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ABSTRACT In this paper, a novel frequency domain quantum watermarking scheme is proposed based
on the Flexible Representation of Quantum Images, which can embed a 2n1 × 2n1 binary watermark
image into a 2n × 2n grayscale carrier image. The quantum Haar wavelet transform is developed and
used to decompose quantum images. The diagonal detail coefficients of the carrier image are obtained
from the image decomposition. Then, according to the watermark image information, the diagonal wavelet
coefficients are either unchanged or slightly modified. Since all of the used quantum operations are
invertible, extraction of the watermark image is performed in a straightforward manner by reversing the
watermarking embedding process. Finally, the proposed quantum image watermarking scheme is simulated
on a classical computer and evaluated under different carrier and watermark images. The simulation results
and performance analyses indicate the high performance of the presented watermarking scheme in terms of
the similarity between the watermarked and carrier images.

INDEX TERMS Quantum computing, qubit, digital images, discrete wavelet transforms, image decompo-
sition, wavelet coefficients, watermarking, computational complexity, circuit simulation.

I. INTRODUCTION
A. BACKGROUND
Quantum Information Processing (QIP) represents a novel
computing and processing paradigm model rather than the
classical model based on conventional computers. Informa-
tion is stored in quantum registers and regarded as quantum
bits (qubits) [1]. Thus, information can be stored, processed,
and transmitted utilizing the peculiar aspects of quantum
mechanics. The inherent properties in the theory of quantum
mechanics, such as quantum coherence, entanglement, and
superposition of quantum states make quantum computing
superior to its classical counterpart for information storage
and processing [2]. Therefore, quantum computation might
offer a possible solution to the current challenge posed by
the failure of Moore’s law [3]. Quantum algorithms such
as Shor’s discrete logarithms and integer factoring algo-
rithms in polynomial time [4], Deutsch’s parallel computing
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algorithm with quantum parallelism and coherence [5], and
Grover’s quadratic speedup for unordered database search
algorithms [6] achieve higher performance than any known
classical algorithms. As a result of the rapid development of
quantum computation, classical image processing is naturally
extended to the quantum domain. Despite the physical limita-
tions in realizing the fully and efficiently functional quantum
computers, it is important to be able to perform different
information processing tasks on a quantum computer once it
is practically implemented in the near future. Quantum image
processing is an emerging sub-discipline that focuses on
porting conventional image processing tasks and operations
to the quantum computing framework [7], [8]. It is primarily
devoted to utilizing quantum computing technologies to rep-
resent, recover, and perform operations on quantum images
in various formats for different purposes [8], [9].

There are two aspects of quantum image processing:
quantum image representations and quantum image process-
ing algorithms. At present, many quantum image represen-
tation models have been investigated [10]–[18]. Wherein,
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the Flexible Representation of Quantum Images (FRQI) and
Novel Enhanced Quantum Representation (NEQR) of digital
images are the most two commonly used quantum image
representation models.

Steganography and watermarking are closely related fields
with a great deal of overlap and share many technical
approaches [19]. Generally, the purpose of steganography is
to hide the existence of a message by embedding symbolic
information into public data. Watermarking has been con-
sidered for many copy prevention and copyright protection
applications by inserting author related information into a
signal or image. The watermark information is typically used
to identify the copyright holder and ensures proper payment
of royalties.

Quantum image watermarking has recently received con-
siderable attention. Based on the developed quantum image
representation models, many watermarking techniques have
been proposed [20]–[26]. The scheme proposed in this paper
falls into the category of quantum image watermarking meth-
ods. Thus, the existing works in the literature related to this
category are discussed in the next section.

B. CONTRIBUTIONS
In digital image processing, Discrete Wavelet Trans-
forms (DWT) has been shown to be quite effective in
important applications such as image compression and sig-
nal processing [27], [28]. DWT-based image watermarking
utilizes the multi-resolution characteristics of an image and
resembles the operation of human vision [29], [30]. The
human eye has less sensitivity to small changes in high fre-
quency content, such as edges and texture, than to changes
in low frequency features, such as the average luminance
of an image. In hierarchical analysis using DWT, the edges
and textures are contained in the high frequency subbands.
Wavelet coefficients with large values in these subbands
usually indicate edges in an image. Therefore, it would be
highly efficient to hide the watermarking information into
these coefficients as it will be undetected by the human eye.

In this work, the quantum Haar wavelet trans-
forms (QHWT) is developed along with its quantum circuit
implementation. Based on the introduced QHWT, a quantum
image watermarking algorithm in the frequency domain
is proposed for FRQI. The QHWT can be applied to
decompose a quantum image modeled by FRQI. Using the
multi-resolution analysis, the quantum carrier image can be
decomposed into any desired level resulting in four subbands:
approximate subband, horizontal subband, vertical subband,
and diagonal subband. The watermarking information is cho-
sen to be inserted into the diagonal subband. This is because
the information in this subband is typically less significant
than the information in the other subbands, and thus has a
slight influence on the quality of the reconstructed image.

The main contributions of this work are: (1) the devel-
opment and application of QHWT to decompose quantum
images represented by FRQI and the design of a correspond-
ing quantum circuit; (2) Based on the developed QHWT, two

novel quantum image watermarking schemes, non-block and
block watermarking algorithms, are proposed to insert water-
mark image information into the carrier image’s diagonal
wavelet coefficients of the high frequency subband. To the
best of our knowledge, the presented watermarking scheme is
the first correctly functional quantum watermarking scheme
in the frequency domain as discussed in the next subsection.
Moreover, the proposed method is shown to be highly effi-
cient in watermarking quantum images using various mea-
sures in comparison to other methods.

The rest of this paper is organized as follows. Section II
includes a survey of the state of the art in quantum image
watermarking. The basic topics needed for the development
of the proposed algorithm, including quantum gates, FRQI
image, and the Haar wavelet transforms (HWT), are pro-
vided in Section III. In Section IV, we introduce the circuit
design for QHWT and the corresponding effective circuits
for multi-level decomposition of FRQI images. Quantum
watermark image embedding and extracting schemes, quan-
tum measurement operation for FRQI images, and circuit
complexity analysis are discussed in detail in Section V.
Simulations on classical computer and experimental results as
well as performance analyses are given in Section VI. Finally,
the conclusions and future works are stated in Section VII.

II. RELATED WORKS
The methods developed for quantum image watermarking
can be categorized based on their domain of operation:
spatial domain [20]–[23] and frequency domain [24]–[26].
The algorithms in the first category insert the watermarking
information in the spatial domain. The second class utilizes
transforms to convert the image into the frequency domain
and perform the embedding process in this domain.

Spatial quantum image watermarking schemes were
proposed based on the NEQR model, such as Arnold trans-
forms and Least Significant Bit (LSB) based quantum image
watermarking [20], LSBs-based quantum image watermark-
ing in edge regions [21], [22], and LSBs-based quantum
image watermarking using gray code transformation [23].
Note that because the NEQR model utilizes q qubits com-
putational basis states to encode the pixel color information,
Quantum Fourier transform (QFT) [3], [31] and Quantum
wavelet transform (QWT) [32] cannot be applied to decom-
pose images based on the NEQR model. On the contrary, the
FRQImodel encodes the pixel color information in the ampli-
tude of a single qubit based on angle encoding via quantum
unitary rotation operation. This allows the decomposition of
images using QFT and QWT, which facilitates the design
of quantum image processing algorithms, such as quantum
image encryption schemes [33], [34]. Therefore, transform-
based quantum watermarking schemes that utilized the FRQI
model were investigated, such as watermarking using quan-
tum Fourier transform [24], quantum wavelet transform [25],
and Hadamard transform [26].

