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ABSTRACT The systematic and network-centric warfare becomes complicated currently. It is a challenge
problem to design and choose the optimal combat system-of-systems to complete missions. In order to solve
this challenge, we propose a super-network model based combat system-of-systems architecture (CSoSA)
and a scheme space exploration algorithm in this paper. First, a formal definition of CSoSA is given based
on the operational capability generation elements. The framework for CSoSA scheme space exploration
problem is then presented. The goal of the problem is to select the optimal architecture with maximized
expected rewards and minimized cumulative costs. In addition, a novel and optimal algorithm for CSoSA
dynamic exploration is proposed based on the greedy search algorithm. Finally, we evaluated our algorithm
through simulation experiments, where the results showed that our algorithm is significantly better than sev-
eral benchmark algorithms. In general, the proposed architecture framework and the exploration algorithm
can assist commanders in making further decisions.

INDEX TERMS Combat system-of-systems, architecture modeling, super-network model, greedy search,
dynamic planning.

I. INTRODUCTION
With the development of informatization and intelligence
of weapon systems, the interconnection between weapons
becomes frequent [1]. Especially, the widespread usage of
unmanned systems makes the combat mode of modern
warfare undergone significant changes. It is a challeng-
ing problem to study the warfare from the perspective of
joint operations. Fortunately, the system-of-systems engi-
neering gives an idea to solve the challenge. A system-
of-systems is an ‘‘Integration of a finite number of con-
stituent systems which are independent and operable, and
which are networked together for a period of time to
achieve a certain higher goal’’ [2]. The combat system-of-
systems is an application of the system-of-systems in the
field of warfare. The architecture reflects the configuration
of components in the system-of-systems and the interaction
between components and the external environment [3], [4].
The architecture captures the physical entity, information
structure and the system-of-systems capability, and is the
core framework of the system-of-systems. The architecture
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runs through the process of design, requirements demon-
stration, prototyping, and application testing [5]. Therefore,
we indirectly study the combat system-of-systems through
architectures, that achieves best configuration of combat
system-of-systems core elements by giving appropriate for-
mal definitions and optimizing the combat system-of-systems
architecture (CSoSA).

The CSoSA is a collection of equipment interconnected
by a command and control network that provides multiple
functions to support the completion of certain tasks [6].
The CSoSA is used to guide the establishment of a spe-
cific combat system-of-systems. In this paper, challenges are
threefold. First, the uncertainty of the architecture capability
needs to be taken into consideration. In the past, the opera-
tional capability is determined after the architecture is estab-
lished [7]. In fact, there are still many uncertain factors in
the specific combat system-of-systems established accord-
ing to the CSoSA. These uncertainties may not be taken
into consideration when designing the architecture. Second,
it takes a price when developing the combat system-of-
systems based on the CSoSA, so the commander needs to
decide whether to continue searching for the undeveloped
CSoSA, or stop searching and select the developed CSoSA.
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Third, the commander has several choices to obtain the
architecture capability, either by its institution, by other insti-
tutions, or by consulting with relevant institutions. Therefore,
the commander should balance the value of different actions
to make the best decisions.

To address these challenges, we focus on a class of agent
search problems where different architecture capabilities are
independent of each other, and we expect to find a polynomial
time optimal solution. Although the independence assump-
tion narrows the generality of our model, it still covers an
important part of the agent search problem. In this paper,
we advance the state-of-the-art technology in the following
ways:
• First, we propose a super-network model based CSoSA
framework. This framework is established based on the
core elements of system-of-systems capability genera-
tion, i.e. tasks, equipment, and command and control
structures. Given this, we propose a CSoSA search
framework and cast it as a dynamic programming prob-
lem under the constraint of the uncertainty of the
architecture capability.

• Second, an exploration algorithm is proposed to search
the optimal CSoSA. Specifically, we designed a greedy
search based dynamic planning (GSDP) algorithm,
where the GSDP algorithm is polynomial time and is
proved to be optimal under the assumption of reward
independence.

• Third, we empirically evaluate the performance of
GSDP through simulation experiments, that are divided
into parameter sensitivity analysis experiments and
scalability analysis experiments. Several benchmark
algorithms are compared with GSDP in the CSoSA
search framework. The experimental results show that
GSDP is significantly better than other benchmark
algorithms.

