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ABSTRACT In the era of mobile big data, data driven intelligent Internet of Things (IoT) applications
are becoming widespread, and knowledge-based reasoning is one of the essential tasks of these applications.
While most knowledge-based reasoning work is conducted with knowledge graph, ontology-based reasoning
method can inherently achieve higher level intelligence by leveraging both explicit and tacit knowledge in
specific domains, and its performance is determined by precise refinement of the inference rules. However,
most ontology-based reasoning work concentrates on semantic reasoning in a single ontology, and fail to
utilize association of multiple ontologies in various domains to extend reasoning capacity. This is even the
case for the IoT applications where knowledge frommultiple domains needs to be utilized. To overcome this
issue, we propose a deep learning-based method to associate multiple ontology rule bases, thereby discover
new inference rules. In our method, we first use a regression tree model to determine the threshold value
for parameters in inference rules that constitute the ontology rule base, avoiding the influence of uncertainty
factors on knowledge reasoning results. Then, a two-way GRU (Gated Recurrent Unit) neural network with
attention mechanism is used to discover semantic relations among the rule bases of ontologies. Therefore,
the association of multiple ontology rule bases is realized, and the rule base of knowledge reasoning is
expanded by acquiring some unspecified rules. To the best our knowledge, this work is the first one to
leverage deep learning in reasoning with multiple ontologies. In order to verify the effectiveness of our
method, we apply it in a real traffic safety monitoring application by relating rule bases of a vehicle ontology
and a traffic management ontology, and achieve effective knowledge reasoning.

INDEX TERMS Deep learning, ontology based reasoning, IoT, sensor ontology, data mining.

I. INTRODUCTION
With the advent of mobile big data era, applications based
on mobile terminals are more closely integrated with artifi-
cial intelligence technology. And the application of Internet
of Things enables a variety of mobile terminals to achieve
real-time interconnection. With simple devices, people can
enjoy convenient and intelligent services provided by cloud
computing platform, and the IoT applications have become
widespread in both industry and daily life, such as vehicle
IoT System in Smart City [1], smart homemonitoring and ser-
vice [2], and planning, construction, and management toward

The associate editor coordinating the review of this article and approving
it for publication was Tie Qiu.

sustainable cities [3], etc. Along with this, a large amount of
data is generated from a variety of domains, environments,
terminals, and sensors. These data have the characteristics
of large scale, variety, rapid production, great value but low
density. In order to make better use of the big data, it is
necessary to mine useful information from large amounts of
data through effective data analyzing. There has been a lot
of research work devoted to technology mining large amount
of unstructured data such as knowledge graph [4]. Knowledge
graph can extract, organize and manage knowledge in a large
number of data resources. It can provide users with intelligent
services that understand the users’ needs, such as under-
standing semantics of query and providing accurate answers.
This involves knowledge reasoning in the knowledge graphs,
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which is a key step in deep analyzing and reasoning of data.
In essence, knowledge reasoning is based on existing rules
to infer unknown ones or identify wrong ones, it generally
includes tasks such as connection prediction, entity predic-
tion, relationship prediction, and attribute prediction.

Entity and relationship in knowledge graph can be
regarded as instance of concept and concept correlation in
ontology respectively. While the knowledge reasoning in
knowledge graphs attracts attentions in recent years, coun-
terpart research on ontology-based reasoning is seldom.
As ontology describes abstract concepts in specific domains,
ontology-based reasoning represents more abstract knowl-
edge. This will undoubtedly provide tremendous help in
obtaining general and axiom knowledge.

In recent years, ontology engineering is used for descrip-
tion and organization of domain-specific knowledge [5]. The
research work on ontology mainly includes ontology’s con-
struction, life cycle, development, etc. The essential tasks
include knowledge acquisition, representation and reasoning.
Knowledge representation is the basis of knowledge organi-
zation and retrieval, including framework, production rules,
predicate logic, and semantic network. The framework cannot
represent concepts such as the intersection and collection
of knowledge; production rules cannot easily express the
hierarchical relationship of concepts; predicate logic (gener-
ally first-order logic) means that knowledge cannot separate
concepts from instances, so it’s hard to derive knowledge
from the concepts effectively. Compared with above three
methods, semantic network contains a human understandable
rule systemwhose knowledge expressed by XML can be used
for reasoning; furthermore, RDF and OWL makes it possible
to conduct more complex representation and reasoning.

Knowledge reasoning can combine ontology and rules to
express explicit and implied knowledge in a domain. Its
performance depends largely on whether the semantic rela-
tionship in the ontology knowledge base can be accurately
analyzed, the implied knowledge is extracted, the inference
rules are extracted, and the formal description is made using
appropriate ontology rule description language. In addition,
the semantic reasoning implemented by combining a single
ontology and rules is largely limited by the construction
of the ontology itself. If multiple ontology associations are
realized, and the relationships between two ontologies are
analyzed and new semantic relationships are mined, multiple
ontologies’ rule bases can be associated and new rules based
on multiple ontologies can be inferred. For example, there
are many inference rules to manage traffic in the traffic man-
agement ontology, while there are also many rules to ensure
safe driving in the vehicle ontology. If rule bases of these two
ontologies can be correlated and unspecified new rules can be
discovered, smarter and safer IoT based traffic management
can be achieved.

In summary, most knowledge reasoning work so far in the
literature is generally about knowledge graph completion or
cleaning tasks, thereby cannot adequately express concepts of
intersection and collection in abstract knowledge. In addition,

the knowledge reasoning work based on ontology is even
less, let alone reasoning with multiple ontologies. Therefore,
in this article, we propose a multiple ontology-based reason-
ing method by making use of deep learning. This method first
determines values of a number of parameters in ontology rule
base, reducing workload of manual parameters settings, and
avoiding impact of uncertain factors such as unreasonable
empirical parameters setting for knowledge reasoning. Then
an RNN is used to discover the semantic relations between
the ontologies, so as to realize the association of rule bases of
multiple ontologies, thus discover unknown rules and expand
rule base for knowledge reasoning.