The aforementioned frequency domain algorithms
[24]–[26] based on the FRQI model are not accurate as
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FIGURE 1. Single qubit Pauli (I, X, Y, and Z) and Hadamard (H) gates along
with their corresponding matrices’ representation.

proven in [35]–[37]. This is because the pixel color informa-
tion of the FRQI image is encoded by a single qubit’s ampli-
tude. Therefore, the methods in [24]–[26], applied to FRQI
images by adding the grayscale information of quantum
watermark image directly to the carrier image information,
which violate the principles of quantum mechanics. Specif-
ically, the quantum watermarking scheme [24] is infeasible
because it simply adds the weighted grayscale information
of the quantum watermark image to the Fourier coefficients
of the carrier image. Similarly, the quantum watermarking
methods in [25], [26] use a plain adder network to add the
grayscale information of the quantum watermark image to
the carrier image information. This is also incorrect because
the inputs of two registers in a plain adder network should be
encoded in binary form in the computational basis states.

III. PRELIMINARIES
A. QUANTUM GATES
Quantum computation is implemented via quantum unitary
operators, which are constructed using quantum gates. Quan-
tum operations on a single qubit or multiple qubits are
described by unitary matrices. Among the most common
single qubit gates are the Pauli operators (denoted as I, X,
Y and Z) and Hadamard transform (denoted as H or W).
The quantum circuits of the aforementioned gates and their
equivalent matrices are illustrated in Fig. 1.

Note that the X gate is usually referred to as the
NOT gate, commonly denoted by another notation ⊕. The
Controlled-NOT (CNOT) and Toffoli gates are examples
of important two-qubit and three qubit gates, respectively,
of these multiple qubits. Figure 2 shows the CNOT and
Toffoli quantum circuits and their corresponding matrices.

More complex multiple qubits gates can be decomposed
into sa series of basic quantum logic gates, such as NOT,
CNOT, and Toffoli gates. In [3], [38], single qubit and
two-qubit gates are considered be universal in the sense that
all unitary operations on arbitrary many n qubits can be
performed using them as building blocks.

In addition to the above mentioned basic quantum gates,
two other important single qubit unitary gates have the

FIGURE 2. Quantum circuits and matrices of CNOT and Toffoli gates.

following matrix forms:

Ry (2ϕ) =
[
cosϕ − sinϕ
sinϕ cosϕ

]
,

C (2ϕ) =
[
cosϕ sinϕ
sinϕ − cosϕ

]
(1)

when these matrices operate on a single qubit |ψ〉 =
cos ξ |0〉 + sin ξ |1〉 = [cos ξ sin ξ ]T , the outcome can be
expressed as:

Ry (2ϕ) |ψ〉 =
[
cosϕ − sinϕ
sinϕ cosϕ

] [
cos ξ
sin ξ

]
=

[
cosϕ cos ξ − sinϕ sin ξ
sinϕ cos ξ + cosϕ sin ξ

]
= cos (ϕ + ξ) |0〉 + sin (ϕ + ξ) |1〉

C (2ϕ) |ψ〉 =
[
cosϕ sinϕ
sinϕ − cosϕ

] [
cos ξ
sin ξ

]
=

[
cosϕ cos ξ + sinϕ sin ξ
sinϕ cos ξ − cosϕ sin ξ

]
= cos (ϕ − ξ) |0〉 + sin (ϕ − ξ) |1〉 (2)

Obviously, unitary gates Ry (2ϕ) and C (2ϕ) are
single-qubit rotation gates. When operating on single qubit
|ψ〉 = cos ξ |0〉 + sin ξ |1〉, Ry (2ϕ) changes the angle ξ to
ξ + ϕ while C (2ϕ) changes ξ to ϕ − ξ .
The two unitary matrices Ry (2ϕ) and C (2ϕ) with mul-

tiple controlled qubits are illustrated in Fig. 3, in which
white and black points denote the qubit in computational
basis states |0〉 and |1〉, respectively. The unitary matri-
ces Ry (2ϕ) and C (2ϕ) will not change the last qubit
unless the qubit sequence states are the same as the con-
trol qubit sequence. In other words, when the bit sequence
is an−1an−2an−3 · · · a2a1 = 101 · · · 01, qubit |a0〉 would
change to Ry (2ϕ) |a0〉 or C (2ϕ) |a0〉, otherwise, it will apply
the identity gate I on qubit |a0〉 leaving it unchanged.

B. FLEXIBLE REPRESENTATION OF QUANTUM IMAGES
Flexible representation of quantum images (FRQI) proposed
in [12] encodes the information of a 2n × 2n digital image in
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FIGURE 3. Quantum circuits for unitary operations Ry
(
2ϕ

)
and C

(
2ϕ

)
under multiple controlled qubits cases.

the following quantum state:

|I (θ )〉 =
1
2n

22n−1∑
i=0

|Ci〉 |i〉=
1
2n

22n−1∑
i=0

(cos θi |0〉 + sin θi |1〉) |i〉

θi ∈
[
0,
π

2

]
, i = 0, 1, 2, · · · , 22n − 1 (3)

where |0〉 and |0〉 are the two-dimensional quantum com-
putational basis states, |i〉 , i = 1, 2, · · · , 22n − 1 are the
22n-dimensional quantum computational basis states, and
θ = [θ0, θ1, · · · , θ22n−2, θ22n−1] is the vector of angle
encoding colors.

The FRQI representation model integrates the information
in an image within two variables: |i〉 = |Y 〉 |X〉 denotes the
pixel location information, where |X〉 = |xn−1xn−2 · · · x1x0〉
and |Y 〉 = |yn−1yn−2 · · · y1y0〉 represent the coordinate infor-
mation in the horizontal and vertical directions, respectively;
|Ci〉 = cos θi |0〉 + sin θi |1〉 encodes the pixel color infor-
mation in position |i〉. Therefore, it is easy to deduce that
(1+ 2n) qubits are needed to encode a 2n × 2n digital image
in a quantum register based on the FRQI model.

Applying basic quantum gate Z to the pixel color informa-
tion |Ci〉 yields:

Z |Ci〉 =
[
1 0
0 −1

] [
cos θi
sin θi

]
=

[
cos θi
− sin θi

]
= cos(−θi)|0〉 + sin(−θi)|1〉 (4)

For binary and grayscale images, the FRQI model uses the
bijective function to convert a fixed color Ci to an angle θi as
given by (5).

θi =
π

2
× Ci, binary image, Ci = 0, 1

θi =
π

2
×

Ci
255

, grayscale image, Ci=0, 1, · · · , 255

(5)

Based on the FRQI representation model, a color image
can be expressed via three channels of Red, Green and Blue

FIGURE 4. A 2 × 2 FRQI image, and its quantum wire diagram, and
expression.

FIGURE 5. Waveform of the Haar basis function ϕ(x) and Haar wavelet
function ψ(x).

as follows [29]:

|I 〉 =
1
2n

22n−1∑
i=0

|Ci〉 ⊗ |i〉, |Ci〉 = |ri〉|gi〉|bi〉

|ki〉 = cos θki |0〉 + sin θki |1〉, k = r, g, b

θi ∈
[
0,
π

2

]
, i = 0, 1, 2, · · · , 22n − 1 (6)

An example of a 2 × 2 FRQI grayscale image is demon-
strated in Fig. 4, where the corresponding quantum circuit and
representative expression are shown on its right and below,
respectively.

C. HAAR WAVELET TRANSFORMS AND DECOMPOSITION
OF DIGITAL IMAGES
HWT is constructed from the Haar basis function ϕ(x) and
Haar wavelet function ψ(x) [39], [40], which are defined
in (7). Their corresponding waveforms are shown in Fig. 5.

