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ABSTRACT The complexity of raw functional magnetic resonance imaging (fMRI) data with artifacts
leads to significant challenges in multioperations with these data. FMRI data analysis is extensively used
in neuroimaging fields, but the tools for processing fMRI data are lacking. A novel APP DESIGNER
conversion, preprocessing, and postprocessing of fMRI (CPREPP fMRI) tool is proposed and developed
in this work. This toolbox is intended for pipeline fMRI data analysis, including full analysis of fMRI data,
starting fromDICOMconversion, then checking the quality of data at each step, and ending in postprocessing
analysis. The CPREPP fMRI tool includes 12 conversions of scientific processes that reflect all conversion
possibilities among them. In addition, specific preprocessing order steps are proposed on the basis of data
acquisition mode (interleaved and sequential modes). A severe and crucial comparison between statistical
parametric and nonparametric mapping approaches of second-level analysis is presented in the same tool.
The CPREPP fMRI tool can provide reports to exclude subjects with the extreme movement of the head
during the scan, and a range of fMRI images are generated to verify the normalization effect easily. Real
fMRI data are used in this work to prepare fMRI data tests. The experiment stimuli are chewing and biting,
and the data are acquired from the National Magnetic Resonance Research (UMRAM) Center in Ankara,
Turkey. A free dataset is used to compare the methods for postprocessing fMRI tests.

INDEX TERMS Analyze data (img/hdr), DICOM, fMRI, NIFTI, parametric and nonparametric approaches.

I. INTRODUCTION
Functional magnetic resonance imaging (fMRI) blood oxy-
gen level-dependent (BOLD) signals are less than numerous
noise sources in the recording stage. Therefore, the pre-
processing of fMRI data is decisive and essential prior to
postprocessing analysis. During a scanning session, fMRI
directly measures changes in the BOLD signal and reflects
neural activities. The acquired data (raw data, DICOM) con-
tain imperfections and artifacts given subject movement,
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spontaneous neural activities, and intrinsic electron thermal
noises. Therefore, a certain degree of preprocessing analy-
sis includes conversion data, and denoising steps must be
performed before analyzing the fMRI. The preprocessing of
fMRI data is implemented step by step, and the preprocessing
pipeline is formed [1]. No consensus exists on the steps that
must be performed in the preprocessing stage or on selecting
parameters in those steps. Preprocessing poses numerous
effects on BOLD fMRI data, and many studies have been
conducted on this issue [2]. Stephen C Strother, for example,
analyzed common preprocessing steps for BOLD fMRI and
their possible influences [3]. In 2010, Yan Chao-Gan and
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Zang Yu-Feng developed a MATLAB toolbox called
DPARSF, which depends on using SPM [4], [5] and
REST tool [6] for resting-state fMRI (rs-fMRI) data. These
researchers performed classical preprocessing steps; reports
could be generated to exclude subjects with the extreme
movement of the head during the scan, and numerous
fMRI images were created to verify the normalization effect
easily [7]. Jonathan D Power et al. determined that subject
motion without proper preprocessing can cause false cor-
relations, but methodology correlations are established in
fMRI networks [8]. The signal changes induced by motion
increase observed resting-state functional connectivity [9].
Changwei W. Wu et al. conducted an empirical study on the
effect of slice timing, smoothing, and normalization on seed-
based rs-fMRI correlation analysis [10]. Ronald Saldky et al.
evaluated the influence of the slice-timing effect on simu-
lated data for different fMRI paradigms and measurement
parameters and emphasized the significance of slice-timing
correctionmethods [11]. Michael NHallquist et al. found that
exchanging nuisance regression and filtering in the prepro-
cessing pipeline will produce different results [12]. William
R. Shirer et al. aimed to identify the data-preprocessing
pipeline that optimizes rs-fMRI data across multiple outcome
measures, such as signal-to-noise ratio, test–retest reliabil-
ity, and group discriminability [13]. Eklund et al. analyzed
some rs-fMRI data of healthy controls through task-related
statistical methods and found inflated false positive rates for
cluster-wise inference using three processing packages [14].
Guillaume Flandin and Karl J. Friston emphasized the advan-
tages of parametric analyses in their technical report [15].
Yunxiang Ge et al. introduced an evaluation study for a
specific preprocessing pipeline of rs-fMRI data analysis; this
evaluation study showed that fMRI data acquired using a
scanner and a different protocol significantly affect statistical
analysis [16]. Open-source tools, such as SPM, are available.
These tools are based on the definition of step-by-step param-
eters that also depend on the subject. These proceedings lead
to increasing confusion for a user, with the possibility of
increasing mistakes.