The remainder of this paper is organized as follows.
Related work of the combat system-of-systems architecture,
the super-network model, and exploration algorithms for
the CSoSA searching problem are discussed in Section II.
The CSoSA searching problem framework is defined in
Section III. Our proposed algorithm and a theoretical analysis
are presented in Section IV. An empirical analysis of our algo-
rithm is shown in Sections V. Finally, the paper is concluded
in Section VI.

II. RELATED WORK
In this section, the combat system-of-systems architecture,
the super-network model, and exploration algorithms for the
CSoSA searching problem are reviewed.

A. COMBAT SYSTEM-OF-SYSTEMS ARCHITECTURES
The CSoS is quite complex, that covers all aspects of warfare
[8]. Currently, many scholars have proposed their own under-
standing on the CSoS, but only formed a unified qualitative
understanding in some conceptions [9]. The CSoS needs
the capability to accomplish missions. The definition of a
capability given by RAND is to accomplish a series of combat

missions in a combined manner in order to achieve certain
specific operational effects, subject to prepared environmen-
tal conditions [10]. It means that the capability is mainly
generated by combining tasks, equipment systems, and the
command and control structure. Since the CSoS is quite
hard to study comprehensively and accurately, an alternative
method is to study the architecture.

There are many methods that are widely used for CSoSA
modeling, such as DoD Architecture Framework [11], MOD
Architecture Framework [12] andNATOArchitecture Frame-
work [13]. These frameworks are comprehensive, but weaken
the influence of command and control elements. Another
method is the agent-based model, which is popular in the mil-
itary. Each intelligent entity can be modeled as an agent, and
realistic relationships can be defined as interactions between
agents. The behavior between agents reflects swarm intelli-
gence, that may generates the emergency [14]. In this paper,
we intend to use the agent-based model to study CSoSA
by taking capability generating elements into consideration.
In the next section, we focus on the super-network model
based CSoSA.

B. THE SUPER-NETWORK MODEL
Generally, it is believed that the supernetwork refers to a net-
work with a large scale, complex connections, and heteroge-
neous nodes. Nagurney was the first to propose a concept on
the supernetwork [15], [16]. When dealing with the problem
of interlacing logistics networks with information networks
and capital networks, she refers to networks that are beyond
existing networks as supernetworks. In other words, a super
network is a network of networks. The supernetwork studied
by Nagurney has one or several of the following features:
multi-layer feature, multi-level feature, multi-dimensional
feature, and multi-attribute feature. Thus, the super-network
model can be used to represent interactions and influences
between networks with different featuers. In addition, Berge
[17] also proposed the similar concept called hypernetwork,
which is a hypergraph-based network. The hypergraph is
different from the undirected graph or the directed graph,
where each edge in the hypergraph can connect more than two
nodes. We believe that the supernetwork is more in line with
the CSoSA. In this paper, the super-network model CSoSA is
a complex network with specific goals composed of multiple
types of networks.

Currently, the supernetwork is use to model the combat
system-of-systems. Fu-li et al. [18] proposed a military com-
munication supernetwork structure in a network-centric envi-
ronment. The network consists of five heterogeneous nodes:
sensor nodes, information nodes, decision nodes, communi-
cation nodes, and effector nodes. Gao et al. [19] proposed a
super-network model of command and control system, that
includes observation nodes, command and control nodes,
and effect nodes, and relationships between the three types
of nodes. Zhao et al. [20] established a weapon equipment
system super-network model based on the network-centric
mode, and a granular analysis is proposed to reduce the
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complexity of weapon system generation schemes based on
the theory of quotient space. A multi-layer command and
control super-network model is proposed based on attribute
collaborative prioritization and hypergraph theory, including
three levels and five types of networks [21]. The above
super-network models are studied from the perspectives of
equipment systems, functions and the command and con-
trol structure respectively. In fact, the CSoS is an organic
whole, that needs to be guided by the capability. In this
paper, a capability-oriented CSoSA is proposed based on the
supernetwork model.

