
a smart control system in an office environment which could
adjust the room temperature based on the comfort needs of
individual occupants.

Development of thermal comfort prediction model
involves data collection of human thermal perception votes.
However, collected thermal perception data usually con-
tains considerate artefact and noise. To solve this problem,
the study presented in [67] explored using Gaussian Pro-
cess (GP) Regression to extract human subjects’ thermal
preferences from the collected data contaminated with mea-
surement noise. Their analysis showed that the GP method
effectively rejected outliers/deadband and achieved accurate
prediction of human subjects’ thermal preference. It was
also demonstrated that the GP estimates could be used to
determine when was the best time to poll the subjects for their
thermal perception so that the expected response would max-
imize the information about their thermal comfort profile.
Such active learning strategy helped to minimize interaction
with the human subjects which would lead to reduced noise
present in the collected thermal perception data.

2) CLASSIFICATION ALGORITHM
An IoT solution was adopted [63] to measure the environ-
mental and human subjects’ physiological parameters. The
collected dataset was split into two groups with 80% of the
data used for model-training and 20% used for validation.
To identify which algorithms would best fit the dataset, their
work compared the prediction performance of six different
machine learning algorithms that were grouped into linear
methods (Linear Discriminant Analysis, Logistic Regression)
and nonlinear methods (Classification and Regression Trees,
Support Vector Machines, K-Nearest Neighbors and Gaus-
sian Naive Bayes). It was observed that the Classification
and the Regression Trees (CART) algorithm outperformed

the rest algorithms in terms of the accuracy in predicting
thermal comfort perception under given environmental con-
dition. CART [68] was one of the non-parametric supervised
learning methods which were ideal when one had lots of data
but without prior knowledge about it [69].

To develop a personal thermal comfort model, the study
presented in [3] explored using six machine learning algo-
rithms to process the collected data. The collected data went
through a 4-step preparation procedure: data cleansing, fea-
ture creation, data merging and pre-processing. Consider-
ing the high dimensional nature and small size of the col-
lected dataset, six machine learning algorithms were chosen
which did not rely on strong assumptions on the dataset,
namely Random Forest (RF), Gradient Boosting Method
(GBM), Kernel Support Vector Machine (kSVM), Regular-
ized Logistic Regression (regLR), Gaussian Process Classi-
fication (GPC), Classification Tree (CTree). An exhaustive
grid search approach was used to determine the best perform-
ing parameter settings for each machine learning algorithm.
The performance comparison of the six learning algorithms
showed that the algorithms that achieved higher accuracy
were those having the ability to control high dimensions and
noise presented in the data such as kSVM, RF and regLR.
However, such algorithms were computationally more costly.
Therefore, the authors argued that the choice of learning
algorithm depended on the needs of the specific application.
The overall analysis results also revealed that the personal
comfort models developed in the study demonstrated signif-
icantly improved predictive accuracy as compared with the
conventional PMV or adaptive comfort models.

It was reported in [70] using an adaptive stochastic mod-
eling approach to build personalized thermal comfort model.
In the study, a probability distribution was fit to the dataset
of each comfortable condition (uncomfortably cool, comfort-
able, and uncomfortably warm), then the overall comfort of
an individual was determined by combining the distributions
in a Bayesian network. A binary Bayesian optimal classifier
was trained through online learning to identify the com-
fortable environmental conditions. A sliding window-based
algorithm was used for the purpose of detecting comfort
variations over time. The performance of the model was
evaluated by comparing it with other standard classification
methods that were applied on the collected human thermal
comfort data. The work presented in [53] also reported using
machine learning based approach to derive the individual
thermal comfort model with the aim to predict individual’s
thermal sensation of three types which were ‘‘uncomfortably
cold (−1)’’, ‘‘neutral (0)’’ and ‘‘uncomfortably warm (1)’’.
First, a feature vector was formed by extracting the best
set of features from the raw data collected with sensors.
Subsequently, the feature vector and the ground-truth ther-
mal sensation votes were fed into a classifier to train the
model. By utilizing a publicly available dataset, the prediction
performance of the following machine learning classifiers
was evaluated: Support Vector Machine, Random Forest and
Adaboost algorithm. Their validation results revealed that
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using SVM classifiers achieved much higher accuracy than
using the traditional Fanger’s model.