The remaining of this article is structured as follows.
Section II introduces related work of ontology mapping,
rule base construction, and knowledge reasoning. Section III
presents a novel method of constructing rule base by deep
learning and a novel method of knowledge inference with
multiple ontologies. Section IV introduces an IoT case for
determining the threshold value of parameters for inference
rules by the proposed regression tree-based model and an IoT
case of semantic reasoning in the traffic safety management.
Finally, in section V, some conclusion is drawn.

II. RELATED WORK
In big data era, human generate 2.2 EB data per day on
average, and 90% of the total global data is created in the
past few years. Big data comes from the pervasive mobile
devices, social media tools, and the IoT applications. The
IoT is a confluence of a number of different fields merging
together to create the promise of connected smart devices [6].
Together with cloud computing and artificial intelligence
technology, typical application fields include smart prod-
uct management, sustainable urban environment, emergency
response [7], smart home automation [8], intelligent Trans-
portation System (ITS) [9] and so on. The essence of these
application is how to effectively process big data that is
generated in the IoT. To explore the value of big data, it is
necessary to effectively analyze them, and a core issue in
data analysis is how to dig unknown truth from data. This is
called knowledge discovery which integrates resource inte-
gration, relationship extraction [10], knowledge discovery
and information push [11], and realizes the reconstruction
of knowledge value [12]. Currently, a large amount of data
exists in the form of unstructured text, semi-structured of
webpages and structured data of various IT systems [13].
Knowledge graph technology has emerged in order to pro-
cess these data efficiently. Knowledge graphs can be used to
aggregate information, data and link relationships in big data
into knowledge by forming a structured semantic knowledge
base, thereby making information resources easily evaluated.
The missing parts of the semantic knowledge base can be
complemented by knowledge reasoning. For example, knowl-
edge graph stores a large number of triples [14], and known
triples (X, birthPlace, Y) in DBpedia [15] can largely infer
missing triples (X, nationality, Y).
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For the concepts of knowledge reasoning, academic com-
munity has given various similar definitions. Tari [16] defines
knowledge reasoning as the acquisition of new knowledge
from existing knowledge based on specific rules and con-
straints. Known knowledge is usually expressed in the form
of feature-value pairs [17]. Reasoning method is divided into
deductive reasoning, inductive reasoning and default reason-
ing according to new judgment. Deductive reasoning covers
widely used methods such as natural deduction, resolution
principle, and performance calculation [18], [19]. Case-based
reasoning infers new problems by using or adapting solutions
to old problems [20]. Traditional knowledge reasoning meth-
ods are mainly based on logical and rule-based reasoning,
and then gradually developed as the basic general reasoning
methods.

The traditional rule-based reasoning method mainly draws
on simple rules or statistical features to make reasoning
with knowledge graph. Inside the YAGO knowledge graph,
an inference engine, Spass-YAGO, is used to enrich the
knowledge graph content [21]. Spass-YAGO abstracts the
triples in YAGO to the equivalent rule class. The chain super-
position is used to calculate the transitivity of the relation-
ship. The superposition process can be iterated arbitrarily.
Through these rules, theYAGOextension is completed.Wang
et al. [22], [23] proposed a first-order probabilistic language
model ProPPR (programming with personalized PageRank)
for knowledge reasoning on knowledge graphs. Cohen [24]
proposed TensorLog, which uses a differentiable process for
reasoning. Jang et al. [25] proposed a model-based approach
to assess the quality of knowledge graph triples. This method
performs data pattern analysis directly in the knowledge
graph, based on the assumption that the more frequent pat-
terns are more reliable and the selection rate is higher.

Ontology is a formal description of a model which com-
prise of shared concepts [26]. As a semantic basis, ontol-
ogy is widely used in information retrieval [37], artificial
intelligence, semantic network, software engineering, natural
language processing, and knowledge management. In order
to meet needs from both industry and academia, a variety of
general ontology library systems (such as WordNet, DBpe-
dia, Cyc, HowNet, Frame Ontology, DublinCore, etc.) and a
large number of domain ontology library systems have been
developed. However, with the widespread development, two
problems aroused. First, ontology is usually developed for
a specific domain, such as biology, finance, sensor, news,
etc. Second, ontology of same domain may have different
models and construction methods. Therefore, if these rule
bases of ontologies are combined to construct a larger one
to represent knowledge in a greater domain, the conceptual
structure will become much more complex, and the inference
rules are more difficult to set up, which largely limits the
capacity of ontology-based intelligent applications.

How to realize the association between heterogeneous
ontology and the use of ontology for knowledge reasoning are
the basis of various intelligent applications. Since OWL rea-
soner evaluation (ORE) was completed in 2012, researchers

have proposed various reasoners such as UKSTv [27],
TrOWL [28], Chainsaw [29], jcel [30], MOre [31], ELe-
pHant [32], ELK [33], HermiT8 [34], PAGOdA [35] and so
on. Among them, ontology mapping is the basis for solv-
ing the heterogeneity of ontology, and it has been applied
to many fields, such as space context awareness, database
integration, and discovery and combination of Web services.
Ontology mapping refers to finding a correspondence in a
multi-ontology entity [36], and is an effective way to solve
knowledge sharing and reuse of heterogeneous ontologies
in semantic webs, which solve the exchange of complex
information [37]. Themethod of ontologymapping is divided
into the four categories: 1) Statistical-based ontology map-
ping: a statistical approach is used in the mapping process.
Prasad et al. [38] proposed a method based on Bayesian,
while Doan et al. [39] proposed a method based on prob-
ability distribution in the mapping process. 2) Rule-based
ontology mapping: the way in which the heuristic rules are
given by domain experts during the mapping process. The
mapping method proposed by Ehrig et al. [40] is based
on heuristic rules. The method first denotes the heuristic
rules by domain experts and calculates the similarity of each
pair of entities to obtain the calculated results.3) Ontology
mapping based on machine learning: the method of machine
learning is used during the process of ontology mapping.
Gruber [41] proposed an ontology-based classification
method using the decision tree classifier method for
multi-source classification of nature conservation areas.4)
The ontologymappingmethod based on the ontology concept
feature: This kind of method mainly calculates the similarity
from the different aspects of the concept name, the instance
of the concept, the attribute of the concept and the structure
of the ontology. The multi-strategy system that emerges in an
endless stream brings a variety of mapping options. However,
when two or more ontologies appear, how to correctly select
the appropriate mapping method according to their charac-
teristics is difficult. In response to this problem, a number
of strategic combination selection methods have been pro-
posed at this stage. Current methods for weight distribution
include: methods based on conflict sets [42], methods based
on analytic hierarchy [43], methods based on triangular fuzzy
numbers [44], methods based on entropy weight decision
making [45].

