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ABSTRACT Accuracy and performance are key issues for CFD simulation. How to meet the specific
accuracy requirements, as well as the optimal simulation performance, is always the research hotspot. This
paper presents a general theory of Mesh–Order Independence that is used to guide the configuration of two
of the most critical control parameters in a concrete CFD simulation process: grid spacing and discretization
order. A concept of optimal mesh–order independent pair which can meet both accuracy and performance
requirements at the same time is proposed and analyzed. To find the optimal Mesh–order independent pair,
the Mesh–Order Independence is applied to high order FEM simulation, and the specific process and key
technologies are detailed. Test and results of two benchmark cases, the Laplace equation and the Helmholtz
equation, show that the Mesh–order theory proposed in this paper provides an important guidance for the
grid spacing selection and discretization order configuration in practical simulation, especially in the case of
high precision requirements. Specifically, only 6 pre-runs with low discretization orders and coarse meshes
are needed for the both cases to have a prediction accuracy of more than 70%.

INDEX TERMS Mesh–Order independence, grid spacing, discretization order, high-order FEM, CFD.

I. INTRODUCTION
As an emerging interdisciplinary, computational fluids
dynamics (CFD) uses numerical methods and computer sim-
ulations to solve real physical, biological, and chemical prob-
lems [1], [2]. In addition to its low cost and high efficiency,
CFD also outperforms the traditional experimental methods
for its flexibility and adjustability. For example, in order to
observe the phenomena under different physical conditions in
the simulation of flow over airfoils, it generally only needs to
adjust the relevant parameters in the CFD codes such as the
initial conditions and boundary conditions. To obtain more
credible results, the increase of accuracy-related parameters
such as the density of the grid and the degree of discretiza-
tion are generally effective. However, the flexibility of CFD
simulation is subject to some constraints and limitations in
practical applications, simulation performance, for example.

The contradictory relationship between performance and
accuracy in CFD simulations poses a significant challenge to
parameter configurations. In order to improve the simulation
accuracy, the common way is to increase the grid density for
low-order simulation methods. However, it is not possible for
the users to refine the grid indefinitely because the cost of
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CFD simulation increases synchronously with the refinement
of the grid, which in turn affects the efficiency of CFD
simulation. For low-order methods, the most commonly used
method to determine the optimal mesh for simulation is mesh
independent study [3], [4]. Simulations are performed on at
least three different meshes, and the numerical errors are
estimated. The coarsest mesh on which the simulation results
meet the certain constraints, such as the prescribe accuracy,
is selected as the final optimal mesh.

With the development of high-order methods, high-
efficiency and high-accuracy CFD simulation has become a
hot topic [5], [6]. A high-order method is a method with a
third order or higher accuracy of spatial discretization, which
has a faster convergence rate than a low-order method. Over
the past two decades, researchers have proposed a variety of
high-order discretization schemes, such as high-order con-
tinuous finite element method (FEM) [7], high order finite
difference method (FDM) [8], and ENO/WENO based high-
order finite volume method (FVM) [9]. High-order simu-
lation provides the possibility of high-efficiency solutions
and high-accuracy solutions, as well as the challenge of
the parameter configurations, because the variable control
parameters include both the grid density and discretization
order. For instance, to improve the accuracy of high-order
simulation, one can either refine the grid or increase the
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discretization order. So, an attendant question is how to
choose the optimal grid density and discretization order in the
practical high-order simulation, in order to meet the accuracy
requirements, at the same time has the shortest solution time.
For high-order simulation, the mesh-independent test is no
longer available, and the generally usedmethods to determine
the optimal mesh and the optimal discretization order are
heuristic methods. To the best of our knowledge, there are
no relative theory for Mesh–order independent study in high-
order CFD simulation.

This paper starts from a practical point of view and
launches a series of studies which focus on the configuration
of grid spacing and discretization order in high-order CFD
simulation. Specifically, the contributions of this article can
be summarized as follows:
• A general theory for grid spacing and discretiza-
tion order selection for high-order CFD simulation,
Mesh–Order Independence, is proposed.

• An algorithm of searching the optimalMesh–order inde-
pendent pair is designed, and the key technologies are
analyzed in detail.

• The verification and validation of the proposed theory
are performed in practical high-order FEM simulation.

In addition, there are two points that need to be empha-
sized. First, the concept of Mesh–Order Independence
proposed in this paper can be regarded as a generalized
abstraction of the conventional mesh independence in low-
order simulation, because when the discretization order is
fixed, the Mesh–Order Independence is actually degenerate
into the mesh independence; the second is that although the
simulation cases in this paper are based on high-order FEM
method, the theory and method proposed also have profound
guiding significance for other high-order methods.

The rest of this paper is organized as follows: Section II
provides a brief introduction to background knowledge and
related work to this article. Section III presents the theory
of Mesh–Order Independence. Section IV gives a practical
algorithm to find the optimal Mesh–order independent pair,
and details the required key technologies. Section V is the
experiment, followed by the conclusions and the future work.