When developing the new PTS (Predicted Thermal State)
model proposed in [58], Support Vector Machine (SVM) and
Extreme Learning Machine (ELM) classifiers were applied
to analyse the collected data (refer to section II-B for the
details of data collection). The trained PTS model (derived
from normalized skin parameters) demonstrated the ability
to predict the Discomfort/Comfort thermal state with high
accuracy based on the input skin temperature and its gradient
features. In another study reported in [59], the researchers
experimented using two new novel methods to predict the
Discomfort/Comfort thermal state (TS). The first method
called CNN-(Tsk)TP employed deep convolutional neural
network (CNN) to determine TS based on the 2D sensor
data of skin temperature temporal profile (TP) that had been
transferred into the image domain. Such idea was inspired
by the fact that CNN had been widely used in the field of
image classification. The second classifier called SVMphy
employed a Support Vector Machine (SVM) model that used
six independent physiological parameters as input. The per-
formance of four types of the kernel (linear, polynomial,
sigmoid and radial) was evaluated. The validation results
suggested both of their proposed methods achieved highly
satisfactory prediction accuracy.

3) OTHER ALGORITHMS
Besides the machine learning algorithms mentioned above,
there were other algorithms applied for human comfort study.
For instance, the traditional PMVmodel [38] focusing on spe-
cific factors were used for evaluating thermal comfort. Some
extended models [39]–[44], [46], [47] based on the conven-
tional PMV model could deal with other different scenarios.

A fuzzy rule-based algorithm was proposed in [24] to
develop a predictive model for occupants’ thermal comfort.
The performance of the proposed algorithm was assessed
by using both the comfort perception data collected from
human subjects and the synthesized data. Their work also
introduced a building management system (BMS) controller
to activate the HVAC system that adjusted the room tempera-
tures according to the occupants’ thermal comfort needs. The
testing results showed that the proposed framework was able
to detect correctly the nonlinear underlying pattern present in
the human thermal comfort sensation scale.

III. VISUAL COMFORT
A. CRITERIA FOR VISUAL COMFORT AND VISUAL
COMFORT INDICATORS
Visual comfort has great impact on the wellbeing and produc-
tivity of building occupants [71], [72]. Appropriate lighting
condition and illumination are important building require-
ments in workplaces as they directly affect occupants’ visual
comfort. Research findings have shown that office occupants
have a preference to work near the window or in the place
with natural lighting. Artificial lighting is necessary where
the access to natural lighting is limited [73].

The review work presented in [74] summarized the state-
of-the-art literature covering the close relationship between
visual comfort and the health and wellbeing of the building
occupants, followed by discussing the implementation of
green practices in building design e.g. excessive use of arti-
ficial lighting should be avoided while still maintain certain
level of balance [75].

In terms of studying visual comfort, evaluation has been
carried out to investigate the relationship between the
light environment and human needs. More than 30 indices
for assessing visual comfort were covered in the review
study [76]. Generally, these indices could be categorized into
four groups [15]: 1) Amount of light on a surface (level
of illumination), 2) Glare, 3) Colour rendering and 4) Day-
light availability. For each group, a comprehensive list of
visual comfort indices extracted from literatures was pro-
vided in [15].

B. DATA COLLECTION AND ANALYSIS METHODS FOR
VISUAL COMFORT STUDY
Visual comfort is commonly assessed based on the level
of illumination and extent of glare. For predicting human
visual comfort, various daylight and glare metrics have been
developed for several years which are classified into two
categories: static and dynamic metrics.

For example, a study was conducted [77] on the visual
parameters measured in a daylit office to determine the visual
comfort thresholds of the office occupants. Photography was
employed to capture the luminance distribution, and sensors
were used to measure horizontal and vertical illuminance.
The work described in [78] reported results from the obtained
physical data and the surveys. In that study, daylight illu-
minance was measured with photometric sensor. The total
horizontal illuminance was measured with a set of sensors
on tripods arranged in a row placed at work-plane level.
HDR Images were captured with a digital camera for glare
evaluation. These images were then processed adopting an
algorithm to compute the daylight glare probability (DGP).
The sensing system introduced in [10] was designed based
on the level of illumination to define the visual comfort. The
sensor used for data collection in their study was described
in Section II-B.

An integrated adaptive system proposed in [79] was com-
posed of individual movable modules with the aim to improve
occupants’ visual comfort in indoor environment. The pro-
posed system was evaluated based on the improvement of
lighting levels and reduction of glare issue.