ϕ(x) =

{
1, x ∈ [0, 1)
0, the− other,

ψ(x) =


1, x ∈ [0, 1/2)
−1, x ∈ [1/2, 1)
0, the other

(7)

Scaled and shifted versions of the functions ϕ(x) and
ψ(x) are used to construct different vector spaces V and W.
The vector spaces Vj and Wj spanned by the j-scaled ver-
sions of ϕ(x) and ψ(x), respectively, have the property of
Vj+1
= Vj

⊕Wj, where the symbol ⊕ stands for direct sum.
This results in the following two properties: (1) Linear spaces
Wj and Vj can construct a new linear space Vj+1; (2) Each
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basis function in the vector spaceWj is orthogonal to the basis
function in the vector space Vj.
Based on the HWT, a signal can be decomposed into its low

frequency and high frequency content captured by ϕ(x) and
ψ(x), respectively. The HWT coefficients can be computed
by iteratively calculating the mean and difference of signal
values representing the approximate and detailed informa-
tion, respectively. The reconstruction of the original signal
from the wavelet coefficients by the inverse of the transform
is straightforward.

HWT can be easily extended from the one-dimensional
signal case to analysis of two-dimensional images. The stan-
dard decomposition can be performed by applying the HWT
on all of the row pixels in the image, then, on the columns of
the transformed image.

Suppose M is used to denote the matrix of HWT and F is
the pixel matrix of a two-dimensional image. Then, the stan-
dard decomposition (D) of HWT for the two-dimensional
digital image F and its inverse transform can be
expressed as:

D =
(
(FM)T M

)T
= MTFM ,

F =
(
MT

)−1
D M−1 (8)

where (M)T is the transpose of matrix M and (M)−1 is the
inverse matrix of M .

IV. CIRCUIT FOR QUANTUM HWT AND
DECOMPOSITION OF FRQI IMAGE
Data storage and processing in quantum registers are quite
different than in the classical domain. Mathematically, quan-
tum information is encoded in Hilbert vector space and can
be stored in a superposition state. Quantum operations are
described and realized by applying a series of unitary matri-
ces of size 2n × 2n for an n-qubit quantum register. In this
section, we introduce efficient quantum circuits for QHWT.
Then based on the developed QHWT, quantum multi-scale
image decomposition for an FRQI image is proposed and
detailed.

A. EFFECTIVE CIRCUIT FOR QHWT
Prior to introducing the integrated quantum circuit for
QHWT, the details of two important elements of the circuit
are described [32]. The first element is the Wash-Hadamard
gate (W) (or Hadamard (H) gate) with the matrix form

W = H = 1/
√
2
[
1 1
1 −1

]
. When the W gate operates on

the pure state of a single qubit |ψ〉 = a |0〉 + β |1〉, the
result is:

W |ψ〉 =
1
√
2

[
1 1
1 −1

] [
a
β

]
=

1
√
2

[
a+ β
a− β

]
(9)

The second element is the permutation operator 52n .
When 52n is applied to an n-qubit quantum registers

FIGURE 6. Quantum circuit for the permutation operator 52n .

FIGURE 7. Quantum circuit for full levels QHWT and its simplified
diagram.

|an−1an−2 · · · a1a0〉, it yields:

52n |an−1an−2 · · · a1a0〉 = |a0an−1an−2 · · · a1〉 (10)

For example, the two-qubit permutation operator 54 is a
Swap gate. The n-qubit operator52n can be realized through
a series application of the 54 gate as illustrated in Fig. 6.
According to the quantum circuit illustrated in Fig. 6, the

unitary matrix for n-qubit permutation operation 52n can be
written as:

52n =

(
54 ⊗ I

⊗n−2
2

) (
I2 ⊗54 ⊗ I

⊗n−3

2

)
· · ·

(
I⊗n−32 ⊗54 ⊗ I2

) (
I⊗n−22 ⊗54

)
(11)

where I⊗n−22 is the tensor product of the second-order identity
matrix multiplied (n-2) times.

Based on the two circuit elements above, a quantum
circuit for n-qubit QHWT is implemented by decomposing
the integrated circuit into a sequence of matrix multiplication
operations, direct sum, and tensor product as demonstrated
in Fig. 7.
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Accordingly, the matrix form of the QHWT H2n that
corresponds to the circuit in Fig. 7 is:

H2n = (W ⊕ I2n−2) (54 ⊕ I2n−4) (I2 ⊗W ⊕ I2n−4)

· · ·
(
52n−i+1 ⊕ I2n−2n−i+1

) (
I2n−i ⊗W ⊕ I2n−2n−i+1

)
· · ·
(
52n−2 ⊕ I2n−2n−2

) (
I2n−3 ⊗W ⊕ I2n−2n−2

)
×
(
52n−1 ⊕ I2n−2n−1

) (
I2n−2 ⊗W ⊕ I2n−2n−1

)
×52n

(
I2n−1 ⊗W

)
(12)

B. DECOMPOSITION FOR FRQI IMAGE
For a two-dimensional digital image, there are two ways to
transform an image based on HWT: standard decomposition
and non-standard decomposition [40]. The standard decom-
position method refers to transforming the image’s pixel
values in each row using a one-dimensional HWT. This is fol-
lowed by transforming the columns of the row-transformed
image by using a one-dimensional HWT again. In contrast,
non-standard decomposition is obtained by alternating the
application of the one-dimensional HWT along the horizontal
and vertical directions.

The quantum image representation model FRQI utilizes
the quantum computational basis states to encode all of the
pixel coordinate position information and stores it into a
superposition state. Thus, quantum image decomposition
based on standard QHWT decomposition is simpler andmore
suitable for implementation as a quantum circuit than the non-
standard decomposition.

Assumewe have a 2n×2n FRQI grayscale image expressed
as below:

|C〉 =
1
2n

2n−1∑
Y=0

2n−1∑
X=0

|f (Y ,X )〉 |YX〉 ,

|f (Y ,X )〉 = cos θYX |0〉 + sin θYX |0〉 (13)

Figure 8 shows the integrated quantum circuit for stan-
dard n-level decomposition of an FRQI image using the
QHWT circuit in Fig. 7(a) that is performed in the following
two steps:
Step 1 (Row Decomposition): Row decomposition is real-

ized by applying the H2n matrix to the FRQI image’s coor-
dinate qubits |X〉 = |xn−1xn−2 · · · x1x0〉 in the horizontal
direction. If we define the matrix at this stage as Hrow, then
the matrix in this step can be given by:

Hrow = kron
[
kron

(
I2, I

⊗n
2

)
,H2n

]
= I2 ⊗ I

⊗n
2 ⊗ H2n (14)

where the function kron( ) represents the tensor product oper-
ation of two matrices.
Step 2 (Column Decomposition): Similar to step 1, column

decomposition is by applying the H2n matrix on the FRQI
image’s coordinate qubits |Y 〉 = |yn−1yn−2 · · · y1y0〉 in the
vertical direction, and if the corresponding matrix is Hcolumn,
then it can be written as:

Hcolumn=kron
[
kron (I2,H2n), I

⊗n
2

]
= I2 ⊗ H2n ⊗ I

⊗n
2 (15)

FIGURE 8. Effective circuit of full levels decomposition for FRQI image
based on standard QHWT transformation.

FIGURE 9. Quantum circuit for a 2 × 2 FRQI image decomposition based
on QHWT.

Therefore, the quantum matrix for an FRQI image decom-
position based on QHWT can be expressed as:

H=HcolumnHrow=
(
I2⊗H2n ⊗ I

⊗n
2

) (
I2⊗I

⊗n
2 ⊗H2n

)
(16)

To provide an intuition of how to decompose a FRQI image
based on QHWT, Fig. 9 shows an example of the quantum
circuit for a 2× 2 FRQI image decomposition.