II. BACKGROUNDS AND RELATED WORK
A. NUMERICAL ERROR
The essence of CFD simulation is solving the linear systems
of equations, which is obtained by the discretization of the
partial differential equations (PDEs) that describe the physi-
cal problems. The solution of the original continuous partial
differential equation is called the analytical solution, or the
exact solution, while the solution of the linear system of
equations is the numerical solution. Generally, the numerical
solution is not equal to the analytical solution, but only close
to the analytical solution. This is mainly because the numer-
ical simulation will inevitably introduce errors. According
to the different sources, the numerical errors of the simula-
tion can be divided into three parts [10]: the discretization
error caused by the approximation of the PDE, the iterative

convergence error due to the iteration is not sufficient, and
the round-off error caused by approximate representation of
numbers. In general, discretization error accounts for more
than 90% of all errors. Therefore, the error discussed in the
subsequent part of this article refers to discretization error
unless otherwise stated. For a practical simulation, the error
is defined as:

e =
∣∣u∗ − uph∣∣ (1)

where uph is the numerical solution to the discrete equations
on a mesh with a representative cell length of h, and u∗ is the
exact solution to the differential equations.

‖e‖L2(K )=

(∫
K

∣∣u∗ − uh∣∣2dx)1/2

(2)

‖e‖H1(K )=

(∫
K

∣∣u∗ − uh∣∣2dx + ∫
K

∣∣∇(u∗ − uh)∣∣2dx)1/2

(3)

Eq. 1 is a typical definition of error, which describes the
local error of a variable. However, unknown variables are
usually vectors or tensors in simulations, and the global error
is more concerned. Eq. 2 and 3 are two of the most widely
used models describing the global error, L2 norm and H1

norm, whereK represents the smallest discrete element. Here
in this paper, unless otherwise stated, the global error refers
to the global L2 error.

B. MESH INDEPENDENCE
For a stable and fixed-order numerical scheme, the simu-
lation accuracy will gradually increase as the mesh density
increases. It is well known that the numerical error is the
most commonly used quantitative indicators to describe the
simulation accuracy in CFD. If E is the numerical error, h is
the grid spacing, then we have the following relation for a
first order scheme [11] :

E ∝ k ∗ h (4)

where k is a coefficient independent of h, but may change in
space or time. In other words, E and h are in a proportional
relationship. Similarly, if T represents the overhead of the
simulation process, then it will increase as the decrease of h,
so T and h are inversely proportional. Here, the overhead T
can be all kinds of the resource consumption, such as the exe-
cution time and the memory consumption of the simulation.
The factor g is a coefficient independent of h.

Because of the existence of simulation overheads, we can
not increase the accuracy of the simulation by reducing the
grid spacing infinitely. The mesh independent study is crit-
ical to balance the accuracy and performance in practical
simulations, and it is also an essential process to conduct
verification and validation of the simulation [12], [13]. The
purpose of mesh independent study is to find the optimal
mesh with the largest grid spacing to meet the accuracy
requirements. In general, the first step is to solve the same
problem using three different meshes: coarse, medium and
fine. Then the simulation error is calculated. If the simulation
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error on coarse mesh can meet the accuracy requirements
of the problem, then, according to Eq. 4, the simulation on
medium mesh and fine mesh will certainly be able to meet
the accuracy requirements. At this time, in order to make the
simulation overhead lowest, obviously the coarse mesh is the
optimal. At present, the vast majority of mesh independent
test process is performed in a heuristic approach [14], that is,
the researchers select three different meshes mainly based on
the their experience, and then determine the optimal one.

C. ADAPTIVE REFINEMENT
The trade-off between performance and accuracy has been
one of the most concerned problems in CFD simulations.
In order to improve the accuracy of the simulation with
lowest cost, researchers have proposed a variety of mesh
adjustment methods [15], including h-adaptive, p-adaptive,
hp-adaptive and so on. In the case of h-adaptive refinement,
the main process is as follows: First, a complete simulation is
performed on a relatively coarse initial mesh and the errors of
all cells are estimated. Then, cells with relatively large errors
will be marked. Finally, the marked cells are refined, and
the previous processes are repeated until error of all the cells
meet the accuracy requirements. The refinement process of p-
adaptive and hp-adaptive refinement are similar to h-adaptive
refinement, except that p-adaptive refinement is achieved by
increasing the discretization order on the cells with large
error, while hp-adaptive refinement is achieved by changing
either the grid spacing or the discretization order.

No matter what kind of adaptive refinement methods,
the basic idea is to refine the local mesh or increase the
local discretization order iteratively to improve the local accu-
racy, and thus improve the global accuracy. With adaptive
refinement, the problem of low local accuracy due to the
existence of singularities can be solved satisfactorily. How-
ever, the current adaptive research focuses almost on the
various optimization based on the heuristic algorithm, which
lacks uniform theoretical guidance. To solve this problem,
this paper is going to study the theory of hp adjustment for
CFD simulation from the perspective of global refinement.
It should be noted that the choice of global hp adjustment
rather than local adjustment is mainly because:

1) Local adjustment is related to lots of factors, which
leading to a complex modeling. Global adjustment can
be treated as a theoretical basis for local adjustment.

2) Solutions of certain smooth problems converge mono-
tonically as the grid is global refined, thus has a practi-
cal significance.