Therefore, an easy-to-use tool for a data analysis
‘‘pipeline’’ of fMRI will be necessary. A user-friendly tool-
box called the APP DESIGNER conversion, preprocessing,
and postprocessing of fMRI (CPREPP fMRI) tool is proposed
and utilized in the current work. The CPREPP fMRI tool is a
new toolbox that includes a complete analysis of fMRI data,
starting from DICOM conversion, then checking the quality
of data at each step, and ending in postprocessing analysis.
The CPREPP fMRI tool provides the multiple conversion
operations of all fMRI data formats (.dicm, .nii, .img, .hdr,
and .mat format), which include 12 mathematical conversion
processes that reflect all conversion possibilities among them.
Specific preprocessing order steps are proposed on the basis
of data acquisition mode (interleaved and sequential mode).
These steps are preceded by two processes, namely, removing
dummy scans and reorientation of fMRI images. These pro-
cesses must be implemented after the fMRI data conversion

process. A serious and crucial comparison analysis between
statistical parametric and nonparametric mapping approaches
of the second-level analysis of fMRI data is presented in
one tool. The CPREPP fMRI tool can provide reports to
exclude subjects with the extreme movement of the head
during the scan, and a range of fMRI images is generated to
verify the normalization effect easily. The APP DESIGNER
(CPREPP fMRI) tool is designed under the MATLAB plat-
form and 64-bit Windows environment to serve the majority
of the users. APP Designer is a substantial evolution envi-
ronment that supplies layout planning, views of code, a fully
incorporated version of MATLAB editor, and a vast extent
of interactive components. Three tests, namely, smoothed
variance pseudo t-test, t-test without smoothing through a
permutation distributionwith a single threshold test, and t-test
using random field theory (RFT), are performed. Quantitative
and qualitative comparisons of the corresponding parametric
outcomes are performed.

The remainder of this paper is organized as follows:
1) The crucial issues in the methodology of fMRI analysis
are presented in Section 2. 2) The specifics of preparing
pipeline steps of fMRI data for postprocessing are discussed
in Section 3. 3) The fMRI data used in this work are
described in Section 4. 4) The architectural layout of the APP
DESIGNER (CPREPP fMRI) tool and the design process are
introduced in Section 5. Moreover, the contents and results of
the proposed APP DESIGNER (CPREPP fMRI) tool with a
multicomparison among different approaches of fMRI anal-
ysis are demonstrated. 5) Finally, Section 6 provides the
discussion and the conclusions drawn from this work.

II. METHODOLOGY AND TYPICAL FMRI WORKFLOW
Several approaches to statistical analysis of MRI data can
be used, and parametric statistical methods, such as Z-, t-,
and F-values, have been extensively utilized [17]–[20].
Parametric statistical methods are traditionally applied in
fMRI to detect brain regions that are active with a definite
degree of statistical significance. These parametric methods
depend on various assumptions and possess two main disad-
vantages. First, the observed data are assumed to be indepen-
dent andGaussian distributed; presumptions that are typically
false are considered for fMRI data analysis. Second, the
distribution of a statistical test can be deduced from the theory
only for elementary linear detecting statistics [21]–[23]. Typi-
cal experiments include a few numbers of subjects in addition
to scans, which result in statistic images with noises and low
degrees of freedom that is incompletely estimated by contin-
uous random fields. The limitations described above can be
overcome with nonparametric statistical approaches [24] and
are utilized to test the significance of statistical images of acti-
vation studies. Official presumptions are exchanged through
a cost-accounting method. Only minimal suppositions are
required for validity. The nonparametric permutation method
presents a flexible and easy-to-use methodology for detecting
the active area of fMRI data [25], [26]. The nonparamet-
ric method that uses a locally pooled (smoothed) variance
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estimation can perform the comparable statistical parametric
mapping method. Thus, these nonparametric methods can be
used to confirm the validity of minimally computationally
expensive parametric methods.