Due to the high-cost and time-consuming process involved
in collecting the field daylight data, some researchers chose
to use simulation methods to analyse daylight availability and
glare [80]. The study reported in [80] evaluated visual com-
fort and daylight performance through a subjective survey
and simulation based metrics in classrooms. Dynamic and
static daylight and glare metrics were compared in terms of
their ability to represent the perception of human subjective
reactions in classrooms. The experimental results suggested
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a strong correlation between dynamic daylight metrics and
students’ perceptions.

To address the needs for achieving both personalized visual
comfort and energy efficiency in open-plan office environ-
ment, the research work presented in [29] proposed a novel
intelligent algorithm termed as ReViCEE to provide recom-
mendations for optimum control of building lighting system.
In the study, the researchers relied on distributed wireless
sensor actuator network (WSAN) to collect the data. Each
integrated WSAN sensor node hosted illumination sensor to
measure room luminance, and infrared array sensor to detect
the presence of the human subject in their respective location.
In that way, the individual preferences for visual comfort were
collected and stored as historical data which were used to
train ReViCEE, the Recommender-system based algorithm.
Such algorithm was designed to learn the individual prefer-
ences for visual comfort as well as the similarities between
the preferences of different occupants by making use of the
existing recommender-system tools [81]–[83]. The trained
system was enabled to give recommendations for intelligent
lighting controls in the building.

IV. ACOUSTIC COMFORT
A. CRITERIA FOR ACOUSTIC COMFORT AND ACOUSTIC
COMFORT INDICATORS
Acoustic comfort can be achieved by either removing the
source of noise or isolating the room from the source in some
situations, however this may not always be practical. In such
a situation, the acoustic comfort level needs to be assessed
using noise indices. A comprehensive review [15] provided a
variety of noise indices used for evaluating acoustic comfort
in indoor environment. These indices were used to assess
noise in specific aspects including sound pressure levels,
sound reverberation and acoustic quality of the room [15].

A widely used noise index, the A-weighted equivalent
continuous sound pressure level LeqA was also covered in
work [15]. Such parameter provided an overall assessment of
noise which was designed to represent ‘‘the duration and the
variation of sound pressure level of a noise and the sensitivity
of the ear at different frequencies’’ [15], [84].

B. DATA COLLECTION AND ANALYSIS METHODS FOR
ACOUSTIC COMFORT STUDY
For example, an acoustic comfort evaluation was conducted
for a conference room [85]. The researchers measured the
inside and outside ambient noise, the reverberation time and
interior sound insulation following international standards.
With regard to equipment, they employed a commercial
acoustic system to take the measurements. The measurement
system encompassed a complete set of diagnostic aspects
of sound characteristics. To evaluate the acoustic comfort
level of the conference room, they compared the measure-
ment results with the guidelines and reference values recom-
mended by international or certain national standards. The
comparison results suggested poor acoustic quality of the
room due to the high level of ambient noise and insufficient

sound insulation etc. In another study [86], to choose the opti-
mal acoustic design for a classroom in a school, the research
team followed the measurement and assessment methods
present in ISO. They measured the key acoustic indicators
(Index of Clarity of theWord, Speech Transmission Index and
Reverberation Time) with an Integrated Impulse Response
method and set up the parameters accordingly for the simu-
lated classroom model. Verification was performed to assess
the acoustic performances of the classroom after the realiza-
tion of the intervention for the acoustic design.

As mentioned in Section II-B, the work covered in [10]
introduced the designed sensor combos named ‘‘Comfort
Box’’ integratedwithmultiple sensors including a sound level
sensor. It was believed that less distraction by outside noise
would improve the productivity of the building occupants.
To provide an acceptable acoustic comfortable environment,
it was suggested that a maximal noise level (in terms of
decibel) should be defined first, moreover it should also take
into the account the fact that the sensitivity of human hear-
ing varies according to sound frequencies. Hence, the study
proposed using the Noise Rating curves as an established
method to determine the comfortable acoustic environment
in a building.

V. RESPIRATORY COMFORT
A. CRITERIA FOR RESPIRATORY COMFORT AND
RESPIRATORY COMFORT INDICATORS
Many studies have established the link between indoor air
quality (IAQ) and respiratory health of the building occu-
pants [19], [87]. As specified in ASHRAE standard [88],
the indoor air quality is considered acceptable when ‘‘there
are no known contaminants at harmful concentrations,
as determined by the competent authority and for which a
substantial majority of exposed persons (at least 80%) does
not express dissatisfaction’’ [88]. Hence, it is proposed in
the review work [15] that the indoor air quality should be
assessed by referring to the international level or national
level standards or guidelines that have specified the exposure
limit values for a variety of air pollutants.