For the ontology based knowledge reasoning, the con-
struction of ontology rule base is the essential part. The
rule base can guide the expert system to derive new facts
or conclusions from known facts. The construction of the
rule base generally uses the semantic web rule language
(SWRL). Research on ontology based knowledge reasoning
can be generally divided into symbol-based reasoning and
statistical-based reasoning. In artificial intelligence, symbol-
based reasoning is generally based on classical logic (first-
order predicate logic or propositional logic) or classical logic
variation (such as default logic). Some researchers have pro-
posed a series of logical languages for concept descriptions,
collectively referred to as description logic. It eventually
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became the logical basis for the W3C-recommended Web
Ontology Language OWL. With the large-scale growth of
data in recent years, the description logic inference engine
has been challenged in the real world development. In recent
years, researchers have begun to consider the parallelism of
description logic and RDFS to improve the efficiency and
scalability of reasoning, and have achieved many results.
Goodman et al. [46] used the high-performance computing
platformCrayXMT to implement large-scale RDFS ontology
reasoning. However, for platforms with limited computing
resources, optimization of memory usage has become an
inevitable problem. Motik et al. [47] work to convert RDFS
and the more expressive OWL RL into Datalog programs
equivalently, and then use the parallel optimization technol-
ogy in Datalog to solve the memory usage problem. In [48],
the authors attempted to improve the reasoning efficiency of
OWL RL by using a hybrid approach of parallel and serial.
Kazakov et al. [49] proposed a method for implementing
OWL EL classification using multi-threading technology and
implementing the inference engine ELK. Oren et al. [50]
was the first to attempt to implement RDF data reasoning
using Peer-To-Peer’s distributed framework. The experimen-
tal results show that using distributed technology can accom-
plish many large data volume inference tasks that cannot be
completed in a single machine environment. The inference
system WebPIE [51] proposed by Urbani et al. show that
it can complete the inference of tens of billions of RDF
triples on a large cluster. Based on this, they also proposed
the OWL RL query algorithm based on MapReduce [52].
The reasoning algorithm by using MapReduce to implement
OWL EL ontology is proposed in [53]. Experiments show
that MapReduce technology can also solve large-scale OWL
EL ontology reasoning. The reasoning technique of OWL EL
is further extended, so that reasoning can be completed in
multiple parallel computing platforms [54].

Statistical-based reasoning generally refers to relational
machine learning methods. The purpose of this method is
to learn the relationship between instances. There is plenty
of work in this area. Nickel et al. [55] presented a rela-
tional potential feature model called a bilinear model that
considers the interaction of potential features to learn about
potential entity relationships. Drumond et al. [56] applied
a pairwise tensor decomposition model to learn the poten-
tial relationships in the knowledge graph. The translation
model [57] uniformly maps entities and relationships into
low-dimensional vector space, and obtains potential triad
relationships by examining and comparing entity vector pairs
with similar potential features in vector space. The Holo-
graphic Embedding (HolE) model [58] uses a combination of
circular correlation calculation triads and uses circular con-
volution to recover representations of entities and relation-
ships from the combined representation. Still other methods
predict the existence of a possible edge by observing the
characteristics of the edges of the triples. Typical methods
are methods based on Inductive Logic (ILP) [59], methods
based on Association Rules Mining (ARM) [60] and path

ranking [61]. SDType [62] uses the statistical distribution of
attributes connected by triple subject or predicate to predict
the type of instance. This method can be used in the knowl-
edge graph of any single data source, but it cannot do type
inference across data sets. Both Tipalo [63] and LHD [64]
use DBpedia data’s unique abstract data to extract instance
types using specific patterns. Such methods rely on textual
data of a specific structure and cannot be extended to other
knowledge bases.

III. METHOD
A. DETERMINE THRESHOLD VALUE OF PARAMETERS
FOR INFERENCE RULES
As mentioned before, knowledge is represented as rules
in ontology, and unknown rules can be achieved through
ontology rules reasoning. The inference rules are usually
predefined and lack the adaptability to different applica-
tion scenarios. To solve this issue, variable parameters for
each rule in the rule base needs to be used. However, these
parameters are traditionally determined manually. In order
to realize appropriate and accurate ontology-based reasoning
for domain specific applications, we propose to use machine
learning method to determine the threshold value of parame-
ters for inference rules. To prevent overfitting objective func-
tions in the IoT big data application scenarios where missing
data is common and parallel processing is needed, in the
proposed method, adaptive data analysis is used to determine
appropriate parameters’ value by utilizing a scalable end-
to-end tree boosting method (XGBoost) to process a large
amount of sensor data collected in real time IoT applications.
This method can determine appropriate parameters adap-
tively and dynamically, and eliminate human interference to
better extract the characteristics of the data and display it in
the form of a tree.

In our approach, sensor data needs to be labeled first.
The corresponding data tag represents the trigger state of the
semantic inference rule in amulti-dimensional form. The trig-
ger state is uniformly parameterized according to the results
of all the established semantic inference rules. Based on a
large number of constructed sensor datasets, a regression tree
model as shown in Fig 1 is trained. After determining the
parameters of rule inference, we can get a more accurate
trigger state of each semantic inference rule. In addition,
SPARQL is used to reason and query, and specific semantic
related resources can be retrieved by using SPARQL without
affecting the existing data model.