In the current work, multipreprocessing steps have
been performed before starting the statistical analysis.
Reorientation is the first step of preprocessing fMRI data after
discarding the first few scans (approximately 10 volumes).
The second step is the realignment process, in which the
first fMRI image is realigned through rigid-body transfor-
mations, and then slice-timing correction is applied. The
other steps, which are the coregistration to T1 images, struc-
tural image segmentation process, normalization process to
the standard Montreal Neurological Institute (MNI) space,
and spatial smoothing process, are followed consequently.
Finally, whitening transformation is applied to the smoothed
fMRI data. The fMRI data undergo multipreprocessing steps
as mentioned above. Afterward, statistical analysis is con-
ducted in these data, and the results of test values are saved.
tvoxel denotes the values of the original test. Several steps
are implemented to apply nonparametric analysis to each
permutation. These steps are presented as follows:

1) The random permutation test is applied to the whitened
fMRI time points.

2) A new time series of fMRI is generated through reverse
whitening transformation, that is, through the simula-
tion model of AR for every voxel of fMRI time points.

3) The smoothing process is applied to all volumes pro-
duced by the inverse whitening transform.

4) Whitening transformation is applied to the smoothed
fMRI data.

5) Statistical analysis is performed, and the maximum test
value is determined and saved.

6) The corrected P value at each voxel is calculated as the
maximum test value, t maxi, which is equal to or more
than the value of the original test at the voxel, tvoxel ,
divided by the value of permutations, Np.

Pcvoxel =

∑Np
i=1 (t maxi ≥ tvoxel)

Np
(1)

Studies of fMRI are extensively conducted by researchers and
clinicians alike because they can provide unique insights into
brain functions. Nevertheless, many technical aspects must be
considered and treated to improve fMRI analysis and achieve
an accurate interpretation of the statistical analysis results
of fMRI data. These technical aspects include typical model
design details of artifacts of fMRI images, the definition of
the complicated protocol, numerous processing and analysis
approaches, and fundamental methodological imperfections.
Several reviews, such as articles and books, have already
discussed the essential fMRI design concepts [27]–[30]. The
experimental designs used are resting state and task-based.
The acquired data (raw data, DICOM) contain imperfections
and artifacts due to subject movement, spontaneous neural
activities, and intrinsic electron thermal noises. Therefore,

a certain degree of preprocessing analysis includes conver-
sion data, and denoising steps must be performed before
analyzing the fMRI. The preprocessing of fMRI data is imple-
mented step by step, and the preprocessing pipeline is formed.

No consensus currently exists on the steps that must be
performed in the preprocessing stage or on selecting param-
eters in those steps. Preprocessing poses numerous effects
on BOLD fMRI data, and many studies have been per-
formed on this issue [1], [2]. Stephen C Strother, for exam-
ple, analyzed common preprocessing steps for BOLD fMRI
and their possible influences [3]. Yan Chao-Gan and Zang
Yu-Feng developed a MATLAB toolbox called DPARSF,
which depends on using SPM [5], [7] and REST tool for
rs-fMRI data [6].

Clinicians and researchers are required to understand the
primary fMRI study application fields, such as the char-
acteristics of fundamental hemodynamics and the design
of the optimal experiment, to conduct the most acceptable
study regardless of whether this fMRI study is based on
tasks or resting state. Determining the most suitable acqui-
sition techniques and identifying the essential artifacts con-
cerned are necessary.