III. MESH–ORDER INDEPENDENCE
A. MESH–ORDER PAIR
The accuracy and performance of CFD simulation are
affected by many factors, such as physical model, discretiza-
tion scheme, linear solution method and so on. A myriad of
researchers have discussed the impact of the different models
and solution methods on the simulation results in detail.
We will focus on the discretization order and grid spacing in

this paper, and try to analyze the impact of these two factors
on the performance and accuracy of CFD simulation from the
perspective of quantification model. First of all, for the sake
of convenience, we define the concept of a Mesh–order pair
in simulation as follows.

Definition. For CFD simulations with all parameters fixed
except grid spacing and discretization order, theMesh–order
pair represents a simulation configuration with the grid spac-
ing h and the discretization order p, denoted as pair(h, p).

It should be noted that the grid spacing h is not consistent
with all cells when the mesh is nonuniform in practical CFD
simulations. Therefore, the grid spacing here is convention-
ally defined as the maximum value of the distance between
two adjacent cells. When the mesh is refined or coarsened,
all the cells have to be adjusted simultaneously. For example,
if the grid spacing is halved, then the size of all cells are
halved simultaneously. In this way, the grid spacing after the
refinement and coarsening can be expressed as h/2. In addi-
tion, for models with multiple unknowns, the discretization
scheme may be different for different field variables, such as
velocity, pressure and temperature. Here, we only consider
the case with one variable’s order change at a time.

B. MESH–ORDER INDEPENDENT PAIR
It is known that as the grid spacing decreases, or the dis-
cretization order increases, the numerical solution will grad-
ually approach the exact solution, so the error will gradually
decrease and the accuracy will be improved. At the same
time, with the decrease of grid spacing and the increase of
discretization order, the cost of simulation will increase grad-
ually. Therefore, it is necessary to compromise between accu-
racy and performance. In practical engineering applications
and scientific computing, a threshold is usually specified for
the error. When the simulation error is less than or equal to
this threshold, the accuracy requirement for the simulation
is considered to be satisfied. For example, it is generally
believed that the error is less than 10−2 to meet the engi-
neering accuracy, and for the high accuracy of 10−6 arises
in some scientific applications [16]. When the error satisfies
a certain accuracy requirement, it is generally noneconomic
to further reduce the error by further reducing the grid spac-
ing, or by increasing the discretization order. On the one hand,
the degree of error reduction is very low; on the other hand,
the resulting overhead will increase dramatically. In order
to describe the special simulation state when the error is
less than or equal to the specified threshold, we propose the
concept of ‘‘Mesh–Order Independence’’, which is defined as
follows:

Definition. Let e be the error of a CFD simulation with
a configuration of pair(h, p), that is, the grid spacing is
h and the discretization order is p, then for a prescribed
threshold ε, if

e ≤ ε

is satisfied, then the pair(h, p) is called Mesh–order
independent pair, denoted as 3(h, p).
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The benefit of using this error description is straightfor-
ward, but the problem is that the magnitude of the numer-
ical solution directly determines the quality and reliability
of the description. Let us consider the case where the error
threshold is fixed to 10−2. When the exact solution of the
original continuous equation is large, such as 100, in order to
achieve the required accuracy, the numerical solution should
be in the range of [99.99, 100.01]. However, if the exact
solution is equivalent to the error threshold, 0.01 for example,
the numerical solution should be in the range of [0,0.02]
in order to satisfy the accuracy requirement. Although the
absolute errors in these two cases are the same, the relative
errors are very different. If we use formula

e′ =
e
x∗
=

∣∣u∗ − uph∣∣
|u∗|

(5)

to calculate the relative error, then the relative error for the
two cases described above is calculated to be 10−4 and 1,
respectively. Obviously, the simulation accuracy of the for-
mer case is higher than the latter. In the practical simulation,
an effective method to improve the simulation accuracy of
the latter case is to reduce the error threshold. Another com-
mon method is to describe the accuracy of the simulation
with the relative error rather than the absolute error. Inspired
by this idea, we use the relative error to redefine the con-
cept of Mesh–Order Independence in the previous section as
follows:

Definition. Let e′ be the relative error of a CFD simulation
with a configuration of pair(h, p), that is, the grid spacing
is h and the discretization order is p, then for a prescribed
threshold ε, if

e′ ≤ ε

is satisfied, then the Mesh–order pair pair(h, p) relative
Mesh–Order Independence, denoted as 3̄(h, p).
The following properties can be derived from the concept

of Mesh–order independent pair:
• Infinity For a specified threshold ε, theremay be infinite
Mesh–order independent pairs, all the combinations of h
and p that makes the simulation error under ε is a Mesh–
order independent pair.

• Transitivity If the threshold ε1 < ε2, then all the Mesh–
order independent pair under the threshold ε1 are also the
Mesh–order independent pair under the threshold ε2.

C. OPTIMAL MESH–ORDER INDEPENDENT PAIR
In the previous section we propose a definition of Mesh–
order independent pair, and simply analyze its properties.
It is not difficult to know that there are a large number of
Mesh–order independent pairs that satisfy a certain accuracy
requirement. However, in the practical simulation, if the per-
formance is taken into account, then theMesh–order indepen-
dent pair with the lowest cost is the most concerned among all
Mesh–order pairs that meet the accuracy requirements. How
to find this optimal Mesh–order independent pair is worthy
of further study.