As shown in Fig. 4, the 2 × 2 FRQI image can be written
as:

|I 〉 =
1
2
[(cos θ0 |0〉 + sin θ0 |1〉) |00〉

+ (cos θ1 |0〉 + sin θ1 |0〉) |01〉

+ (cos θ2 |0〉 + sin θ2 |1〉) |10〉

+ (cos θ3 |0〉 + sin θ3 |1〉) |11〉]

=
1
2

[
cos θ0 cos θ1 cos θ2 cos θ3

sin θ0 sin θ1 sin θ2 sin θ3
]T (17)
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H = HcolumnHrow = (I2 ⊗W ⊗ I2) (I2 ⊗ I2 ⊗W )

=



1
√

22
1
√

22
1
√

22
1
√

22
0 0 0 0

1
√

22
−

1
√

22
1
√

22
−

1
√

22
0 0 0 0

1
√

22
1
√

22
−

1
√

22
−

1
√

22
0 0 0 0

1
√

22
−

1
√

22
−

1
√

22
1
√

22
0 0 0 0

0 0 0 0
1
√

22
1
√

22
1
√

22
1
√

22

0 0 0 0
1
√

22
−

1
√

22
1
√

22
−

1
√

22

0 0 0 0
1
√

22
1
√

22
−

1
√

22
−

1
√

22

0 0 0 0
1
√

22
−

1
√

22
−

1
√

22
1
√

22



(18)

Based on equations (16) and (12), it is easy to deduce that
the matrix expression of QHWT for a 2 × 2 FRQI can be
expressed as, (18) shown at the top of this page.

Therefore, the quantum transformation for the 2× 2 FRQI
image decomposition based on QHWT is given by:

H (|I 〉)

=
1

2
√

22



cos θ0 + cos θ1 + cos θ2 + cos θ3
cos θ0 − cos θ1 + cos θ2 − cos θ3
cos θ0 + cos θ1 − cos θ2 − cos θ3
cos θ0 − cos θ1 − cos θ2 + cos θ3
sin θ0 + sin θ1 + sin θ2 + sin θ3
sin θ0 − sin θ1 + sin θ2 − sin θ3
sin θ0 + sin θ1 − sin θ2 − sin θ3
sin θ0 − sin θ1 − sin θ2 + sin θ3



=
1
2


1
2

[
(cos θ0 + cos θ1 + cos θ2 + cos θ3) |0〉
+ (sin θ0 + sin θ1 + sin θ2 + sin θ3) |1〉

]
︸ ︷︷ ︸

color information

|00〉

+
1
2

[
(cos θ0 − cos θ1 + cos θ2 − cos θ3) |0〉
+ (sin θ0 − sin θ1 + sin θ2 − sin θ3) |1〉

]
︸ ︷︷ ︸

color information

|01〉

+
1
2

[
(cos θ0 + cos θ1 − cos θ2 − cos θ3) |0〉
+ (sin θ0 + sin θ1 − sin θ2 − sin θ3) |1〉

]
︸ ︷︷ ︸

color information

|10〉

+
1
2

[
(cos θ0 − cos θ1 − cos θ2 + cos θ3) |0〉
+ (sin θ0 − sin θ1 − sin θ2 + sin θ3) |1〉

]
︸ ︷︷ ︸

color information

|11〉


(19)

where color information in position |00〉 denotes the approxi-
mation, and color information in position |01〉, |10〉, and |11〉

represents the horizontal detail information, vertical detail
information, and diagonal detail information, respectively.

V. QUANTUM IMAGE WATERMARKING
Two different quantum watermark image embedding algo-
rithms are proposed to embed a 2n−1 × 2n−1 binary water-
mark image into a 2n × 2n grayscale carrier image, namely
non-block and block quantum watermarking schemes. The
quantum watermark image embedding and extracting algo-
rithms as well as their effective circuits are illustrated in detail
in this section.

A. NON-BLOCK AND BLOCK 1ST -LEVEL DECOMPOSITION
Assume the quantum carrier image is a 2n × 2n grayscale
image |C〉 as given in (13). Based on full-level quantum
circuit for QHWT transformation demonstrated in Fig. 7,
the quantum circuits of non-block and block 1st-level
based decomposition for an FRQI image are illustrated
in Fig. 10 and Fig. 11, respectively.

As shown in Fig. 10 and Fig. 11, non-block and block 1st-
level decomposition of the FRQI images are both realized
through two stages: row decomposition and column decom-
position. Therefore, we can deduce the following matrices for
non-block and block 1st-level decomposition.

non− block :
(
I2 ⊗52n ⊗ I

⊗n
2

) (
I⊗n2 ⊗W ⊗ I

⊗n
2

)
×

(
I⊗n+12 ⊗52n

) (
I⊗2n2 ⊗W

)
block :

(
I⊗n−22 ⊗58 ⊗ I

⊗n
2

) (
I⊗n2 ⊗W ⊗ I

⊗n
2

)
×

(
I⊗2n22 ⊗58

) (
I⊗2n2 ⊗W

)
(20)

For non-block 1st-level decomposition, the image is
divided into four parts: approximation, horizontal detail,
vertical detail, and diagonal detail. Each part has a size
of 2n−1 × 2n−1.
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FIGURE 10. Quantum circuit of non-block 1st-level decomposition for
FRQI image.

FIGURE 11. Quantum circuit of block 1st-level decomposition for FRQI
image.

In the case of block decomposition, the entire image is
divided into 2n−3 × 2n−3 blocks with a block size of 8 × 8.
Each block consists of the same four parts as mentioned
above, where each part has a size of 4× 4. Figure 12 demon-
strates the subband graphs of non-block and block 1st-level
decomposition based on QHWT.

FIGURE 12. Subband graphs of non-block (a) and block (b) 1st-level
decomposition.

FIGURE 13. Non-block and block quantum watermark image embedding
procedures.

Note that the approximation subband, having the low
frequency content, coarsely describes the image and contains
much of the energy of the original image. The higher fre-
quency coefficients in the detailed subbands represent the
fine details of the image and their energy is relatively small
compared to the approximation subband. Specifically, since
the wavelet coefficients and variances of the edge sub-images
represented by horizontal and vertical detail are commonly
greater than diagonal details, the diagonal subband is selected
for watermark information insertion as it has a less important
role in image reconstruction process.

B. QUANTUM WATERMARK IMAGE EMBEDDING
Based on non-block and block 1st-level decomposition,
the procedures for non-block and block quantum watermark
image embedding are summarized in Fig. 13.

1) NON-BLOCK QUANTUM WATERMARK IMAGE
EMBEDDING ALGORITHM AND CIRCUIT DESIGN
Since the watermark image information is known, we can
assume the binary watermark image WI with a size of
2n−1 × 2n−1 has the following form:

WI =
2n−1−1∑
Y=0

2n−1−1∑
X=0

f (Y ,X ),

Y = yn−2yn−3 · · · y1y0, X = xn−2xn−3 · · · x1x0,

f (Y ,X ) ∈ {0, 1}, yi, xi ∈ {0, 1},

i = 0, 1, 2, · · · , n− 2 (21)
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Then, based on the pixel value f(Y, X) in each position
(Y, X), we can define the unitary matrix Ry (2ϕK ) as follows:

Ry(2ϕK ) =
[
cos (ϕK ) − sin (ϕK )
sin (ϕK ) cos (ϕK )