The acquired data are then subjected to several steps for
quality control and preprocessing steps as mentioned before.
These steps are called the quality control of acquisition,
starting from the conversion of format data to the last level
in the preprocessing steps. The methods of intended analysis
for fMRI must be performed whether for resting state or
task-based, and then statistical conclusions are obtained. The
flowchart of the fMRI workflow is designed and illustrated
in Fig. 1. The diagram shows and describes all pipeline steps
to prepare fMRI data. Real fMRI data are first collected
from the UMRAM Center. The acquired data are subjected
to several steps for quality control and preprocessing steps.
Statistical inferences are performed and discussed in the fol-
lowing sections.

III. PREPARING PIPELINE STEPS OF FMRI DATA FOR
POSTPROCESSING
This section describes the pipeline steps of the procedures
applied to fMRI data before their statistical analysis.
The fMRI data are first converted from raw data for-
mat (DICOM) to much simpler formats, such as NIfTI
(.nii or .nii.gz) or ANALYZES (.img/.hdr), which can be
utilized by the analysis software. Suggested pipeline steps of
preprocessing are then applied for preparing fMRI data to be
ready for statistical analysis. On the basis of our experience
and review of considerable literature on preparing fMRI data
for statistical analysis, the crucial summaries and suggestions
of fMRI preparing pipeline steps are proposed in this work as
illustrated in Fig. 1.

The main contribution of this work is that multiple con-
version processes for all fMRI data formats are proposed
and tested successfully in the National Magnetic Resonance
Research Center (UMRAM) in Ankara, Turkey. Therefore,
no literature review on any software packages contain all
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FIGURE 1. Proposed pipeline for preparing fMRI data.
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TABLE 1. Details of real fMRI data acquisition.

conversion processes, such as the present work. A total
of 12 conversion processes of fMRI data format are per-
formed in this work. Multiple conversion processes are pro-
posed and presented in the first part of preparing fMRI data.
After converting fMRI data to simpler NIfTI or ANALYZES
format, two stepsmust be performed before the preprocessing
stage, that is, removing dummy scan during stabilization of
the signal and reorientation and tracing the origin of the
fMRI data. Multipreprocessing steps are finally applied to
the fMRI data, as depicted in Fig. 1. The order and choice
of preprocessing steps are based on the mode of fMRI data
acquired. Therefore, if fMRI data are obtained by an inter-
leavedmode, then the order of pipeline steps of preprocessing
is presented as follows:
• Slice time correction
• Realignment
• Coregistration of mean EPI image with anatomical
ones (T13D)

• Segmentation of the structural image
• Normalization of functional and structural images
• Smoothing

If fMRI data are acquired by sequential mode, then the steps
will be in the following order:
• Realignment
• Coregistration of mean EPI image with anatomical
ones (T13D)

• Slice time correction
• Segmentation of the structural image
• Normalization of functional and structural images
• Smoothing

IV. FMRI DATASET
Real and free fMRI data are used in this work. Original
fMRI data are classified into three groups, namely, night,
healthy control, and all-day groups. The night group con-
sists of 10 subjects, and the healthy control group also has
10 subjects. The all-day group comprises 11 subjects. The
experimental tests are chewing and biting. Table 1 sum-
marizes the details of real fMRI data acquisition. The data
are acquired using an MRI scanner-type Siemens/3T in the
National Magnetic Resonance Research Center (UMRAM)

TABLE 2. Details of free-face fMRI data acquisition.

in Ankara, Turkey. The free-face fMRI dataset used in this
work is called multisubject event-related fMRI repetition
priming for comparison among the methods for fMRI tests.
The open-face fMRI dataset is available on the SPMwebsite;
the data are gained from the effects of face repetition in
explicit and implicit memory tests. Table 2 lists the details
of real fMRI data acquisition. The data of each subject are
analyzed to generate the variation images between baseline
and face watching. Consequently, each image represents an
image of contrast for every subject.