To better illustrate our approach, we abstractly represent
each specific semantic inference rule as ri, and define τ =

{r1, r2, . . . , ri} as a collection of all semantic inference rules.
The trigger status of each rule includes an initial state, a
transition state, and a state transition condition. The state
transition condition is a set of parameters that need to be
obtained to determine the trigger state of the inference rule.
We denote the set of parameters Bj of each semantic inference
rule as κ = {B1,B2, . . . ,Bj}. In our method, we construct the
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FIGURE 1. Schematic diagram of a regression tree structure for
determining rule parameters.

corresponding a regression treemodel for each κ to determine
each parameter Bj in the set.

We use the same strategy to construct the regression tree
for each semantic inference rule. In XGBoost, the definition
T represents the number of leaf node of the regression tree,
each fk corresponds to an independent tree structure q and leaf
weights ω [65], loss() represents the loss function that mea-
sures the difference between the label yi and the prediction ŷi.
L(φ) represents the objective function, that can be described
as the following:

L(φ) =
∑
i

loss(ŷi, yi)+
∑
k

�(fk )

where �(f ) = γT +
1
2
λ ‖ω‖2 (1)

The� is used to penalizes the complexity of the model for
avoiding over-fitting. γ and λ are the variable parameters.

In Euclidean space, Eq.(1) cannot be optimized using tra-
ditional optimization methods, so ft is added to minimize
the following objective L(t) which represents the objective
function at the t-th iteration.

L(t) =
n∑
i=1

loss(yi, ŷ
(t−1)
i + ft (xi))+�(ft ) (2)

Second-order approximation can be used to quickly opti-
mize the objective in the general [66]. So Eq.(2) can be
converted to Eq.(3) as the following:

L(t) '
n∑
i=1

[l(yi, ŷ(t−1))+ gift (xi)+
1
2
hif 2t (xi)]+�(ft )

where gi = ∂ŷ(t−1)loss(yi, ŷ
(t−1))

and hi = ∂2ŷ(t−1)loss(yi, ŷ
(t−1)) (3)

removing the constant terms, the Eq.(3) can be rewritten
by expanding � as:

L̃(t) =
T∑
j=1

[(
∑
i∈Sj

gi)ωj +
1
2
(
∑
i∈Sj

hi + λ)ω2
j ]+ γT (4)

The Sj = {i|q(xi) = j} is defined as the instance set of leaf
j. For a fixed structure q(x),the optimal weight ω∗j of leaf j
can be computed as following [65]:

ω∗j = −

∑
i∈Sj

gi∑
i∈Sj

hi + λ
+ γT (5)

The Eq.(4) can be rewritten by ω∗j as the following, which
can be used to measure the quality of a tree structure q:

L̃(t)(q) = −
1
2

T∑
j=1

(
∑
i∈Sj

gi)2∑
i∈Sj

hi + λ
+ γT (6)

Normally it is impossible to enumerate all the possible
tree structures q. So a greedy algorithm Eq.(7) is used in
XGboost to evaluate the split candidates [65].(SL and SR are
the instance sets of left and right nodes after the split, and
S = SL ∪ SR )

Lsplit=
1
2
[

(
∑
i∈SL

gi)2∑
i∈SL

hi + λ
+

(
∑
i∈SR

gi)2∑
i∈SR

hi+λ
−

(
∑
i∈S

gi)2∑
i∈SR

hi + λ
]− γ (7)

Then we can build a regression tree model using XGBoost
whose threshold of the split can be used as the reference value
for the threshold of inference rules.

Algorithm 1 Determining Threshold Value of Parameters
Input: S, instance of IoT dataset
Input: f , feature dimension
gain < −0
G←

∑
i∈S

gi, H←
∑
i∈S

hi,

For k = 1 to m do
GL ← 0, HL ← 0
For j in sorted( S, by xjk) do

GL ← GL + gj, HL ← HL + hj
GR← G− GL , HR← H − HL

//Greedy Algorithm for Split Finding

score← max(score, G2
L

HL+λ
+

G2
R

HR+λ
−

G2

H+λ )
End

End
Output: Split and default directions with max score.

B. CONDUCT REASONING WITH MULTI-ONTOLOGY
To realize versatile knowledge reasoning, solely determining
parameters of rules is not enough, finding new rules is more
important in figuring out unknown knowledge. Although
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algorithms in the literature were proposed to infer new rules,
they are all limited to the scope of one single ontology,
thereby not applicable in multiple ontologies scenarios. If the
rule bases of multiple ontologies are associated according
to the similarity relationship between the two concepts in
different ontologies, mapping of multiple ontology can be
achieved. Then the knowledge reasoning based on multiple
ontologies can leverage more rules. These new rules repre-
sent the knowledge that hides in multiple domain ontologies,
breaking through the limitations of the original standalone
ontology, and bringmore inference ability to various practical
IoT applications.

It is assumed that the ontology is represented by a quad
(concept, relationship, instance set, rule), where the relation-
ship represents the relations between two concepts or con-
cepts and attributes in the ontology. After the multi-ontology
is related by the similarity relationship between two concepts,
the new knowledge can be expressed as the inferred new
relationship between two ontologies and the corresponding
concept or attribute of the new relationship. We can repre-
sent knowledge in the form of triples (concept, relationship,
concept).

Then the set of relationships in the ontology can use the
above-mentioned knowledge triples to construct the semantic
network contained in the ontology. This network structure
is essentially a directed graph with path tags. Inspired by
this idea, we view knowledge as a sequence and put it into
two-wayGRUmodel with attentionmechanism (both of them
can discover the potential relationship between sequences).
In our method, a deep learning method (As shown in Fig 2) is
used to construct a new larger semantic network based on
the similarity of nodes in these isolated semantic networks,
thus knowledge reasoning based on two ontologies can be
achieved.

FIGURE 2. Schematic diagram of the two-way GRU neural network with
attention mechanism.

We denote the concept pairs in these semantic networks as
(Cs,Ce), where Cs denotes the starting node in the directed

graph and Ce denotes the terminating node in the directed
graph. Set S represents all paths between two concepts that
exist from Cs to Ce. Where the path is represented as π ={
Cs(0), r1,C1, r2,C2, . . . rk ,Ce(k)

}
∈ S. r represents the spe-

cific relationship that exists on the path. The length of the
path is k , len (π) = k . In addition, according to the mapping
relationship between two ontologies, C ′i and C

′
j (i, j ∈ [0, k])

having similar relationships with Ci and Cj are randomly
replaced with Ci and Cj in the corresponding proportions in
the set S according to their corresponding degrees of similar-
ity (normalized to the range of [0, 1]). The intersection of the
constructed path set and the set S is represented as a set S ′.