FIGURE 1. The relationship between cost and error for a high-order FEM
simulation of helmholtz problem.

Fig. 1 shows the results of a practical CFD simulation pro-
cess, where the abscissa represents the cost of the simulation
and the ordinate indicates the accuracy of the simulation.
Specifically, the total time required for a complete simulation
is used to represent the overhead of the simulation, and the
accuracy of the simulation is described using L2 errors. The
color of the curve in the figure represents the discretization
order, and the points on each curve represent the Mesh–
order pair with different grid spacing. There are six points
on each curves, and the grid spacing from left to right are
hi(i = 1, 2, . . . , 6) respectively. The grid spacing of the first
point on all curves is the same, and the grid spacing of the
right side is half of the left side, that is, the grid density is
doubled. In order to find a Mesh–order pair that satisfies a
certain accuracy requirement, such as ε = 10−5, it is only
need to make a straight line y = 10−5 in the direction parallel
to the x-axis, and then all the points below the straight line
meet the required accuracy. At this point, all the Mesh–order
independent pairs make up a set:

A = {3(h6, p2),3(h4, p3),3(h5, p3),3(h6, p3),

3(h3, p4),3(h4, p4),3(h5, p4),3(h6, p4)}

In all of these pairs, the one which meets a certain perfor-
mance requirements is often the focus of user’s attention.
Here, if we use the most commonly used performance indica-
tor, the execution time, as a evaluation index, then the optimal
pair would be3(h3, p4) according to Fig. 1. Thus, when con-
sidering both the accuracy and performance of the simulation,
we can define the optimal Mesh–order independent pair as
follows:

Definition: Among all the Mesh–order independent pairs
respect to a prescribed error threshold ε, the one which has
the minimal cost is the optimal Mesh–order independent
pair, denoted as 3̂(h, p).
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It should be noted that the cost in the definition of the opti-
mal Mesh–order independent pair can be either the execution
time, the storage consumption, or some other performance
metrics. Here in the rest part of this paper, the optimal Mesh–
order independent pair are all evaluated with execution time
unless otherwise stated.

IV. FIND THE λ̂(H,P) IN FEM SIMULATION
In Section III, we present a series of concepts respect to
Mesh–order pair. One of the most significant aspects of these
theories is that they can be used to guide practical CFD simu-
lations. For instance, it is quite recommend for the user to start
the simulation with the specific grid spacing and discretiza-
tion order indicated by the optimal Mesh–order independent
pair, so that the performance of the simulation is optimal,
as well as the accuracy requirement is met. Next, we will
take FEM simulation as an example, and first give a general
flow for the search of optimal Mesh–order independent pair,
then analyze and discuss the key technologies involved in the
process.

FIGURE 2. The simulation parameter optimization based on mesh–order
independence.

A. OVERALL PROCESS
Fig. 2 shows the flow chart using Mesh–order independent
theory to guide the parameter configuration in FEM simula-
tion. First, a series of pre-runs are conducted. A pre-run is
to run the case a few iterations with tentative grid spacing
hi and discretization order pi, and the results of the user
concerned variables u1, u2, . . . , un will be sampled. Here, ui

may be either the field data such as pressure, a component
of velocity, or the performance data such as storage costs,
execution time. In general, the grid spacing for pre-run should
be as large as possible while the discretization order should be
as low as possible to reduce the execution time. The number
of pre-runs is related to the problem to be solved, generally
at least two pre-runs are required for simple problems and
three for complex problems. The results of the pre-runs are
usually stored in a data set Di(hi, pi, u1, u2, . . . , un), where
i = 1, 2, . . . , n. Next, based on the field data obtained by
pre-runs, the simulation error is estimated, and the accuracy
model is further established. The error estimation is still
a hot topic in the field of CFD, and the specific method
used in this paper will be described in detail later. In addi-
tion to the accuracy model, it is also necessary to estab-
lish a performance model based on the performance data
obtained from the pre-runs. Then, based on the combination
of established accuracy model, performance model and the
Mesh–order independent theory, the optimal grid and order
configuration problem can be converted into a single-
objective optimization problem. Finally, the optimal config-
urations to meet the accuracy requirement can be solved with
the help of mathematical tools, for example Matlab.

B. ERROR ESTIMATION
It can be seen from the Eq. 1 that the error is determined by
both the simulation solution and the exact solution, thus the
way to estimate the error is closely related to whether the
exact solution is known or not. When the exact solution is
known, the L2 error can be calculated simply according to
Eq. 2. However, getting the analytical solutions of PDEs is
not always a simple matter. In fact, for most of the equations
derived from real physical process, it is difficult to calculate
the exact solutions. Therefore, other way is necessary. For
these problems, the most common way of estimating error is
to use the standard Richardson Extrapolation (RE) method
[17], [18] and some improved algorithms based on this
method, such as the generic RE method [19], the mixed RE
method, and the Grid Convergence Index (GCI) method [20].
Appendix VI gives a detailed procedure of how to use the
standard RE method to obtain an exact solution.