V. ARCHITECTURE AND RESULTS USING THE
APP DESIGNER (CPREPP FMRI) TOOL
The APP DESIGNER CPREPP fMRI tool consists of the
following three main parts: (1) conversion modalities and
preprocessing analysis of fMRI data (Fig. 2), (2) statistical
parametric mapping analysis (Fig. 3), and (3) nonparametric
mapping analysis (Fig. 4). The CPREPP fMRI tool is a user-
friendly program, and pop-up tips report to users tasks when
they click the buttons. This tool is evolved in a MATLAB
environment and designed depending on the new MATLAB
technology called APP Designer. The APP Designer is a pro-
ductive evolving environment that supplies design and code
views, a well-incorporated version of MATLAB editor, and
numerous interactive elements. TheCPREPP fMRI toolbox is
designed to present a severe and crucial comparison analysis
in one tool. This comparison is performed in the CPREPP
fMRI toolbox between the statistical parametric and nonpara-
metric mapping of second-level analysis of fMRI data. This
toolbox provides multiple conversion operations of all fMRI
data formats (.dicm, .nii, .img, .hdr, and .mat formats) and
specific preprocessing order steps proposed based on the data
acquisition mode (interleaved and sequential modes).

The first part of the current tool is the conversion
and preprocessing of fMRI analysis. This part consists of
three components: namely, conversion modalities; preparing
fMRI data for preprocessing pipeline steps, which include
removing dummy scans and reorientation and tracing the
origin of fMRI data; and applying multipreprocessing steps
on fMRI data.

The second part of the current tool is fMRI statisti-
cal parametric mapping analysis, which is divided into
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FIGURE 2. Main window of preparing fMRI data analysis.

two components of grouping level analysis. Each level is
divided into three steps, namely, (1) setup procedure of a
design matrix, (2) computation design matrix, and (3) results
and inference of analysis.

The same structure of steps and sequence are applied
through statistical nonparametric mapping analysis in con-
sideration of the differences between the two approaches.
Although both methods exist in the proposed toolbox, our
conclusion in this work uses and reuses the statistical non-
parametric mapping analysis, especially in the multisubject
analysis based on the results that will be presented in the
following subsections.

The results of this work are discussed below.

A. CONVERSION MODALITIES
The first section of the CPREPP fMRI tool provides the mul-
tiple conversion operations of all fMRI data formats (.dicm,
.nii, .img, .hdr, and .mat format), as displayed in Table 3. This
section includes nine push buttons to perform 12 mathemati-
cal conversion processes that reflect all conversion possibili-
ties among them, as exhibited in Fig. 5.

For example, when a user clicks the ‘‘DICOM_IMG_NIFTI
to .mat Conversion’’ button, the .mat conversion image

conversion window appears. From the pop-up menu, the user
can select one of the three types of fMRI data (.dcm, .nii, and
.img/hdr). After appropriate selections, the dataset is loaded,
and the header of this file is read and converted into the .mat
format.

Another example is that clicks on the ‘‘NIFTI_ img/hdr
to 2D Image Conversion’’ button enable users to convert
fMRI data formats (NIFTI and Analyze) into a 2D image
format. This conversion is different from the abovementioned
conversion processes because the output results appear as a
2D format file.

B. PIPELINE PREPROCESSING STEPS
The CPREPP fMRI tool provides comprehensive pipeline
preprocessing steps. This tool starts by loading fMRI data and
then determines the output directory that all output results
will be saved automatically in it. Individual preprocessing
is performed, and the checking result button is provided to
check the achievement of each step. Another way to perform
preprocessing of fMRI data is provided with the current tool,
which includes interleaved and sequential mode preprocess-
ing steps.
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FIGURE 3. Main window of fMRI statistical parametric analysis.

FIGURE 4. Main window of fMRI statistical nonparametric analysis.

1) REMOVING INITIAL SCAN AND REORIENTATION
Discarding the first few scans is recommended and proposed
as the first step in the preprocessing order steps to avoid

T1 effects on the initial scans of fMRI time series. The
number of dummy scans (at least 10 scans) and checkbox
must be determined, as illustrated in Fig. 6. After removing
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FIGURE 5. Conversion modalities of fMRI data.