]
,

ϕK = 0,
5× π
2× 255

(22)

where ϕK = 0 and ϕK = 5×π
2×255 are associated with the pixel

information f (Y ,X ) = 0 and f (Y ,X ) = 1 of binary image
WI, respectively. K = YX = 0, 1, 2, · · · , 22n−2 − 1 denote
the pixel location information in the watermark image WI.
Based on the above preparation, the non-block quantum

watermark image embedding algorithm has the following
steps:
Step 1: The quantum carrier image is decomposed using

the non-block 1st-level QHWT, shown in Fig. 10, which
results in the middle quantum state |CN1〉 given by:

|CN1〉 =
(
I2 ⊗52n ⊗ I

⊗n
2

) (
I⊗n2 ⊗W ⊗ I

⊗n
2

)
×

(
I⊗n+12 ⊗52n

) (
I⊗2n2 ⊗W

)
|C〉 (23)

where the middle quantum state |CN1〉 is divided into four
parts: approximation, horizontal detail, vertical detail, and
diagonal detail information as shown in Fig. 12(a).
Step 2: Based on the unitary matrix Ry (2ϕK ), we can

design themultiple qubits control unitary transformsUC
K . The

unitary operator UE
K is constructed from UC

K and applied to
the diagonal detail information within the middle quantum
state |CN1〉 as follows:

UC
K = Ry(2ϕK )⊗ |Y 〉 |X〉 〈X | 〈Y |

|CN 〉 = UE
K |CN1〉 =

22n−2−1∏
K=0

UC
K

 |CN1〉 (24)

where |Y 〉=
∣∣yn−1yy−2 · · · y1y0〉 and |X〉=|yn−1xn−2 · · · x1x0〉

have the highest qubits |yn−1〉 = |1〉 and |xn−1〉 = |1〉.
The area of the diagonal detail of the middle quantum state
|yn−1〉 = |1〉 can be selected by restricting the highest qubits
to |yn−1〉 = |1〉 and |xn−1〉 = |1〉. Therefore, through the
quantum operatorUE

K , the pixel information of the watermark
image is inserted into the diagonal wavelet coefficients of the
carrier image. In other words, when the pixel value of the
watermark image is bit 0, the corresponding diagonal wavelet
coefficients is left unchanged. On the other hand, when the
pixel bit of the watermark image is 1, a slight change is
introduced to the corresponding diagonal wavelet coefficients
via multi-qubit controlled unitary Ry (2ϕK ) gate.
Step 3: The watermarked image |CWN 〉 is reconstructed

by computing the inverse non-block 1st-level transform
of the quantum state |CN 〉. The unitary matrices can be
expressed as:

|CWN 〉 =

[(
I⊗n+12 ⊗52n

) (
I⊗2n2 ⊗W

)]†
[(
I2⊗52n⊗I

⊗n
2

) (
I⊗n2 ⊗W ⊗ I

⊗n
2

)]†
|CN 〉 (25)

where []† denotes the Hermite conjugate matrix.

FIGURE 14. Circuit for non-block quantum watermark image embedding
process.

Step 4: The quantum measurement is utilized for the states
in superposition to collapse to final states to obtain the clas-
sical Stego image.

Based on description above, the integrated quantum circuit
for non-block quantum watermark image embedding (from
Step 1 to Step 3) is demonstrated in Fig. 14.

2) BLOCK QUANTUM WATERMARK IMAGE EMBEDDING
ALGORITHM AND CIRCUIT DESIGN
The non-block watermarking embedding approach inserts the
watermark image information into the diagonal wavelet coef-
ficients of the whole quantum carrier image based on the non-
block 1st-level decomposition of QHWT. In this subsection,
the watermark image information is embedded into the carrier
image using the block quantum watermarking embedding
scheme. In this method, the watermark image information is
scattered and embedded into blocks of the carrier image based
on block 1st-level decomposition of QHWT.

The FRQI image representation model provides an easy
method to partition an image into blocks. A block can be
selected by restricting the location indices to a specific
range. To achieve this objective, we can split the qubits
|Y 〉 = |yn−1 · · · y3y2y1y0〉 and |X〉 = |xn−1 · · · x3x2x1x0〉 of
the quantum carrier image |C〉 into the following two parts:

|Y 〉 = |Yn−3〉 |Y3〉 = |yn−1 · · · y3〉 |y2y1y0〉

|X〉 = |Xn−3〉 |X3〉 = |xn−1 · · · x3〉 |x2x1x0〉 (26)

where qubits |Yn−3〉 = |yn−1 · · · y3〉 and |Xn−3〉 =
|xn−1 · · · x3〉 are called inter-block coordinates. The remain-
ing qubits |Y3〉 = |y2y1y0〉 and |X3〉 = |x2x1x0〉 are called
the intra-block coordinates as they correspond to the specific
locations within blocks. Therefore, by splitting the coordinate
qubits into two parts as defined in (26), the 2n × 2n quantum
carrier image |C〉 is divided into 2n−3 × 2n−3 blocks with
block size of 23 × 23.
Similarly, based on the known watermark image WI

expressed in (21), we can also split the location information
Y = yn−2 · · · y3y2y1y0 and X = xn−2 · · · x2x1x0 of WI into
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two parts as follows:

Y = Yn−3, Y2 = yn−2 · · · y3y2, y1y0
X = Xn−3, X2 = xn−2 · · · x3x2, x1x0 (27)

Therefore, the watermark image WI is also divided into
2n−3 × 2n−3 blocks with block size of 22 × 22. Herein,
the coordinates of Yn−3 = yn−2 · · · y3y2 and Xn−3 =
xn−2 · · · x3x2 are also called inter-block coordinates. The
remaining location information represented by Y2 = y1y0 and
X2 = x1x0 is called the intra-block coordinates because they
correspond to the pixel locations within blocks.

After introducing how to divide the quantum carrier image
|C〉 and watermark image WI into blocks, the block water-
mark image embedding algorithm can be summarized as
follows:
Step 1: Implement block 1st-level decomposition based

on QHWT for the carrier image |C〉 to obtain the middle
quantum state |CB1〉. The circuit is shown in Fig. 11 and its
unitary matrix can be written as:

|CB1〉=
(
I⊗n−22 ⊗58 ⊗ I

⊗n
2

) (
I⊗n2 ⊗W ⊗ I

⊗n
2

)
×

(
I⊗2n−22 ⊗58

) (
I⊗2n2 ⊗W

)
|C〉 (28)

If Sk denotes the K th block in the middle quantum state
|CB1〉, Sk can be calculated as:

Sk = yn−1 × 22n−7 + yn−2 × 22n−8 + · · · + y3 × 2n−3

+ xn−1 × 2n−4 + xn−2 × 2n−5 + · · · + x3 × 20 (29)

Similarly, if we also use Sk to denote the K th block in the
watermark image WI, Sk can be calculated as:

Sk = yn−2 × 22n−7 + yn−3 × 22n−8 + · · · + y2 × 2n−3

+ xn−2 × 2n−4 + xn−3 × 2n−5 + · · · + x2 × 20 (30)

Each 22 × 22 block of the watermark image contains
sixteen pixels. Therefore, based on the pixel value f(Y, X) in
position (Y, X) of each block, we can define the sixteen unitary
matrices Ry (2ϕK ) as follows:

Ry(2ϕK ) =
[
cos (ϕK ) − sin (ϕK )
sin (ϕK ) cos (ϕK )

]
, ϕK =0,

5×π
2×255

K = (Sk − 1)× 24, (Sk − 1)× 24 + 1, · · · ,

× (Sk − 1)× 24 + 14, Sk × 24 − 1 (31)

where K = y1y0x1x0 denotes the pixel location information
in each block of the watermark image WI. ϕK = 0 and
ϕK =

5×π
2×255 are also associated with the pixel information

f (Y ,X ) = 0 and f (Y ,X ) = 1 of the binary watermark image
WI, respectively.
Step 2:After the block 1st-level decomposition, the middle

quantum state |CB1〉 is divided into 2n−3 × 2n−3 blocks
with block size of 23 × 23. Each block consists of four
parts: approximation, horizontal detail, vertical detail, and
diagonal detail information with a size of 22 × 22 as shown
in Fig. 12(b).