C. CURVE FITTING
Curve fitting is widely used in scientific and engineering
computing to deal with discrete data due to its usability and
practicability [21], [22]. The essence of curve fitting is to
use a continuous function to approximate a series of discrete
data, which may be either experimental results or simulation
results. The most commonly used curve fitting function is a
polynomial function, and nonlinear fitting functions includes
exponential function, power function and logarithmic func-
tion. When applying curve fitting to practical problems,
the fitting function is usually determined with experience,
otherwise heuristic methods are considered. Regardless of
which fitting function is used, the undetermined coefficients
need to be evaluated. Generally, the method of linear least
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squares (LLS) is widely used to determine the parameters
in the fitting function. Appendix VI gives an example of the
parameter evaluation in linear fitting.

Nevertheless, the undetermined coefficient can not be
obtained simply by solving the equation as Eq. 17 for non-
linear fitting, thus it is usually necessary to transform the
model from nonlinear to linear using mathematical methods.
For example, the logarithmic function can be used to con-
vert the nonlinear exponential function model and the power
function model into a linear function, and then a problem
like Eq. 15 can be obtained using the linear least squares
method. If the nonlinear function can not be transformed into
a linear function, the numerical optimization algorithms [23]
such as gradient descent method, Levenberg-Marquardt (LM)
algorithm [24], [25], andGaussianNewton algorithm can also
be considered.

D. CONSTRAINED OPTIMIZATION
The essence of finding the optimal Mesh–order indepen-
dent pair in FEM simulation is an optimization problem.
Here, the constraints mainly include two aspects, one is the
accuracy constraints, that is, Mesh–order independent theory,
the other is the resource constraints of the platform, such as
the memory limitation. The only goal of the optimization
is to optimize the performance of the simulation, so this is
a typical single-objective optimization problem that can be
expressed as 

min y = f (h, p)
s.t. g1(h, p) ≤ 0

g2(h, p) ≤ 0
h ∈ D1, p ∈ D2

(6)

where h and p are decision variables that correspond to
the grid spacing and discretization order, f is the objective
function, g1 and g2 are the two inequality constraints that
correspond to the accuracy constraints and resource con-
straints, respectively. D1 = {h ∈ R |0 < h < 1 } and D2 ={
p ∈ N+ |0 < p

}
are the searching space of the two decision

variables.
Since there are two decision variables in Eq. 6, the most

intuitive way to solve the global optimal solution of the con-
straint optimization problem is to use the traversal method.
Specifically, a decision variable such as the discretization
order is firstly fixed, then the searching space of the other
decision variable is traversed to find a temporary optimal
solution that satisfies the constraints. Then, the new local
optimal solution is obtained by traversing the searching space
of the fixed decision variable in the previous step, that is,
the discretization order. Finally, the new local optimal solu-
tion is the global optimal solution. The specific algorithm
description is shown in Algorithm 1.
It should be noted that, since this paper focuses on the

Mesh–order independent theory and its application in prac-
tical scientific and engineering computations, Algorithm 1
only gives a general and intuitive solution to such

Algorithm 1 The Traversing Algorithm to Search the Opti-

mal Mesh–Order Independent Pair
1: Initial foptimal
2: for all p such that p ∈ D2 do

3: for all h such that h ∈ D1 do

4: Calculate the error and cost of the Mesh–order pair

(h, p): etemp, ftemp
5: if (etemp ≤ ε) & (foptimal > flocal) then

6: foptimal = flocal
7: end if

8: end for

9: end for

10: return the 3̂(h, p) respect to foptimal

a multi-variable optimization problem, and may not be the
velocity optimal. In fact, the optimization problem has always
been one of the hotspots in the field of science and engineer-
ing. Researchers have proposed a number of optimization
methods for practical problems, including the genetic algo-
rithm, ant colony algorithm, particle swarm algorithm and so
on. In recent years, with the rapid development of artificial
intelligence technology, researchers have tried to usemachine
learning and deep learning techniques to solve the problem of
constrained optimization. Taking into account the subject of
this study, as well as the limitations of space, this article does
not discuss these algorithms in-depth.

V. EXPERIMENT
A. METHODOLOGY
To demonstrate the significance of the Mesh–Order Indepen-
dence theory in the practical CFD simulation, two benchmark
cases are carried out in this section: the Helmholtz problem
in a square domain and the Laplace problem in an L-shaped
domain. Both of the problems have been widely studied,
such as [26]–[29].

First, the Helmholtz problem in a square region [−1, 1]2 is
solved under different mesh density and discretization order,
and the accuracy and performance of the solution are record
and quantified. Here, the accuracy is described by L2 error,
while performance mainly refers to the execution time. In this
test, the Lagrange element is used. The discretization order
starts from p = 1 and increases gradually. The maximum
discretization order is p = 6. Similarly, the initial mesh is a
structured mesh with a size of 4 × 4, and the grid spacing
is 0.5. Then global refinement is used to uniformly refine
the mesh, and the maximum mesh size is 1024 × 1024.
Fig. 3 shows the mesh under different grid spacing, which
are sparse, medium and fine. It should be noted that, due to
the memory limitation of the test platform, for p = 5 and
p = 6, the maximum mesh size is 256 × 256. Since the
geometric shape is structured and simple, it is a typical case
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FIGURE 3. The meshes for the helmholtz problem. Left: The coarse mesh with 4 × 4 cells. Center: The medium mesh consists of 32 × 32 elements.
Right: The fine mesh with 256 × 256 cells.