TABLE 3. List of 12 conversion processes of fMRI data formats.

the initial scan (under instability period of MRI machine),
the reorientation step must be performed. Manual and auto-
matic reorientations are provided in the current tool. The first
manual reorientation is achieved by applying displacements
(x, y, and z) and rotations (pitch, roll, and yaw) to functional

TABLE 4. Description of input and output data for each preprocessing
step.

and structural scans approximately aligned to each other
by adjusting displacements and rotations manually and to
a canonical MNI template. Automatic reorientation is also
provided in this tool. However, if the images are considerably
far from the canonical image, the automated procedure can
probably fail.

2) SLICE TIMING CORRECTION
The slice time function corrects differences in slice acquisi-
tion times. This routine is intended to correct for the staggered
order of slice acquisition that is used during echo-planar
scanning. The correction is necessary to make the data on
each slice correspond to the same point in time. This step
is vital for rapid event-related paradigms; otherwise, it can
be safely bypassed. In this step, fMRI data are fed to this
function as input data, and repetition time (TR), acquisition
time (TA), and the order of slices and reference slices are
required, as depicted in Fig. 6. The output images after this
step are started with a letter.
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FIGURE 6. Pipeline of preprocessing steps of fMRI data.

3) REALIGNMENT
This preprocessing step consists of detecting and possibly
correcting the motion of the subject during the scanning
session. This routine realigns a time series of images acquired
from the same subject using a least squares approach and a
six-parameter (rigid body) spatial transformation. The head-
ers are reformed for each input image, and fMRI data are fed
to this function as input data. Furthermore, the output images
consist of one mean image, realigned images, and a text file
with a set of realignment parameters for each session.

4) COREGISTRATION
Coregistration is used to align functional images (mean EPI)
with the anatomical (structural) MRI images (T1 3D) of the
same subject. This process is based on using different cost
functions, which are calledmutual information. The deforma-
tion of EPI images is disregarded. The input data in this step
are mean EPI (reference image) and structural image (source
image), and only the header of the structural image is changed
to reflect the new realignment with the mean EPI.

5) SEGMENTATION
Segmentation can be used to separate gray matter (GM),
white matter (WM), and cerebral spinal fluid (CSF) in
anatomical scans. A coregister anatomical image is fed to
this function as input data, and the output images consist
of GM, WM, CSF, bias-corrected, and deformation images.
All instructions for spatial normalization are put in a .mat file,
and all output images are generated in a structural folder.

6) NORMALIZATION (FUNCTIONAL AND STRUCTURAL)
The normalization function is used to put scans into the
standardized MNI templates, which are based on averages of
many MRI scans of healthy young adults, AC–PC aligned,
and scaled to one another. Similar to the realignment function,
the normalization function determines the transformation and
reduces the variation through two scans by reducing the
aggregate square intensity variations. In addition to rotation
and translation, the transformation of a rigid body is allowed
in the coregistration and realignment. Normalization utilizes
shears and zooms; this condition means a complete affine
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FIGURE 7. MIP results of Several values (0,4, 8, and 12 mm FWHM) of the smoothing of variance.

transformation and nonlinear deformation, thereby allowing
for accurate correction of structural variations among sub-
jects. The normalization step is performed for functional and
anatomical images. For the former, the realigned functional
and deformation images are required as input data to the
normalization process of functional images. Bias-corrected
and deformation images are required as input data for the
normalization process of structural images.

7) SMOOTHING
Averaging values of neighbor voxels for minimal noise and
small intersubject variability and the smooth function is
applied as the last stage in the spatial preprocessing to blur
the fMRI images. The goal is to correct the small remain-
ing structural and functional variations among subjects. The
normalized functional images are required as input data for
the smoothing function, and the weighting is defined by a
Gaussian kernel with a 7 or 8 mm (full width at half maxi-
mum, FWHM) size.