For the relationship rt (t ∈ [1, k]) that exists on the path,
we use xrt ∈ R

d to represent the vector form of the relation-
ship. For the concept Ct (t ∈ [1, k]) that exists on the path,
we use xCt ∈ R

m to represent the vector form of the concept.
Then we use the network structure of the two-way GRU to
process the vectors of these representations. The correspond-
ing neural network input vector at the t position is expressed
as:

xt = wddxrt + wmdxCt (8)

where wdd ∈ Rd×d ,wmd ∈ Rm×d is the weighting parameter
that the neural network needs to determine.

Then the calculation of the two-way GRU neural network
at the t position can be expressed as:

Eht = GRU
(
xt , Eht−1

)
(9)

←

h t = GRU
(
xt ,
←

h t+1
)

(10)

The calculations in each unit of the GRU (As shown
in Fig 3) are defined as follows:

zt = σ (wz · [ht−1, xt ]) (11)

rt = σ (wr · [ht−1, xt ]) (12)

h̃t = tanh (w · [rt ∗ ht−1, xt ]) (13)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (14)

where σ represents the sigmoid activation function, ht repre-
sents the hidden layer of the corresponding GRU, and wz, wr

FIGURE 3. Schematic diagram of each URG unit in the model.
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and w represent the parameters that the neural network needs
to train. Through this RNN unit structure using the update
mechanism zt and the reset mechanism rt , the correlation
between the path and the position t closest to the location
can be paid more attention. That is, the forgetting mechanism
selectively forgets the relationship far away from the current
position, thereby avoiding the long-term dependence on the
far input, which will result in poor performance of the neural
network.

We use all the hidden layers ht in the two-way GRU
structure to construct the neural network output result hπ on
the corresponding path π . But in this process, if each hidden
layer ht is given same weight, a more realistic relationship on
the path cannot be effectively extracted.

To make different relationships in the path have different
effects on final output, our approach introduces an attention
mechanism to select the appropriate weight for each hidden
layer.

For the hidden layer ht , the corresponding weight αt of the
application attention mechanism is defined as:

µt = tanh (wtht + bt) (15)

αt =
exp

(
µTt µw

)∑
t
exp

(
µTt µw

) (16)

Among them, wt and bt are the weights and offsets in the
training parameters for the corresponding neural network,
and µw are the weight parameters that need to be trained.
Therefore, all hidden layer ht are weighted and summed to
calculate the output of the neural network:

hπ =
∑
t

αtht (17)

The specific relationship r derived from the neural network
output is then defined as:

P (r|Cs,Ce)=σ

(
1
k

k∑
i=1

hπ

)
, π ∈ S ′, k ∈ [1,N ] (18)

We derive the specific relationship of neural network infer-
ence based on the first k paths of the results of all the paths
(the number is N ) in the set S ′.

Suppose that the set of all relationships is represented
as Rr = {r1, r2, · · · , rn} (the specific relationship that is
inferred is r ∈ R). The optimizer function in the neural
network training process is expressed as:

L
(
θ,1+R ,1

−

R

)
=−

1
M

∑
Cs,Ce,r∈1

+

R

logP (r|Cs,Ce)

+

∑
Ĉs,Ĉe,r̂∈1

−

R

log
(
1−P

(
r̂|Ĉs, Ĉe

))
(19)

1+R ,1
−

R represent the sets of all positive and negative
samples in setR, respectively. θ represents the parameters that
the neural network needs to trained in our method.

According to our proposed method, the semantic network
for multiple ontology can be constructed, and the specific
relationship r , that is, the new knowledge, is inferred for the
given concept pair (Cs,Ce).
By constructing a semantic network with recent found

knowledge from multiple ontologies, and utilizing the infer-
ence rules in each ontology, rule reasoning between two
ontologies can be achieved. This will provide richer informa-
tion and more efficient reasoning for knowledge-based appli-
cations. For example, combining a sensor ontology with a
domain ontology for shipping industry can discover more rea-
sonable shipping strategy such as a rapid emergency response
mechanism triggering by a particular sensor data.

IV. EXPERIMENTAL RESULTS
IoT based intelligent devices and applications have been
widely deployed in various fields [67] . Among them, traffic
safety which involves vehicle safety, vehicle monitoring, and
intelligent traffic control, has always been a concern in daily
lives. With the continuous development of driverless cars,
traffic safety conditions are increasingly being combined
with vehicle driving conditions. By reducing some compli-
cated judgments and operations of the driver, the intelligent
decision-making system can more effectively avoid traffic
accidents and ensure traffic safety.

Large amount of sensor data from vehicle and urban road
monitoring systems has been accumulated. However, with
popular data analysis mechanism which comprises of pre-
defined rules, it is difficult to iterate every situation that
may occur in real executions. Thus, a more effective way is
to extend the rule base with learning method as introduced
in section III. This can provide richer information for the
IoT system while better understanding for the application
scenario.

A. DETERMINE THRESHOLD VALUE OF PARAMETERS
FOR INFERENCE RULES
We use the XGBoost based model which was introduced in
section III to determine the threshold value of parameters for
inference rules to the dataset of traffic safety management.

The definition of the vehicle driving status information is
shown in Table 1:

TABLE 1. The vehicle driving status information.

With sensor data, we constract a inference rule with param-
eters {B1,B2, . . . ,B5} to determine whether the driver is
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FIGURE 4. A decision tree built by XGBoost on the dataset of vehicle
driving status information.

driving safely. Here, the construction of rule is build by
semantic web rule language (SWRL). The ?d , ?z, ?pe, ?p,
?s respectively represent instances of the concept: Car Door
Value, Car Speed Value, Driver’s head state Value, Parking
brake Value and Seat belt Value. The swrlb:less Than or
Equeal is the built-in atom of SWRL, which represents the
instance value is less than or equal to the parameter value.