Among the commonly studied indoor air quality param-
eters, CO2 (Carbon Dioxide) is one of the main indicators
for IAQ. Due to the reason that CO2 is the waste product
of human metabolism, the concentration of CO2 will change
with the presence of occupants in a room [89]. For that reason,
CO2 sensor can be used for occupancy detection. Accord-
ing to the well-established ANSI/ASHRAE standards [90],
the air is considered stale with CO2 level of 1500 ppm.
A level below 1000 ppm is recommended by the ASHRAE’s
standards.

B. DATA COLLECTION AND ANALYSIS METHODS FOR
RESPIRATORY COMFORT STUDY
The following studies demonstrate the application of carbon
dioxide sensors. For example, the sensing system proposed
in [10] was designed based on the CO2 level to determine
occupants’ respiratory comfort. CO2 sensors were also used
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for estimating the number of occupants which served as an
input to a model based controller for the ventilation system
to improve IAQ according to demand [91]. Similarly, another
study [92] also applied CO2 sensor to detect the level of occu-
pancy so that the ventilation air delivery could be adjusted
to a rate proportional to it. Incorporating CO2 sensor for
ventilation controller brings dual benefits to both respiratory
comfort and energy efficiency.

The review study presented in [93] talked about deploying
sensor networks in smart homes for the purpose of creating
comfortable living conditions for the occupants. The study
provided an evaluation of themodern sensor technologies that
enabled real-timemeasurement of the concentration of indoor
air pollutants such as Total Volatile Organic Compounds
(TVOCs), carbon dioxide (CO2) and particles. The measured
data could be stored in Home Energy Management Systems
(HEMS) which was the basis for smart homes.

In terms of data analysis, although there are studies
reported applyingmachine learning approaches for air quality
prediction [94]–[97], we could hardly find literature that uses
data analytics methods to model indoor respiratory com-
fort. This could be due to the reason that currently IAQ is
simply evaluated by benchmarking the measured parameters
against the acceptable range defined in the well-established
standards.

VI. VALIDATION METHODS FOR MACHINE LEARNING
BASED COMFORT MODELS
For machine learning model, we usually divide the dataset
into training data and testing data according to the specified
proportion. When we obtain a trained model based on a
training dataset, we need to make sure that the model has
strong robustness for the accuracy of the prediction. Gener-
ally, we utilize a testing dataset to validate the effectiveness
of the model. Validation provides a statistical estimation of
the difference between the predicted results and the actual
data in the dataset. The validation process makes sure that
the established model well fits the existing dataset. After the
model has been built, it may be applied in different scenar-
ios. Evaluation of the effectiveness of the model for various
scenarios should be carried out to decide whether the model
is underfitting, overfitting or well generalized according to
the performance of the trained model applied on the unseen
data. The unseen data could be either those unused data from
the existing dataset or the new data obtained from designed
experiments. Some popular and effective validation methods
are K-Fold Cross Validation [98], Holdout method [98] and
Repeated random sub-sampling validation [98].

VII. DISCUSSION
From the previous studies, there is no common good indi-
cator which can represent thermal comfort or human com-
fort. We have known that PMV [38] is a classical index
for evaluating thermal comfort. However, the PMV model
only focuses on the specific parameters. It cannot scale well
to other environmental factors or human factors. Although
some extended models [39]–[44], [46], [47] based on the

conventional PMV model can deal with different scenar-
ios, the key approach has low prediction accuracy about
41.68-65.5% as pointed out in [54]. Thus, it is far from good
(the best accuracy is 100%).

A few of research groups use questionnaires to get human
comfort information and take them into consideration when
developing the comfort models. However, even under the
same condition, different human subjects may have different
responses. The questionnaire results vary among people with
different ages, genders, countries, incomes and so on. In addi-
tion, human comfort is a relatively subjectivematter [50], [51]
and conducting questionnaires involves high-cost and time-
consuming process of data collection. We also cannot make
sure the results are correct since they depend on individual
participants’ responses. These situations make it difficult to
come up with a common reliable indicator.