8) INTERLEAVED MODE PREPROCESSING STEPS
When fMRI data are acquired by an interleaved mode,
the order of pipeline steps of preprocessing is presented
as follows: slice time correction, realignment, coregistration
of a mean EPI image with anatomical ones (T13D), seg-
mentation of a structural image, normalization of functional

and structural images, and smoothing. The interleaved mode
preprocessing steps include all the order steps above automat-
ically in only one click by designing a model based on batch
editor script; therefore, the user can set and change any value
of parameters.

9) SEQUENTIAL MODE PREPROCESSING STEPS
When fMRI data are acquired by a sequential mode, the steps
will be in the following order: realignment, coregistration of
a mean EPI image with anatomical ones (T13D), slice time
correction, segmentation of a structural image, normalization
process of functional and structural images, and smoothing.
The sequential mode preprocessing steps also perform all the
order steps above automatically in only one click by design-
ing a model based on batch editor script. Therefore, the user
can set and change any value of parameters. Table 4 presents
the preprocessing steps with input and output data for each
level with the assumption that the name of the fMRI data input
is fMRI.

C. POSTPROCESSING ANALYSIS
In this section, a serious and crucial comparison analysis
between statistical parametric and nonparametric mapping
approaches is presented in one tool. The free-face fMRI
dataset is called multisubject event-related and is discussed
as follows.
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FIGURE 8. Multisubject fMRI images for the two approaches are applied with pseudo t-statistic nonparametric-random
permutation test and RFT. (A) Applying a pseudo t-statistic test (with smoothing) to multisubject fMRI images.
(B) Applying t-statistic based on RFT to multisubject fMRI images.

For the multisubject fMRI experiment, a permutation test
is performed to conclude a population in comparison with a
randomized trial. A pseudo t-statistic of the smoothed vari-
ance is used with a one-threshold experiment in this work.
Quantitative and qualitative comparisons of the correspond-
ing parametric outcomes are also performed. This analysis
amounts to a one-sample t-test on first-level images by testing
for a zero-mean effect across subjects. A pseudo-t-test is
applied because only 11 degrees of freedom exist in this work.
Four values (0,4, 8, and 12 mm FWHM) of the smoothing
of variance are applied as depicted in Fig. 7 These values
are compared with the mean values within the smoothing of
subjects. Based on our expertise and results, applying any
smoothing of variation is more important than the values
(FWHM) of the smoothing process, although four magni-
tudes (0,4, 8, and 12 mm FWHM) are used in this work.
The examination around the entire brain is conducted in the
present practice to investigate considerable changes; there-
fore, the maximum pseudo t is used. The sign of several or all
data of subjects is flipped in this work based on the exchange-
ability concept with a null hypothesis. Here, 212 = 4096 pos-
sible ways are available to set either ‘‘−1’’ or ‘‘+1’’ for each
subject.

Fig. 8A depicts the overlay multisubject fMRI images of
significant voxels by using pseudo-t permutation test. The
anterior cingulate activation at coordinates (3, 15, and 45) is
402 voxels with a nonparametric pseudo-t permutation test.
In Fig. 8B, 28 voxels are located at the anterior cingulate with
the parametric t-test based on RFT.
However, variation in brain activities is revealed in sev-

eral ways throughout the current tools, such as patches of
color on an fMRI brain section, slice, and montage overlay,
with the colors that demonstrate the position of the voxels
that illustrate statistically significant variances among condi-
tions. The variations in activities may also be embodied as
a glass brain or a maximum intensity projection, which is
a demonstration of three views of the brain diagram as if it

was transparent. Activation patches appear only as shading
areas or in different colors. This feature is useful in rapidly
summarizing the total area of essential changes in a specific
statistical comparison.