I. Car Door(?d)∧Car Door Value(?d,B1)∧Car
Speed(?z)∧Car Speed Value(?z, ?x)∧swrlb:less Than
Or Equal(?x,B2)∧Driver’s head state (?pe)∧Driver’s
head state Value(?pe,B3)∧Parking brake(?p)∧Parking
brake Status(?p,B4)∧Seat belt Status(?s)∧Seat belt
Status(?s,B5)→The driver safety status(?ds, ‘‘safety’’)

In order to train the proposed model, we use a six-tuple to
represent data containing the necessary information, Seat belt
status, Driver’s head state, Parking brake status, Door status,
Vehicle speed status and Driver safety status.

We run the proposed model and build a decision tree to
determine the threshold value of parameters of inference
rules, which is shown in Fig 4.

From this decision tree, we can determine the specific
parameter values automatically. Then we set the parameters
according the decision tree and rewrite rule I as following:
II. Car Door(?d)∧Car Door Value(?d, 0)∧Car

Speed(?z)∧Car Speed Value(?z, ?x)∧swrlb:less Than
Or Equal(?x, 71.5)∧Driver’s head state (?pe)∧Driver’s
head state Value(?pe, 1)∧Parking brake(?p)∧Parking
brake Status(?p, 0)∧Seat belt Status(?s)∧Seat belt
Status(?s, 1)→The driver safety status(?ds, ‘‘safety’’)

As shown by the experimental result, XGBoost based
model is efficient and effective in determining threshold value
of parameters for inference rules. To some extent, our method
is more effective in predicting value of continuous variables
than manual setting, such as the vehicle speed.

TABLE 2. The vehicle operation.

TABLE 3. The vehicle information.

TABLE 4. The driver information.

B. MULTI-ONTOLOGY BASED REASONING BY TWO-WAY
GRU WITH ATTENTION MECHANISM
We apply our method to the real-world scene of traffic safety
management. By constructing the vehicle ontology and the
traffic management ontology, we can effectively infer various
traffic safety situations and make decisions for the driver
quickly.

The definition of the vehicle operation is shown in Table 2:
The definition of the vehicle information is shown

in Table 3:
The definition of the driver information is shown

in Table 4:
The definition of the location information of the vehicle is

shown in Table 5:
The above information can be obtained in real time

through devices on the vehicle, such as sensors, car GPS
devices, video camera devices, network devices, and the like.
In the vehicle ontology we built, the concept defined by the
in-vehicle device is
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TABLE 5. The location information of the vehicle.

From Device = From Sensors∪From GPS∪From
Camera∪Run Time.

a) From Sensors: The real-time data of the vehicle
operating parts and the steering wheel are generally
acquired using sensors. From Sensors = {steering
wheel angle state, clutch pedaling depth, foot brake
status, accelerator pedaling depth, hand brake status,
door status, seat belt status, gear status, vehicle speed,
engine speed, lighting status, vehicle jitter status, steer-
ing wheel status,. . . }.

b) From GPS: Vehicle location information collected in
real time is generally realized by using a GPS receiving
terminal.

c) From Camera: The driver’s head motion information
and hand motion information collected in real time
are generally realized by using a multimedia camera
device.

d) RunTime: The continuous working time of the vehicle
equipment in a certain state.

The concept of the vehicle ontology is specifically defined
as Table 6:

Some rules for vehicle ontology based on SWRL are:

A. Car Door(?d)∧Car Door Value(?d, False)∧Car
Speed(?z)∧Car Speed Value(?z, ?x)∧swrlb:less Than
Or Equal(?x,5)∧Head status (?pe)∧Head status
Value(?pe, ’’looking straight ahead’’)∧Hand status
(?pa)∧Hand status Value(?pa, ‘‘holding the steering
wheel with both hands’’)→The vehicle status value
(?vs, ‘‘slow down parking’’)∧The driver status value
(?ds, ‘‘normal driving’’)

Rule Description: Car Door, Car Speed, Head status, and
Hand status are vehicle ontology concepts: Door status, Vehi-
cle speed, Driver’s head status, and Driver’s hand status;

?d , ?z, ?pe, and ?pa represent instances of Car Door, Car
Speed, Head status, and Hand status, respectively; Car Door
Value, Car Speed Value, Head status Value, and Hand status
Value are data attributes; Swrlb:greater Than Or Equal is the
built-in atom of SWRL; Car Door Value (?d, False) indicates

TABLE 6. Vehicle ontology.

that the door is closed, Car Speed Value (?z,?x)∧swrlb:less
Than Or qual(?x,5) indicates that the vehicle speed is less
than 5km/h; The result of this rule is that the vehicle is in a
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‘‘deceleration’’ state and the driver is in a ‘‘normal driving’’
state.
B. Safety Belt (?s)∧Safety Belt Value(?s, False)∧Gear

(?g)∧Gear Value(?g, 5)∧Engine Speed(?e)∧Engine
Speed Value(?e,?a)∧swrlb:greater Than Or Equal(?a,
3000)∧LR_Jitter (?l, True)∧Head status (?pe)∧Head
status Value(?pe, ‘‘bow down’’)∧Time On Action(?c)∧
Time On Action Value(?c, ?x)∧swrlb:greater Than
Or Equal(?x, 10)∧Hand status (?pa)∧Hand sta-
tus Value(?pa, ‘‘one hand holding the steering
wheel’’)∧On Lane(?o)∧On Lane Value(?o, ‘‘fast
lane’’)→The vehicle status value (?vs, ‘‘High
speed’’)∧The driver status value (?ds, ‘‘dangerous
driving’’)

Rule Description: Safety Belt, Gear, Engine Speed,
LR_Jitter, Head status, Time On Action, Hand status, On
Lane are vehicle ontology concepts: Seat belt status, Manual
gear status, Engine speed, Left and right jitter status, Driver’s
head status, Driver’s operation state duration, Driver’s hand
state, Vehicle driving lane;

?s, ?g, ?e, ?l, ?pe, ?c, ?pa, ?o respectively represent
instances of the concept; Safety Belt Value, Gear Value,
Engine Speed Value, Head status Value, Time On Action
Value, Hand status Value, On Lane Value are data attributes;
Swrlb:greater Than Or Equal is the built-in atom of SWRL;
The result of this rule is that the vehicle is in a ‘‘high-speed
driving’’ state and the driver is in a ‘‘dangerous driving’’ state.