FIGURE 4. The L-shaped domain meshes used in simulations. The coarse mesh on the left consists of 21 vertices and 12 elements. The medium mesh
on the center consists of 833 vertices and 768 elements. The fine mesh on the right consists of 197633 vertices and 196608 elements.

with smooth solution, and the exponential model can be used
to establish the accuracy model. The performance model of
the simulation will be established based on the degree of
freedom (dofs). Finally, based on the established model and
the theory of mesh degree independence, we will focus on the
determination of the optimal Mesh–order independent pair
and the prediction of the shortest simulation time under the
prescribe accuracy.

Then, a singular solution to the Laplace problem in an
L-shaped domain is considered as another model problem,
see Fig. 4. For this case, the minimum and maximum size of
the mesh are 12 and 196608, respectively, and the discretiza-
tion order is also increasing from p = 1 to p = 6. Since the
case is a singular problem, a linear function is used to model
its simulation accuracy.

B. PLATFORM AND TEST CASES
1) SOFTWARE AND HARDWARE
Deal.II is an open source FEM software which offers support
for a variety of finite elements, such as Lagrange elements

of any order, Nedelec and Raviart-Thomas elements of any
order. For its portability, reliability, efficiency and usability,
deal.II is widely used in many academic and commercial
projects.

Deal.II version 8.4.1 is compiledwithGCC-4.9.1 on aHPC
cluster. Each of the computing nodes contains 12 Intel Xeon
2.1 GHz E5-2620 CPU cores and a total memory of 16GB.

2) TEST CASES
TheHelmholtz equation is an elliptic partial differential equa-
tion describing electromagnetic waves, which has a wide
range of applications in the fields of electromagnetic radia-
tion, acoustics and seismology. For the sake of convenience,
the equation that we are going to solve here is the Helmholtz
equation‘‘with the nice sign’’:

−1u+ u = f

The boundary conditions are summarized as{
01 : u = g1
02 : n · ∇u = g2
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where 01 = {x = 1} ∪ {y = 1} and 02 = {x = −1} ∪
{y = −1}. To get the numerical solution of the above
equation, the method of manufactured solutions is used.
By choosing

ū(x) =
3∑
i=1

exp
(
−
|x − xi|2

σ 2

)
f = −1ū+ ū
g1 = ū|01
g2 = n · ∇ū|02

where σ = 1
8 , x1 = (− 1

2 ,
1
2 ), x2 = (− 1

2 ,−
1
2 ) and x3 =

( 12 ,−
1
2 ), a numerical solution with u = ū is obtained.

The singular Laplace problem in an L-shaped domain is
widely used in the study of the mesh refinement. Here in this
paper, the test case is similar to the problem in references
[28]–[30] and the benchmark case on NIST (National Insti-
tute of Standards and Technology) AMR benchmarks site.1

The equation and boundary conditions are summarized as

−1u = 0

and {
01 : u = 0
02 : n · ∇u = g

where the two edges meeting at the origin are denoted by 01
and the other edges belong to the boundary 02. The exact
solution to this problem is

u = r2/3 sin(2θ/3)

where r =
√
x2 + y2, θ = tan−1(y/x).

C. THE RESULTS OF HELMHOLTZ PROBLEM
1) MODELLING
According to the type of finite element, the performance
model based on the degree of freedom is:

Dofs = (
p
h
+ 1)2

As is described in Section V-A, the accuracy model can
be built with the exponential function using nonlinear fitting.
Here, the model is e = a × hp+1 + b, while a and b are
undetermined coefficients. It should be noted that since the
value of e is small in magnitude, we first take the logarithm of
the two sides of the model according to the method described
in Section IV-C, and obtain a new equivalent model, and
then use the fitting technique to obtain the undetermined
coefficient. The other case is similar and will not be repeated.

It is clearly that the quality of the model depends on
the number of pre-runs. Thus, three independent models are
tested with the results of different pre-runs. Specifically, with
the pre-runs of the following Mesh–order pairs:

A = {pair(0.125, 1), pair(0.0625, 1),

pair(0.125, 2), pair(0.0625, 2)}

1http://math.nist.gov/amr-benchmark/index.html

model A is built as:

‖e‖A = 21.654×log2h×p−1.068×log2h+4.442×p−6.651

With the pre-runs of the following Mesh–order pairs:

B = A+ {pair(0.03125, 1), pair(0.03125, 2)}

model B is built as:

‖e‖B = 21.596×log2h×p−0.4748×log2h+4.25×p−4.673

Finally, model C:

‖e‖C = 21.406×log2h×p+0.0273×1og2h+3.552×p−2.832

is built with the pre-runs of the following Mesh–order pairs:

C = B+ {pair(0.015625, 1), pair(0.015625, 2)}

2) PRACTICAL TEST RESULTS
To investigate the practical performance of different Mesh–
order pairs, the results of practical test are shown in Fig. 5.
Specifically, Fig. 5a shows the change of the actual accu-
racy of the simulation. It can be seen that the simulation
error decreases exponentially with the discretization order
increases, so it is reasonable to establish the error model with
the exponential function. In the modeling of performance,
the degree of freedom directly determines the size of the lin-
ear system of equations obtained by discrete partial equations,
thus it is used as the evaluation index. The change of the
error with the degree of freedoms is shown in Fig. 5b. In fact,
the use of degrees of freedom to evaluate performance is a
simplification because the efficiency of the solution of the
linear systems is related not only to the size of the coefficient
matrix, but also to some other factors such as the element
distribution of the coefficient matrix, the condition number
and so on. Thus, as can be seen in Fig. 5c, the relationship
between simulation time and the degrees of freedom is not
completely linear. Finally, In Fig. 5d we show the relationship
between the actual simulation accuracy (i.e. L2 error) and
performance (i.e. execution time). It can be seen that for high
accuracy requirements, a high discretization order is usually
the optimal, while for low accuracy requirements, there is no
such conclusion. This is consistent with the conclusions from
Mitchell [16] and others.

According to the above test results, the optimal
Mesh–order independent pair respect to prescribed accuracy
can be easily obtained, as is shown in Table 1.

3) VERIFICATION
Based on the above-mentioned accuracy models and per-
formance model, the optimal Mesh–order independent
pairs under different accuracy requirements are predicted
using the constrained optimization algorithm described in
section IV-D. Table 2 shows the prediction results with model
A. When compared with Table 1, it can be found that the
prediction consistent with the tested results except accuracy
requirement are 1.00E-1, 1.00E-3 and 1.00E-4. That is to
say, the prediction accuracy is about 66.7% with 4 pre-runs.
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FIGURE 5. The solution results of the helmholtz problem. The different colors in all the figures represent the discretization order.
Figure (a) is the log-log graph of the simulation accuracy versus grid size. Figure (b) is the log-log graph of the accuracy versus dofs.
Figure (c) is the log-log graph of the simulation time versus dofs. Figure (d) is the log-log graph of the simulation accuracy versus
execution time.

TABLE 1. The tested optimal mesh–order independent pairs for
helmholtz problem.

The prediction results with model B is shown in Table 3, and
it is seen that the prediction accuracy increased to 77.8%.
Further increase the number of pre-runs for nonlinear fitting,

TABLE 2. The predicted optimal mesh–order independent pairs for
helmholtz problem with model A.

we get model C, whose prediction result is the same as
model B. Therefore, a prediction with 6 pre-runs is enough
to get a prediction accuracy of 77.8% for this case.
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FIGURE 6. The solution results of the laplace problem. The different colors in all the figures represent the discretization order. Figure (a)
is the log-log graph of the simulation accuracy versus grid size. Figure (b) is the log-log graph of the accuracy versus dofs. Figure (c) is
the log-log graph of the simulation time versus dofs. Figure (d) is the log-log graph of the simulation accuracy versus execution time.

TABLE 3. The predicted optimal mesh–order independent pairs for
helmholtz problem with model B and C.

Since this article focuses on the application of the Mesh–
Order Independence theory in practical simulation, all the
modeling process has been simplified. First of all, the

accuracy model is simplified as an exponential function,
which may need a more elaborate description. Then, all
the models are established using curve fitting based on the
results of the pre-runs, and there is a certain degree of fitting
error. Last but not least, the use of degrees of freedom to
approximate the simulation performance also has some error.
Therefore, to study how to improve the prediction accuracy
may be an open and interesting question in a subsequent
project, and it will not be detailed here for the reason of the
length of this paper.

D. THE RESULTS OF LAPLACE PROBLEM
1) MODELLING
This is a typical singular case, whose accuracy model is not
suitable to establish with exponential function, so we use
polynomial function instead. Two accuracy models:

‖e‖A = 2(1.401×log2(h)−2.185×p
1.058
−1.662)
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and

‖e‖B = 2(1.413×log2(h)−151.7×p
0.02213

+147.3)

are established using the non-linear fitting method as in the
previous case with the following Mesh–order pairs:

A = {pair(0.5, 1), pair(0.25, 1),

pair(0.5, 2), pair(0.25, 2)}

and

B = {pair(0.5, 1), pair(0.25, 1),

pair(0.5, 2), pair(0.25, 2),

pair(0.5, 3), pair(0.25, 3)}

Similar to the Helmholtz problem, the performance model
is still established based on degrees of freedom. According
to the type of finite element and mesh refinement method,
the performance model is:

Dofs = 3× (
p
h
)2 + 4×

p
h
+ 1

2) TEST AND PREDICTION RESULTS
The tested results of this case are shown in Fig. 6, and accord-
ing to the tested results, the optimal Mesh–order independent
pairs for this problem are shown in Table 4.

TABLE 4. The tested optimal mesh–order independent pairs for laplace
problem.

TABLE 5. The predicted optimal mesh–order independent pairs for
laplace problem with model A.

As is similar to the previous test case, the optimal Mesh–
order independent pair for this Laplace problem can be pre-
dicted by solving the optimization problem which is defined
by the accuracy model and the performance model. As is
shown in Table 5, the prediction accuracy with model A is
poor, and only the first two prediction are correct. However,
when the model is established with 6 pre-runs, the prediction

result is consistent with the actual results very well. Since this
result is exactly the same as Table 4, it is not shown here.