The nonparametric mapping threshold (5.09) using the
pseudo-t permutation test when 8 mm smoothing is applied is
lower than the classical parametric threshold (9.07) based on
random field approaches. Consequently, the nonparametric
pseudo-t permutation test shows active voxels, as illustrated
in Fig. 8A. The suprathreshold voxels are observed using
nonparametric pseudo-t permutation test more than those
using the standard parametric analysis, and the fMRI images
are smooth. For example, the anterior cingulate activation at
coordinates (3, 15, and 45) is 402 voxels in the nonparametric
pseudo-t permutation test, while it is 28 voxels in the classical
parametric t-test (shown in Table 5 & 6).

The above Tables (5 & 6) are a result of one of the fea-
tures results of postprocessing analysis in both parametric
and nonparametric analysis that provides a comprehensive
explanation of how many clusters tin each result, as well as a
number of a voxel in a cluster of activation area with each of
the corresponding coordinates.

VI. DISCUSSION
Themain contribution of this work is that multiple conversion
processes for all fMRI data formats are proposed and tested
successfully in our lab. Specific preprocessing order steps are
recommended on the basis of data acquisition mode (inter-
leaved and sequential mode). These steps are preceded by two
processes, namely, removing dummy scans and reorientation
of fMRI images, which must be implemented after the fMRI
data conversion process. A serious and crucial comparison
analysis between statistical parametric and nonparametric
mapping approaches is presented in one tool. No literature
review has any software packages that contain all analysis
of fMRI data similar to our work; a total of 12 conversion
processes of fMRI data format are performed in the current

122874 VOLUME 7, 2019



H. A. Jaber et al.: Preparing fMRI Data for Postprocessing

TABLE 5. Statistical report of the non-parametric pseudo-t permutation test.

TABLE 6. Statistical report of parametric pseudo-t t- statistic by a random field theory test.

practice. Therefore, multiple conversion processes are pro-
posed and shown in the first part of preparing fMRI data.

VII. CONCLUSION
Working with raw fMRI data (DICOM) is complex, and
these data have many artifacts. Preparing fMRI data is cru-
cial and is considered the initial step before implementing
the statistical analysis. However, a specific and user-friendly
tool for developing fMRI data for postprocessing remains
lacking. Consequently, a software tool (CPREPP fMRI) is
designed to have a collection of algorithms that satisfy
parametric and nonparametric approaches. This toolbox is
designed and implemented under the MATLAB platform and
64-bit Windows environment based on the new technology in

MATLAB called APP Designer. CPREPP fMRI is designed
and developed to address many problems in DICOM conver-
sion and removing artifacts in the fMRI signal. The integra-
tion of multiconversion processes of multiform at fMRI data
is an essential and first step to prepare fMRI data for statistical
analysis.

The preprocessing pipeline in this work is performed in two
ways, namely, selecting individual preprocessing steps sepa-
rately (select optional state) and selecting one of two models
that are suggested in this work (interleaved and sequential
modes). The preprocessing models include all preprocessing
steps but are performed automatically by clicking the model
button; then, all levels are automatically performed step by
step. The user’s duty is to enter data at the beginning.
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The package provides the following main features:
1) Conversion tools for fMRI modalities
2) Conversion of fMRI raw data into a friendly and

straightforward format, such as Analyze, NIFTI, and
.mat formats

3) CPREPP fMRI package that can view diverse fMRI
image formats, such as Analyze, NIFTI, .mat, and 4D
formats

4) Creation of 2D fMRI data
5) Exporting images to the MATLAB format
6) Reading/writing and viewing of all fMRI data formats
7) Reference and base tools, especially for physicians,

healthcare specialists, and researchers who face chal-
lenges on handling these types of data

8) User-friendly comprehensive neuroscience tools that
contain all fMRI data format (DICOM, ANALYZE,
NIFTI, and MAT) conversion modalities

9) Easy and straightforward tools for preprocessing
pipeline steps

10) Crucial comparative analyses between statistical para-
metric and nonparametric mapping approaches

This work is comprehensive and has vital significance, espe-
cially for physicians in the neuroscience area, healthcare
specialists, engineers, and researchers who face challenges in
handling these types of data. This toolbox supports the useful
application of these nonparametric methods with multiple
features to assist neuroscience researchers.
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