C. ALGORITHMS FOR THE CSOSA SEARCHING PROBLEM
In this paper, a CSoSA is established based on the
super-network model. Each supernetwork is an architec-
ture scheme with the capability to accomplish a specific
mission. A set of supernetworks constitute an architecture
scheme space. In order to select the optimal architecture
scheme, the architecture scheme space exploration method
is necessary. This problem can be modeled as an optimiza-
tion problem. According to the number of objective func-
tions, it can be divided into single-objective optimization
and multi-objective optimization. Sometimes multiple objec-
tives can be reorganized into a single objective for the con-
venience of analysis. For complex optimization problems,
Pareto optimal methods such as NSGA-II [22], SPEA2 [23],
and some extended algorithms [24] are commonly used.
These algorithms apply to the problem that each input has a
definite output. It is difficult to effectively solve the problem
framework proposed in this paper, where each action may
generate a large number of (possibly infinite) different value.
Our problem framework can be transformed into a dynamic
programming problem [25], [26], which is different from the
current common dynamic programming problems, such as
partially observable Markov decision problems [27]. Their
objectives are to maximize the expected cumulative reward,
while our objective is to select only the highest expected
reward in the developed architecture scheme space. To solve
the problem, a novel and optimal algorithm is then proposed.

III. THE CSOSA SEARCHING PROBLEM FRAMEWORK
In this section, we first give the definitions of the CSoSA.
Then, the CSoSA searching problem is proposed. Third,
the CSoSA searching problem is cast as a dynamic
programming problem.

A. DEFINITIONS OF THE SUPERNETWORK BASED CSOSA
The capacity is generated by combining the equipment
and non-equipment elements organically. When equipment
systems with certain functions organized according to a com-
mand and control structure are able to complete a series of
tasks, we believe that the CSoS has the ability to accom-
plish the mission. The performance of completing the task
is measured by the operational effect, denoted as F . In fact,
the operational effect has a great relationship with the equip-
ment system, the command and control structure, and other

FIGURE 1. Examples of three types of networks. Fig. 1(a) shows the task
network; Fig. 1(b) shows the system network; Fig. 1(c) shows the
C2 network.

FIGURE 2. Examples of bipartite graphs. Fig. 2(a) shows the
corresponding relationship between task nodes and system nodes;
Fig. 2(b) shows the corresponding relationship between system nodes
and C2 nodes.

factors that have not been considered. In addition, we believe
that a supernetwork is a heterogeneous network that connects
several types of nodes. Specifically, the supernetwork based
CSoSA is composed of a task node network, a system node
network, and a command and control node network. Here we
give some definitions.
Definition 1 (Task Node): A task node is an atomic

operational activity that can be executed by equipment,
denoted as T .
In order to complete themission, we need to decompose the

mission into a series of task nodes, whichwe call the task link.
A task link can be described as a directed graph. A mission
can be decomposed into different task links, eachmission link
has a starting task node and an ending task node. Different
task links may have different effects. There are mainly two
logical relationships in a task link, that is sequential execution
and parallel execution. Multiple missions correspond to mul-
tiple task links, which constitute the task network, denoted
as GT = (V T ,ET ). Fig. 1(a) shows an example of a task
network.
Definition 2 (System Node): A system node refers to an

equipment that has the ability to accomplish certain tasks,
denoted as S.
In the CSoSA, the connection of system nodes, such as

drones, tanks, and machines, is influenced by task nodes.
The system network is denoted as GS = (V S ,ES ). An exam-
ple of the system network is shown in Fig. 1(b). Equipment
with functions are used to complete tasks. A correspond-
ing relationship between task nodes and system nodes is
defined as a bipartite graph, denoted as GTS = (V TS ,ETS ).
An example of the bipartite graph is shown in Fig. 2(a).
Definition 3 (Command and Control Node): The command

and control (C2) node is a logical node that is used to process
information, denoted as C .
On one hand, the C2 node processes the command between

the upper and lower levels, such as receiving task infor-
mation from the superior C2 node, and releasing sub-task
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FIGURE 3. An example of the CSoSA scheme based on the super-network
model.

information to the subordinate C2 node. On the other hand,
maintaining the information interaction with peer C2 nodes.
Therefore, the relationship of all the C2 nodes in the CSoSA
constitutes the organizational structure, denoted as GC =
(VC ,EC ). An example of the C2 node network is shown
in Fig. 1(c).Most of the organizational structure is modeled as
but not limited to the tree graph. In addition, a corresponding
relationship between system nodes and C2 nodes is defined as
a bipartite graph, denoted asGSC = (V SC ,ESC ). An example
of the bipartite graph is shown in Fig. 2(b).

Fig. 3 shows an example of the CSoSA scheme based
on the super-network model. A CSoSA scheme is built as
follows: The task nodes network is first built. Specifically,
the CSoS mission is decomposed into a number of feasi-
ble task networks. Second, the correspondence between task
nodes and system nodes is given, and the system network
is built according to the task network and the correspond-
ing relationship. Third, the correspondence between system
nodes and C2 nodes is given, and the C2 node is determined
according to the relationship. However, the C2 network is not
directly related to relationship between system nodes and task
nodes, and it is constructed according to the feasible rela-
tionship between C2 nodes. Each supernetwork represents a
scheme, and all supernetworks constitute the scheme space.