In the traffic management ontology we built, the concept
of setting is Traffic = On Tag Line∪On Globe∪Traffic
vehicle. Where: On Tag Line represents the traffic marker
and On Globe represents the zone marker. Traffic vehicle
indicates the state of the traffic vehicle. Here, On Tag Line
= {center solid line, traffic edge line, pressure lane boundary
line, right edge line, sidewalk edge line, outer traffic edge
line};OnGlobe= {No parking area, school area, crosswalk,
bus stop, hospital area, cross traffics, sharp bend area, slope
area, bridge area}; Traffic vehicle= {straight, stop, turn left,
turn right, turn around, change lane, overspeed, low speed,
collision, retrograde, etc.}.

The concept of the traffic management ontology is specif-
ically defined as Table 7:

Some rules about traffic management ontology based on
SWRL rules are as follows:
C. Traffic vehicle (?r)∧Traffic vehicle Value(?r, ‘‘stop’’)∧

No Pass Area (?n)∧ No Pass Area Value(?n,
True)→The traffic safety status (?rs, ‘‘violation’’)

Rule Description: Traffic vehicle andNo Pass Area are traf-
fic management ontology concepts: Traffic vehicle, No park-
ing area;

?r , ?n represent instances of the concept, respectively;
Traffic vehicle Value, No Pass Area Value is a data attribute;
The result of this rule is that the traffic safety status is
‘‘violation’’.
D. Traffic vehicle (?r)∧Traffic vehicle Value(?r,

‘‘straight’’)∧High Way (?h)∧High Way Value(?h,

TABLE 7. Traffic management ontology.

True)→The traffic safety status (?rs, ’’ speed limit
120km/h’’)

Rule Description: Traffic vehicle and High Way are traffic
management ontology concepts: Traffic vehicle, High way,
?r , ?h represent instances of the two concepts respectively;
Traffic vehicle Value and High Way Value are data attributes;
The result of this rule is that the traffic safety status is ‘‘speed
limit 120km/h’’.

These inference rules can only be used to manage vehicles
and traffics separately. In order to better realize traffic safety
management, it is necessary to correlate vehicle ontology
and traffic management ontology, and implement new rule
reasoning according to ontology rules.

We construct the deep learning model proposed in the
section III to discovery new inference rules. Based on the
training of a large number of triples (concept, relationship,
concept) in the data set, the neural network can be used
to predict the relationship between the target concept pairs.
Training curve of the deep neural network model trained in
our experiment is shown in Fig 5.

The top-5 candidates concept pairs predicted by the model
is specifically showed in Table 8. Concept1 is from vehicle
ontology and Concept2 is from traffic management ontology.
The probability that a concept pair can form a new inference
rule, predicted by our model, is shown in column 3.

The new relationship between the target concept pairs
obtained through the neural network model can combine two
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FIGURE 5. Training and validation loss of the proposed neural network.

TABLE 8. The Top-5 predicted probability of concept pairs.

FIGURE 6. New relationships predicted by the proposed model.

relatively independent knowledge representations, as shown
in Fig 6. The diagram briefly shows the relationship between
the concepts that exist in two relatively independent ontolo-
gies. Through the learning of a large number of triples exist-
ing in each ontology, the neural network model predicts new
relationships between the target concept pairs represented by
the green dotted lines in Fig 6. And this is a key step for
linking and expanding rule bases.

All the predicted concept pair shown in the Table 8 could be
used to generate new rules, without loss of generality, in our
experiment, two concept pairs with the highest probability are
used to generate rules. The number of the candidate concept
pairs can be determined according to the specific application
with different data sets.

Based on the prediction of the neural network model,
we can infer that two concepts, vehicle status from vehicle
ontology and Traffic vehicle from traffic management ontol-
ogy, have an equivalence relationship. This combines rules A.
and C. to implement new inference rules E.:

i. The vehicle status value (?vs, ‘‘slow down parking’’)=
Traffic vehicle (?r)∧Traffic vehicle Value(?r, ‘‘stop’’)

ii. Car Door(?d)∧Car Door Value(?d, False)∧Car
Speed(?z)∧Car Speed Value(?z, ?x)∧swrlb:less Than
Or Equal(?x,5)∧Head status (?pe)∧Head status
Value(?pe, ‘‘looking straight ahead’’)∧Hand status
(?pa)∧Hand status Value(?pa, ‘‘holding the steering
wheel with both hands’’)→Traffic vehicle (?r)∧Traffic
vehicle Value(?r, ‘‘stop’’)∧The driver status value (?ds,
‘‘normal driving’’)

iii. Car Door(?d)∧Car Door Value(?d, False)∧Car
Speed(?z)∧Car Speed Value(?z, ?x)∧swrlb:less Than
Or Equal(?x,5)∧Head status (?pe)∧Head status
Value(?pe, ‘‘looking straight ahead’’)∧Hand status
(?pa)∧Hand status Value(?pa, ‘‘holding the steering
wheel with both hands’’)∧No Pass Area (?n)∧No Pass
Area Value(?n, True)→Traffic vehicle (?r)∧Traffic
vehicle Value(?r, ‘‘stop’’)∧No Pass Area (?n)∧No Pass
Area Value(?n, True)∧The driver status value (?ds,
‘‘normal driving’’)

iv Car Door(?d)∧Car Door Value(?d, False)∧Car
Speed(?z)∧Car Speed Value(?z, ?x)∧swrlb:less Than
Or Equal(?x, 5)∧Head status (?pe)∧Head status
Value(?pe, ‘‘looking straight ahead’’)∧Hand status
(?pa)∧Hand status Value(?pa, ‘‘holding the steering
wheel with both hands’’)∧No Pass Area (?n)∧No Pass
Area Value(?n, True)→The traffic safety status (?rs,
’’violation’’)∧The driver status value (?ds, ‘‘normal
driving’’)

v Car Door(?d)∧Car Door Value(?d, False)∧Car
Speed(?z)∧Car Speed Value(?z, ?x)∧swrlb:less Than
Or Equal(?x,5)∧Head status (?pe)∧Head status
Value(?pe, ‘‘looking straight ahead’’)∧Hand status
(?pa)∧Hand status Value(?pa, ‘‘holding the steering
wheel with both hands’’)∧No Pass Area (?n)∧No Pass
Area Value(?n, True)→The traffic safety status (?rs,
’’violation’’)