Each block Sk in the middle quantum state |CB1〉
contains sixteen diagonal wavelet coefficients. To embed the
watermark image information into the carrier image, six-
teen specific multiple qubits control unitary transformations
Ry
(
2ϕ(Sk−1)×24

)
, Ry

(
2ϕ(Sk−1)×24+1

)
, · · · ,Ry

(
2ϕSk×24−2

)
,

Ry
(
2ϕSk×24−1

)
as defined in (31) are used to construct the

quantum unitary operators UC
K and UE

K in each block Sk as
given by the following equations:

UC
K =Ry(2ϕK )⊗

22n−2−1∑
YX=K

|1〉 |Y 〉 |1〉 |X〉 〈X | 〈1| 〈Y | 〈1|

K = (Sk − 1)× 24, (Sk−1)× 24+1, . . . , Sk×24 − 2,

× Sk × 24 − 1

Y = yn−2yn−3 · · · y1y0, X = xn−2xn−3 · · · x1x0

|CB〉 =UE
K |CB1〉 =

 Sk×24−1∏
K=(Sk−1)×24

UC
K

 |CB1〉 (32)

where the subscript K is the index of the unitary opera-
tions performed on the Sk block within the quantum middle
state |CB1〉.

Therefore, through a series of applications of the quan-
tum operators UE

K to each block, the pixel information of
the watermark image WI within each block is inserted into
the diagonal wavelet coefficients of the quantum carrier
image |C〉.
Step 3: The inverse block 1st-level transform of the quan-

tum state |CB〉 is used to obtain the watermarked image
|CWB〉. The corresponding matrix expression in this step is
given by:

|CWB〉 =

[(
I⊗2n−22 ⊗58

) (
I⊗2n2 ⊗W

)]†
[(
I⊗n−22 ⊗58⊗I

⊗n
2

) (
I⊗n2 ⊗W⊗I

⊗n
2

)]†
|CB〉 (33)

Step 4: The Stego image in the classical domain is
obtained from the quantum watermarked image by quantum
measurements.

The complete integrated quantum circuit (from Step 1 to
Step 3) for the whole image containing all of the blocks is
very large and complex. Therefore, it is more convenient to
only show the circuit for a single block embedding which is
demonstrated in Fig. 15.

C. QUANTUM WATERMARK IMAGE EXTRACTION
The non-block and block quantum watermarking algorithms
both introduce small changes to the diagonal wavelet coef-
ficients of the quantum carrier image. Therefore, it is a
non-blind watermarking scheme, which means that the orig-
inal carrier image C and the Stego image CW are necessary
to retrieve the watermark image information. Figure 16 gives
the detailed procedures for non-block and block watermark
image extraction.
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FIGURE 15. Circuit for a single block quantum watermark image
embedding.

FIGURE 16. Non-block and block quantum watermark image extraction
procedures.

1) NON-BLOCK QUANTUM WATERMARK IMAGE
EXTRACTION ALGORITHM AND CIRCUIT DESIGN
Based on the quantum carrier image |C〉, we can imple-
ment non-block decomposition to obtain the diagonal wavelet
coefficients in frequency domain. On condition that qubits
|yn−1〉 = |1〉 and |xx−1〉 = |1〉 of the quantum car-
rier image |CWN1〉. Suppose the diagonal wavelet coef-
ficients are denoted by di, i = 0, 1, 2, · · · , 22n−2 − 1,
where the subscript i is the index indicating the loca-
tion information within diagonal wavelet coefficients.
|i〉 = |yn−2yn−3 · · · y1y0〉 |xn−2xn−3 · · · x1 x0〉, and the deci-
mal number i can be calculated as follows:

i= yn−2×22n−3 + yn−3×22n−4+· · ·+y1×2n+y0×2n−1

+ xn−2×2n−2+xn−3×2n−3+· · ·+x1×21+x0×20 (34)

Based on the diagonal wavelet coefficients, let the
sequence of angles ϕ0, ϕ1, ϕ2, · · · , ϕ22n−2−2, ϕ22n−2−1
correspond to the diagonal wavelet coefficients d0, d1,
d2, · · · , d22n−2−2, d22n−2−1, where ϕi = ar cos(di), i =
0, 1, 2, · · · , 22n−2 − 1, and the arcos function is the inverse
cosine function. Therefore, a series of rotation gates C(2ϕi)
are defined based on the computed angles as follows:

C(2ϕi) =
[
cosϕi sinϕi
sinϕi − cosϕi

]
,

i = 0, 1, 2, · · · , 22n−2 − 2, 22n−2−1 (35)

Therefore, the result of subsequently applying the Z gate
and the rotation gate C(2ϕi) on a single qubit |ψ〉 =
cos θ |0〉 + sin θ |1〉 can be described as follows:

Z (C(2ϕi) |ψ〉) = Z (cos(ϕi − θ ) |0〉 + sin(ϕi − θ ) |1〉)

= cos(θ − ϕi) |0〉 + sin(θ − ϕi) |0〉 (36)

FIGURE 17. Effective circuit for non-block watermark image extraction.

Based on the above analysis, the following steps are used
to realize the non-block quantumwatermark image extraction
algorithm.
Step 1: Stego image |CWN 〉 is decomposed using the

non-block 1st-level transform to obtain the middle quantum
state |CWN1〉.
Step 2: A sequence of multiple qubits controlled unitary

operators UT
K and the Z gate is constructed and applied to the

middle quantum state |CWN1〉 as follows:

UT
K = C(2ϕK )⊗ |1〉 |Y 〉 |1〉 |X〉 〈X | 〈1| 〈Y | 〈1|

|K 〉 = |Y 〉 |X〉

|Y 〉 = |yn−2yn−3 · · · y1y0〉 , |X〉 = |xn−2xn−3 · · · x1x0〉

|C_W 〉 = Z (U |CWN1〉) = Z

22n−2−1∏
K=0

UT
K

 |CWN1〉


(37)

The effective circuit for non-block watermark image
extraction is shown in Fig. 17. Finally, selective quantum
measurement operations are utilized to retrieve thewatermark
image information, i.e., measure the diagonal wavelet coef-
ficients. Theoretically, if the quantum measurement result is
quantum state |0〉 with a probability of 100%, the extracted
watermark image bit is 0; otherwise, the extracted watermark
image bit is 1.

2) BLOCK QUANTUM WATERMARK IMAGE EXTRACTION
ALGORITHM AND CIRCUIT DESIGN
Similar to the non-block watermark image extracting proce-
dure, the block 1st-level transform will be used to decompose
the original carrier image |C〉, and obtain the corresponding
sixteen diagonal wavelet coefficients within each block in fre-
quency domain. Assume that these coefficients in the Skblock
are d(Sk−1)×24 , d(Sk−1)×24+1, d(Sk−1)×24+2, · · · , dSk×24−2,
dSk×24−1 in order, where Sk can be calculated by (29). There-
fore, in each block, the associated sixteen angles ϕ(Sk−1)×24 ,
ϕ(Sk−1)×24+1, ϕ(Sk−1)×24+2, · · · , ϕSk×24−2, ϕSk×24−1 are
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FIGURE 18. Effective circuit for a single block watermark image
extraction.

obtained via the inverse cosine function, where ϕi =

arcos (di), i = (Sk − 1) × 24, (Sk − 1) × 24 + 1, · · · , Sk ×
24 − 2, Sk × 24 − 1.

Based on these angles in each block, we can also define the
following series of unitary rotation matrices C(2ϕi):

C(2ϕi) =
[
cosϕi sinϕi
sinϕi − cosϕi

]
i = (Sk − 1)× 24, (Sk − 1)× 24 + 1,

× (Sk − 1)× 24 + 2, · · · , Sk × 24 − 2,

× Sk × 24 − 1 (38)

For simplicity, the integrated circuit for a single block
quantum watermark image extraction is demonstrated
in Fig. 18. The algorithm consists of the following two steps:
Step 1:The individual blocks of the Stego image |CWB〉 are

decomposed by block 1st-level transform to obtain the middle
quantum state |CWB1〉.
Step 2: A sequence of multiple qubits controlled unitary

operators UT
i and the Z gate in each block operate on the

middle quantum state |CWB1〉 to compute |C_W 〉:

UT
i =C(2ϕi)⊗ |Y 〉 |X〉 〈X | 〈Y |

|C_W 〉 = Z (U |CWB1〉) = Z

 Sk×24−1∏
i=(Sk−1)×24

UT
i

 |CWB1〉


(39)

where the quantum operatorU denotes the unitary operations
applied on the K th block.