According to the prediction results, when the accuracy
requirements are high, such as less than 10−4, the high order
simulation shows a better performance than the lower ones,
which is consistent with the results in the Helmholtz problem.

VI. CONCLUSIONS
A Mesh–order independent theory was proposed for high-
order CFD simulation. It is designed to deal with the
trade-offs between the simulation performance and accuracy,
specifically by adjusting two critical impact factors, the grid
spacing h and discretization order p. In order to demonstrate
the specific procedure of choosing h and p based on this
theory, a detailed flow chart is given with high-order finite
element simulation as an example, and the key technologies
involved are described in detail.

With the theoretical modeling and experimental verifica-
tion of the solution of the benchmark cases, it is found that the
Mesh–order independent theory proposed in this paper has a
guiding significance on the configuration of the key parame-
ters h and p in the practical simulation, especially in the case
of high accuracy requirements, for example, the scientific
computing accuracy requirements. In addition, although the
proposed theory is applied only to high-order FEM simula-
tions, it is universal and independent of the particular discrete
method, and it is possible to be extended to other high-order
methods.

The current study focuses mainly on the concept of Mesh–
Order Independence, thus only the simple benchmark cases
are discussed. Future work should consider the application
of the proposed theory to some more complex and practical
cases. For example, the modeling and application to the solu-
tion of Navier-Stokes equations on unstructured grid should
be investigated. Other possible research directions include the
extension of the theory to parallel CFD simulation.

APPENDIX A
The standard REmethod is a method proposed by Richardson
in the early 1900s to obtain a fourth order precision solution
from the second order precision interpolation. The essence of
this method is to treat the exact solution of the problem to be
solved as an unknown variable, and then an equation system is
obtained according to the numerical simulation results under
two different sets of grids, and then the equations are solved
to get the exact solution of the original problem. Let f ∗ be
the exact solution of the original PDE, f is the second-order
numerical solution of the original problem under the grid
spacing h, then the following relationship holds:

f ∗ = f + ah2 + O(h2) (7)

When the grid spacing is h1 and h2, the numerical solutions
f1 and f2 are substituted into Eq. 7:{

f ∗ = f1 + ah21 + O(h
3
1)

f ∗ = f2 + ah22 + O(h
3
2)

(8)
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Ignore the high order terms (HOT) in Eq. 8, then solve the
system of linear equations in two unknowns:{

a = (f2 − f1)
/
3h21

f ∗ = f1 + (f2 − f1)
/
3

(9)

Consider a more general case, such as the discrete accuracy
p is unknown, then the Eq. 7 becomes:

f ∗ = f + aphp + O(hp+1) (10)

where a new variable p is added. Since there are three
unknowns, at least three equations need to be solved together,
and then the simulation results of three sets of grid, h1, h2
and h3, are needed. Taking into account the convenience of
calculation and simulation, usually h1, h2 and h3 are choose
to meet h1

/
h2 = h2

/
h3 = r , then:

f ∗ = f1 + aph
p
1 + O(h

p+1
1 )

f ∗ = f2 + aph
p
2 + O(h

p+1
2 )

f ∗ = f3 + aph
p
3 + O(h

p+1
3 )

(11)

Ignore the HOT in the system of Eq. 11, then we get
p = ln((f3−f2)/(f2−f1))

ln(r)

ap =
f2−f1
rp−1

f ∗ = f1 +
f2−f1
rp−1

(12)

The Eq. 12 is the exact solution of the original equation
obtained using the general REmethod. It should be noted that
the accuracy p obtained here is the observed degree of the
numerical method. Thus, this method is also used to evaluate
the true accuracy of discretization methods.

APPENDIX B
Taking the linear fitting function as an example, let the dis-
crete data set be {xi, yi}ni=1, substituting the abscissa xi of the
discrete points into the model, the result is ŷi, and ŷi = axi+b
where i = 1, 2, . . . , n. The error between the estimated value
ŷi and the actual value yi is:

1yi = yi − ŷi (13)

The objective function S is defined as the sum of squares of
errors between n actual and estimated values:

S =
n∑
i=1

1yi2 =
n∑
i=1

(yi − ŷi)2 =
n∑
i=1

(axi + b− yi)2 (14)

Then, the fitting process is to find the appropriate coefficient
a and b makes the objective function S minimum, that is,

a, b = arg min
a∗,b∗

n∑
i=1

(
a∗xi + b∗ − yi

)2 (15)

According to the extremum theory, a and b that make S reach
the minimum should satisfy the following relation:

∂S
∂a = 2

n∑
i=1

xi(axi + b− yi) = 0

∂S
∂b = 2

n∑
i=1

(axi + b− yi) = 0
(16)

Eq. 16 can be expressed in matrix form:
n∑
i=1

x2i
n∑
i=1

xi
n∑
i=1

xi n


︸ ︷︷ ︸

A

·

[
a
b

]
︸︷︷︸
X

=


n∑
i=1

xiyi
n∑
i=1

yi


︸ ︷︷ ︸

B

(17)

When the matrix A is column full, we have a LLS solution for
Eq. 17 as X =A−1B.
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