E Car Door(?d)∧Car Door Value(?d, False)∧Car
Speed(?z)∧Car Speed Value(?z, ?x)∧swrlb:less Than
Or Equal(?x,5)∧Head status (?pe)∧Head status
Value(?pe, ‘‘looking straight ahead’’)∧Hand status
(?pa)∧Hand status Value(?pa, ‘‘holding the steering
wheel with both hands’’)∧No Pass Area (?n)∧No Pass
Area Value(?n, True)→The traffic safety status (?rs,
’’violation’’)

For rule B. and ruleD., it is inferred thatOn Lane andHigh
Way have an inclusion relationship, whereby new inference
rules F. can be implemented:

i On Lane(?o)∧On Lane Value(?o, ‘‘fast lane’’)∈High
Way (?h)∧High Way Value(?h, True)

124698 VOLUME 7, 2019



J. Liu et al.: Deep Learning-Based Reasoning With Multi-Ontology for IoT Applications

ii Safety Belt (?s)∧Safety Belt Value(?s, False)∧Gear
(?g)∧Gear Value(?g, 5)∧Engine Speed(?e)∧Engine
Speed Value(?e, ?a)∧swrlb:greater Than Or Equal(?a,
3000)∧LR_Jitter (?l, True)∧Head status (?pe)∧Head
status Value(?pe, ‘‘bow down’’)∧Time On Action(?c)∧
Time On Action Value(?c, ?x)∧swrlb:greater Than
Or equal(?x, 10)∧Hand status (?pa)∧Hand sta-
tus Value(?pa, ‘‘one hand holding the steering
wheel’’)∧On Lane(?o)∧On Lane Value(?o, ‘‘fast
lane’’)∧Traffic vehicle (?r)∧Traffic vehicle Value(?r,
’’straight’’)∧High Way (?h)∧High Way Value(?h,
True)→The vehicle status value (?vs, ‘‘High speed’’)∧
The driver status value (?ds, ’’dangerous driving’’)∧
The traffic safety status (?rs, ’’speed limit 120km/h’’)

iii Safety Belt (?s)∧Safety Belt Value(?s, False)∧Gear
(?g)∧Gear Value(?g, 5)∧Engine Speed(?e)∧Engine
Speed Value(?e, ?a)∧swrlb:greater Than Or Equal(?a,
3000)∧LR_Jitter (?l, True)∧Head status (?pe)∧Head
status Value(?pe, ‘‘bow down’’)∧Time On Action(?c)∧
Time On Action Value(?c, ?x)∧swrlb:greater Than
Or qual(?x, 10)∧Hand status (?pa)∧Hand sta-
tus Value(?pa, ‘‘one hand holding the steering
wheel’’)∧On Lane(?o)∧On Lane Value(?o, ‘‘fast
lane’’)∧Traffic vehicle (?r)∧Traffic vehicle Value(?r,
‘‘straight’’)→The traffic safety status (?rs,
‘‘violation’’)∧ The driver status value (?ds, ‘‘danger-
ous driving’’)

F Safety Belt (?s)∧Safety Belt Value(?s, False)∧Gear
(?g)∧Gear Value(?g, 5)∧Engine Speed(?e)∧Engine
Speed Value(?e, ?a)∧swrlb:greater Than Or Equal(?a,
3000)∧LR_Jitter (?l, True)∧Head status (?pe)∧Head
status Value(?pe, ‘‘bow down’’)∧Time On Action(?c)∧
Time On Action Value(?c, ?x)∧swrlb:greater Than
Or equal(?x, 10)∧Hand status (?pa)∧Hand sta-
tus Value(?pa, ‘‘one hand holding the steering
wheel’’)∧On Lane(?o)∧On Lane Value(?o, ‘‘fast
lane’’)∧Traffic vehicle (?r)∧Traffic vehicle Value(?r,
‘‘straight’’)→The traffic safety status (?rs,
‘‘violation’’)∧The driver status value (?ds, ‘‘dangerous
driving’’)

It can be seen that a new inference rule combining vehicle
ontology and traffic management ontology is realized. This is
based on new relationship association inferred from the two
concepts that belongs to the vehicle and the traffic manage-
ment ontology respectively. In this experiment, as we have
integrated vehicle and road information, the rule bases are
integrated and expanded, more knowledge-based reasoning
for road safety is achieved. By combining a large number
of sensor data from the vehicle system with the urban road
supervision system with our proposed deep learning-based
method, the knowledge reasoning in multi-ontology is
realized. Moreover, with this method, the IoT sys-
tem can handle unencountered situation, thus, the road
safety situation can be more effectively monitored and
evaluated.

V. CONCLUSION
This paper proposed a deep learning-based method to realize
automatic new inference rules discovery by association of
multiple domain ontologies’ rule bases for IoT applications.
The experimental results obtained in a case study of traffic
safety monitoring prove the effectiveness of the proposed
method. Firstly, a scalable end-to-end tree boosting based
model is utilized to determine the parameters needed for rule
base to avoid the impact of uncertain factors to the results
of knowledge-based reasoning. Next, as triples of concept
pair with relationship actually form a semantic network, these
triples can be combined together as paths in this network,
thereby can be vectorized as input of neural network. Then,
new inference rules which are based on multiple ontologies
were discovered through a model of two-way GRU with
attention mechanism. Finally, the association of rule bases
in multiple ontologies is established, which expands the rule
base for knowledge-based reasoning. Thus, the better under-
standing of the IoT application scenarios is achieved through
our proposed method.
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