Finally, to retrieve the watermark image information,
we must implement selective quantum measurement opera-
tions in each block, i.e., measure the diagonal wavelet coef-
ficients within each block. The principle of retrieving the
watermark image information from the quantum registers is
similar to the non-block watermark image extraction process.

D. QUANTUM MEASUREMENT
To determine the classical image information from the quan-
tum registers, a measurement of the quantum state based
on multi-projection operators is incorporated. For the FRQI
images expressed in (3), the image retrieval process can be
explained by the following two steps:

Step 1: Apply the observable operator M1

M1 =

22n−1∑
i=0

I ⊗ mi |i〉 〈i| (40)

to the last 2n-qubit of the FRQI image |I (θ )〉. Then, the quan-
tum images’ superposition state would collapse into the basis
state (cos θi |0〉 + sin θi |1〉) |i〉 with a probability of 1/22n.
Step 2: Use the observable measurement operator M2

M2 =

1∑
i=0

mi |i〉 〈i| = m0 |0〉 〈0| + m1 |1〉 〈1| (41)

to measure the pixel information of cos θi |0〉 + sin θi |1〉.
As a result, obtain qubit |0〉 with a probability of cos2 θYX
or qubit |1〉 with a probability of sin2 θYX . Consequently,
θYX = arcos

(√
cos2 θYX

)
= arsin

(√
sin2 θYX

)
can be

directly obtained.
Note that the quantum information of FRQI images is

encoded into a superposition state in quantum registers.
Therefore, when measuring the quantum registers to deter-
mine the pixel color information, the quantum registers will
collapse into one of the computational basis states of the
corresponding quantum superposition state. Due to the prob-
abilistic nature of quantum registers, it is highly unlikely
to obtain all of the pixel information in an image by only
using a one-time quantum measurement operation. There-
fore, the measurement operations need to be repeated many
times to retrieve all of the image information [12], [41].
This converts the probabilistic quantum information into the
deterministic classical domain in the form of probability
distributions. By extracting and analyzing these distributions,
the corresponding classical image information is obtained.

E. COMPLEXITY ANALYSIS
In quantum computation, any complex quantum circuit can be
decomposed into a succession of basic unitary gates that only
act on one or two qubits [3], [38]. In this paper, we consider
one-qubit or two-qubit quantum gates as the basic units for
computing the algorithm complexity. Therefore, the inte-
grated quantum circuit complexity depends on the number of
these elementary gates. In addition, it is a common approach
that introduces the ancillary qubits when decomposing the
complex quantum unitary operations into a series of basic
quantum gates [3].

Suppose the sizes of the quantum carrier and watermark
images are 2n×2n and 2n−1×2n−1, respectively. The circuit
complexity of the presented quantum image watermarking
schemes demonstrated in Figs. 14, 15, 17 and 18 can be
computed in terms of n as discussed in the remainder of this
subsection.

As shown in Fig. 14, the circuit for the non-block quan-
tum watermark image embedding scheme is divided into
three operations: (1) non-block 1st-level decomposition using
QHWT; (2) a sequence of multi-qubit controlled rotation
operations; (3) and inverse non-block 1st-level transform.
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Therefore, the quantum circuit complexity can be analyzed
and calculated from the aforementioned three main opera-
tions as follows:
Operation 1: The non-block 1st-level transform has the

quantum circuit shown in Fig. 10, which contains two W
gates and two permutation operators 52n . The quantum cir-
cuit for 52n , illustrated in Fig. 6, consists of (n-1) swap
gates. Thus, the circuit complexity of the first operation
is 2+ 2(n− 1) = 2n.
Operation 2: There are 22n−2 conditional rotation gates

with 2n control qubits. According to the Corollary 7.12
in [38], the complexity of the n-qubit controlled rotation gate
Ry(2ϕ) is O (n) with an auxiliary qubit. Therefore, the com-
plexity of the series of rotation gates is not greater than
O
(
n22n−2

)
.

Operation 3: Since all quantum operations are imple-
mented via unitary quantum gates, the quantum operations
are invertible. So, the quantum circuit for the inverse non-
block 1st-level transform can be implemented by reversing all
of the gates of within non-block 1st-level decomposition. This
results in the same complexity as the non-block transform,
which is equal to 2n.

Adding the obtained results from the three operations leads
to a total complexity of O

(
n22n−2

)
for the non-block quan-

tum watermark image embedding scheme.
By applying a similar analysis as above to the block quan-

tum image embedding scheme shown in Fig. 15 and the
non-block and block watermark image extraction schemes
depicted in Fig. 17 and Fig. 18, respectively, we can conclude
that the complexities of these methods are the same and in the
order of O

(
n22n−2

)
.

VI. EXPERIMENTAL RESULTS AND ANALYSES
The presentedwatermarking schemes are simulated on classi-
cal computers using MATLAB due to the limited availability
of quantum computers. MATLAB facilitates the representa-
tion and manipulation of large arrays of vectors and matrices,
which makes it a suitable tool for simulating quantum states
and quantum unitary operations. In particular, by treating
the quantum images as large matrices, transformations can
be simulated using linear algebraic operations equivalent to
the quantum circuit elements. Moreover, complex vectors are
used to simulate quantum effects, such as quantum entangle-
ment or superposition, and quantum operators are simulated
by unitary matrices.

The two quantum watermarking algorithms presented in
this work are validated using a set of four classical 64 × 64
grayscale images as carrier images and four binary 32 × 32
watermark images. The carrier and watermark images are
illustrated in Fig. 19, where (a), (b), (c) and (d) are the
grayscale carrier images named Lena, Cameraman, Mandrill,
and Pirate. Watermark images (e), (f), (g) and (h) are, respec-
tively, the badge of ShanghaiMaritime University (SHMTU),
the badge of Research Center of Intelligent Information Pro-
cessing and Quantum Intelligent Computing (RCIIP&QIC))
in addition to binary versions of reduced sizes of Lena and

FIGURE 19. Original carrier images [(a) Lena, (b) Cameraman,
(c) Mandrill, (d) Pirate] and watermark images [(e) SHMTU, (f) RCIIP&QIC,
(g) Lena_W, (h) Cameraman_W].

Cameraman. We refer to the last two watermark images as
Lena_W and Cameraman_W to distinguish them from their
carrier image counterparts.

Theoretically, in a quantum noiseless environment, the
proposed quantum image watermarking schemes can extract
an error-free watermark image from quantum registers
via quantum measurement operations. However, quantum
(microscopic world) noise exists in reality and will affect the
performance of the algorithms. Due to the lack of practical
quantum computers to conduct the proposed quantum image
watermarking schemes as well as the different noise nature
in classical (macroscopic world) computers, the robustness
analysis of the Stego images based on noise simulation under
different hostile attack in quantum registers is not discussed
in this paper.

A. IMPERCEPTIBILTY
Imperceptibility measures the similarity between the carrier
images and the Stego images. To analyze the imperceptibility
of the investigated non-block and block quantum watermark-
ing schemes in detail, the Peak Signal to Noise Ratio (PSNR),
similarity between two quantum images, and histogram anal-
yses are considered.