Different research groups choose specific indicators to
represent thermal comfort in their own way. However,
they do not provide convincing justifications for their
choice or explain whether it is the best indicator. The reason
behind this could be lack of a standardized good indicator to
reflect the human comfort. As a result, there is hardly any
well-received commercial product to monitor the real state
of human comfort. Human comfort is a relatively subjective
matter [50], [51] which is affected by many environmen-
tal, psychological and physiological factors. Furthermore,
the occupants’ perception about comfort may be influenced
by numerous external conditions instantly. Thus, it is dif-
ficult to propose a specific indicator to represent or reflect
human comfort. To build a robust model with high accuracy,
we need to consider more factors related to human comfort
and develop a good indicator to characterize it. It will bring
positive impacts on humanwellbeing. Furthermore, the corre-
sponding commercial solutions will have a promisingmarket.

VIII. CONCLUSION AND FUTURE WORK
In the contemporary era, people spend about 90% of their
time on indoors. For this reason, it becomes one of the major
goals of smart buildings to offer a comfortable living or work-
ing environment for the occupants besides achieving energy
efficiency. Improvement of human comfort in office buildings
not only promotes health andwellbeing of individual employ-
ees, but also brings significant financial benefits to employers
by reducing the operating cost of business.

Human comfort in indoor environment is commonly eval-
uated from four aspects: thermal comfort, visual comfort,
acoustic comfort and respiratory comfort. In order to improve
them, we need to understand the criteria for assessing dif-
ferent types of comfort and the environmental factors that
have direct impact on them. Subsequently, data needs to be
collected from the environment and human subjects in order
to identify the relationship between environmental factors
and human comfort.

In this literature review, we surveyed the area of human
comfort studies conducted for various aspects of comfort with
a special focus on the assessment criteria, data collection
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methods and data analysis methods employed by different
research groups. Among the four aspects of comfort, thermal
comfort is the area that presents most of the research contri-
butions as it was considered of greater importance compared
with other types of comfort. With the advance of the Internet
of Things (IoT) solutions and sensor technology, it is possible
to collect the environmental data using distributed sensor
networks. Machine learning algorithms have been applied
to extract the useful information from the large amount of
data collected via the sensors. Specifically, in the context of
human comfort analysis, the collected data is used to train
a thermal comfort model that can predict human comfort
perception based on the new environmental data input into
the model. Such comfort model is expected to be integrated
into the HVAC control system of a smart building to empower
it to automatically adjust the temperature, ventilation rate etc.
according to the comfort needs of the occupants.

With regard to other aspects of indoor comfort (visual,
acoustic and respiratory comfort), although sensor technol-
ogy has been widely used in the data collection, there were
few literatures that reported applying data analytics approach
to build the comfort model. We assume that one of the
reasons could be that the relevant comfort indices are rel-
atively straightforward. To determine whether the environ-
mental condition is within the acceptable range, usually the
measured parameters are directly compared with the values
recommended in the international or national guidelines.

In addition, we propose the following future research areas
in relation to indoor human comfort studies:
(1) Currently the thermal comfort model is trained based

on the comfort perception votes collected from the
user survey. Due to the subjective nature of such sur-
vey, the established model may not accurately reflect
the users’ thermal preference. Therefore, we suggest
exploring using certain human physiological parame-
ters to replace the survey method. Such parameters can
be measured with wearable sensor or wearable device
and they will be used as objective indices to indicate
the comfort level.

(2) Human comfort perception is a complex matter which
depends on both environmental factors and the per-
sonal characteristics of the individual occupant. Most
of the current thermal comfort models only consider the
influence of environmental factors. Future study may
consider incorporating relevant personal factors such as
gender, age etc into the model.

(3) Visual comfort is similar to thermal comfort in the
sense that it is subject to an individual occupant’s
personal preference. In order to accommodate to each
individual occupant’s needs for visual comfort, it is
necessary to develop the personalized visual comfort
models that can serve as the basis for building lighting
controls. Hence, more research work is expected to be
conducted in this area by applying machine learning
algorithms to learn the visual preferences of individual
occupants.

(4) Previous studies have placedmore emphasis on thermal
comfort. To address other IEQ aspects, composite com-
fort indices could be designed by incorporating addi-
tional environmental factors related to visual, acoustic
and respiratory comfort. Furthermore, machine learn-
ing algorithms capable of building scalable comfort
models could be an option for considering other three
comfort aspects. Improved indices of human comfort
and more accurate prediction outcome will ensure reli-
able control over building HVAC systems in order
to provide a more comfortable and responsive indoor
environment. It may also contribute to a smart building
with improved energy efficiency.

In summary, this paper has presented a review of the state-
of-the-art research in human comfort studies. It would pro-
vide some insights for future researchers who are looking for
information about assessment criterion, data collection and
data analytics methods for studying occupants’ comfort in
indoor environment.
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