1) PSNR
To quantitatively assess the visual quality of a Stego image
compared to the original image, the PSNR for the two 2n×2n

grayscale images are computed as follows:

PSNR=20 log 10
255√

1
/
22n

∑2n−1
i=0

∑2n−1
j=0 [C(i, j)−S(i, j)]2

(42)

where C represents the original carrier image and S denotes
the corresponding Stego image.

The higher the similarity of the carrier images with
their Stego versions, the greater the obtained PSNR. The
watermarked images using the two different presented water-
marking schemes (non-block and block methods) are illus-
trated in Figs. 20 and 21. A comparison of the non-block
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FIGURE 20. Watermarked images based on the non-block watermarking
scheme. Stego images in the first to fourth rows are watermarked by the
watermark images SHMTU, RCIIP&QIC, Lena_W, Cameraman_W,
respectively.

TABLE 1. Similarity of stego images of our investigated schemes
watermarked by SHMTU and RCIIP&QIC.

and block watermarking schemes based on the PSNR is
demonstrated in Table I and Table II. It can be observed
that the two watermarking algorithms have very close visual
quality as measured by the PSNR values for most of the
tested images.

The PSNR values of both the non-block and block quantum
image watermarking schemes are greater than 62dB except
for the Cameraman image. The high PSNR values indicate
that the Stego images have a high degree of similarity to the
original images and that the watermarking process did not
affect the visual effects of the carrier images. Additionally,
it is not possible for the human eye to distinguish the differ-
ence between the carrier and stego images.

Based on the obtained PSNR values in Tables I and II,
we can infer that the presented image watermarking schemes

FIGURE 21. Watermarked images based on the block watermarking
scheme. Stego images in the first to fourth rows are watermarked by the
watermark images SHMTU, RCIIP&QIC, Lena_W, Cameraman_W,
respectively.

TABLE 2. Similarity of stego images of our investigated schemes
watermarked by Lena_W and Cameraman_W.

have a higher similarity and in turn less effect on visual
appearance of the images than the other watermarking
schemes in the literature, such as in [20] (approximately
54 dB), [21] (58∼62 dB), [22] (58 dB), and [23] (55 dB).

2) SIMILARITY BETWEEN TWO QUANTUM IMAGES
Although the classical metric PSNR used demonstrates
that the presented watermarking algorithm has excellent
visual performance, it seems more convenient to utilize a
quantum-based metric to assess the fidelity between two
quantum images.

Here, we adopt the similarity evaluation metric proposed
by Yan et al. [41], which can be used to compare the colors
in two quantum images position-by-position. For two 2n×2n
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TABLE 3. Similarity analysis of carrier images and stego images by
SHMTU and RCIIP&QIC using the quantum similarity metric (sim).

TABLE 4. Similarity analysis of carrier images and stego images by
lena_w and cameraman_w using the quantum similarity metric (sim).

FRQI images |I0〉 and |I1〉 expressed as follows:

|I0〉 =
1
2n

22n−1∑
i=0

(
cos θ i0 |0〉 + sin θ i0 |1〉

)
|i〉

|I1〉 =
1
2n

22n−1∑
i=0

(
cosϕi1 |0〉 + sinϕi1 |i〉

)
|i〉 , (43)

the similarity (sim) between two quantum images is
defined by:

sim (|I0〉 , |I1〉) =
1
22n

22n∑
i=0

cos σi,

σi =

∣∣∣θ i0 − ϕi1∣∣∣ , σi ∈
[
0,
π

2

]
(44)

where θ i0 and ϕ
i
1 represent the pixel color information of |I0〉

and |I1〉 at position i, respectively, σi =
∣∣θ i0 − ϕi1∣∣ denotes the

pixel difference at position i.
Tables III and IV show the similarities between the dif-

ferent pairs of carrier and corresponding Stego images. Note
that some values are equal to 1.0000, which means the Stego
images are almost identical to the carrier image. Moreover,
all the values are greater than 0.9998, which indicates that the
Stego images have excellent fidelity with the carrier images.

FIGURE 22. Histograms of original carrier images (a) Lena,
(b) Cameraman, (c) Mandrill, and (d) Pirate.

3) HISTOGRAM GRAPH
The image’s histogram can be considered another useful
criterion for evaluating the fidelity of a Stego image compared
with its original version. By comparing the histograms of
the original images and watermarked images, the images’
similarity can be determined from another perspective. The
histogram graphs of four original carrier images are demon-
strated in Fig. 22.

Figures 23 and 24 are the histogram graphs of the
Stego images that are watermarked by the watermark image
SHMTU using non-block and block watermarking algo-
rithms. Obviously, compared to the histograms’ graphs of
the original carrier images, the Stego images’ histograms
are highly consistent with their original counterparts. Thus,
the existence of watermark image information is efficiently
hidden into the Stego images.

B. ROBUSTNESS
Bit Error Rate (BER) is defined as the inverse of PSNR as
follows:

BER =
1

PSNR
(45)

The BER determines the percentage of original image bits
that change during the watermarking procedure. For exam-
ple, if the PSNR is 40 dB, the BER would be 0.025. This
means that 2.5% of the bits changed during the watermarking
process. The results of the BER values of the Stego images
calculated in the performed simulations are given in Table V.
Since all of the BER values are less than 0.019, i.e., more
than 98.18% of the bits remained unchanged. This indicates
that the introduced algorithms embed the watermark image
information while slightly affecting the original image.
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FIGURE 23. Histograms of stego images using non-block watermarking
schemes. (a), (b), (c) and (d) are the histogram images of the
watermarked images Lena, Cameraman, Mandrill, and Pirate.
The watermark image is SHMTU.

FIGURE 24. Histograms of Stego images using block watermarking
schemes. (a), (b), (c) and (d) are the histogram images that respectively
belong to the watermarked images Lena, Cameraman, Mandrill, and
Pirate. The watermark image is SHMTU.

TABLE 5. Bit error rate (BER) values of the investigated watermarking
schemes.

C. CAPACITY
The capacity of a watermarking scheme is defined as the ratio
of the number of message bits to the number of carrier image

pixels as follows:

Capacity =
the number of message bits

the number of carrier image′s pixel
(46)

Since the introduced watermarking schemes embed a
2n−1 × 2n−1 binary image into a 2n × 2n grayscale carrier
image, the proposed watermarking algorithms’ capacity is
calculated as:

C =
2n−1 × 2n−1

2n × 2n
=

1
4
bits/pixel (47)

In other word, one message bit is inserted on average in
four pixels for the presented watermarking scheme, which is
greater than [21] (1/16 bits/pixel) and equal to [22].

VII. CONCLUSION
A quantum image watermarking scheme in the frequency
domain based on the decomposition of QHWT for FRQI
images is proposed in this paper. The algorithms embed a
2n−1×2n−1 binary watermark image into a 2n×2n grayscale
carrier image. Based on non-block and block 1st-level decom-
position for an FRQI image, two quantum watermark image
embedding schemes as well as their integrated quantum cir-
cuit implementations are provided. Both methods insert the
watermarking information by slightly changing the diagonal
wavelet coefficients in the frequency domain of the carrier
images. In the non-block watermarking method, the diagonal
wavelet coefficients in the entire original image are modified
while the image is divided into blocks and the diagonal
wavelet coefficients in each block are changed separately in
the block watermarking method.

The introduced watermarking methods are simulated and
tested via a set of carrier and watermark images. The exper-
imental results demonstrate the high degree of similarity
between the Stego images and carrier images as measured by
PSNR, quantum similarity metric, and histograms.Moreover,
the obtained low bit error rate for all tested images indicates
that only a small fraction of the image bits are changed.
This confirms the high similarity between the Stego image
and carrier image, and shows the modifications introduced
by the watermarking information to the carrier image are
subtle and will be undetected by the human eye. As evident
from the results, the quantum realization of the presented
watermarking algorithms is highly efficient.
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