B. THE CSOSA SEARCHING PROBLEM
Assume that some drones are assigned to complete a
reconnaissance mission in a complex environment. There are
several schemes to complete the mission, but we can only
choose one. It costs resources when developing a scheme,
at the same time obtains a certain reward. In this section,
we formalizes the problem from a more general perspective.

The CSoSA is a logical concept, and the actual operational
capabilities is acquired through the development of the CSoS.
Note that, the CSoS is likely to be affected by factors beyond
the CSoSA, where these factors may result in emergency.
Thus, the CSoS capability based on the CSoSA may not be
unique, and each CSoSA scheme has an uncertain potential
reward.

The commander needs to select an architecture scheme
(scheme for short) in the scheme space to develop the CSoS.
For simplicity, commanders, decision-making institutes, and
consultancies are modeled as agents in this paper. The CSoS

FIGURE 4. The state transition relationship. The unknown state indicates
the scheme is undeveloped and its reward is unknown; the known state
indicates the scheme is developed and its reward is known. The searching
state indicates the scheme is being queried.

capability is measured by the sampled reward. The reward
of each scheme xk obeys the probability distribution Fk (xk ),
and the rewards of different schemes are independent of
each other, where k ∈ K ,K = {1, 2, . . . ,N }, and N is
the number of schemes in the scheme space. The reward of
each architecture is uncertain in advance, which is acquired
by developing the CSoS, or by consulting other agents. The
agent continually explores the scheme in the undeveloped
scheme space and selects a developed scheme in the devel-
oped scheme space finally. The goal of the agent is to select
an architecture with the highest expected reward and the least
cumulative search costs.

Fig. 4 shows the state transitions. When exploring a
scheme, the scheme has a potential reward. After the CSoS
being developed, the scheme reward is known. Actions of
the agent include: developing by itself, developing by other
agents, and consulting the relevant agents. Specifically, after
the CSoS being developed based on the scheme k with
cost cselfk , the unknown state transitions to a known state.
In addition, the agent can request other agents to develop the
CSoS with cost cotherk . Furthermore, the agent can consult
relevant agents, such as institutions or departments which
may have done similar work. The cost of consultation process
is denoted as cconsk .

CSoSASP

max E[
∑
k∈K

(−d selfk cselfk − d
other
k cotherk − nconsk cconsk

+ (d selfk β
self
k + dotherk βotherk + dconsk βconsk )skxk )]

s.t. d selfk + dotherk + dconsk ≤ 1, k ∈ K (a)

d selfk + dotherk + dconsk ≥ sk , k ∈ K (b)∑
k∈K

sk = 1, (c)

d selfk , dotherk , dconsk , sk ∈ {0, 1}, k ∈ K (d)

nconsk ∈ N, k ∈ K (e)

β
self
k , βotherk , βconsk ∈ [0, 1], k ∈ K (f )

cselfk , cotherk , cconsk ∈ R+, k ∈ K (g) (1)

The objective function is for maximizing the reward of
the developed architecture while minimizing the sum of
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search costs. Specifically, the constraint (a) ensures that the
scheme has been developed or not developed. The constraint
(b) indicates that if a scheme is selected finally, then this
scheme must have been developed. The constraint (c) indi-
cates that only one scheme is finally selected. The constraint
(d) represents the value spaces of the decision variables.
The constraint (e) represents the number of times the agent
requests relevant agents. The constraint (f ) refers to the
discount rate, which is the impact of development time on
rewards. The constraint (g) indicates the cost of each action.

C. THE CSOSA DYNAMIC PROGRAMMING PROBLEM
In this section, we formalize the CSoSA searching prob-
lem into a dynamic programming problem and put forward
an optimal algorithm. In the dynamic planning, we divide
the scheme space K into two mutually exclusive sets: one
is a growing set of developed architectures D ∈ K ;
the other is a decreasing set of undeveloped architectures
D̄ ∈ K ,D ∪ D̄ = K . For each decision, the agent can choose
whether to select and develop an unknown scheme from
set D̄ or stop searching and select one from set D. If the
agent chooses to continue searching, then it has three type of
actions, i.e. developing the CSoS by itself aself , developing
the CSoS by other agents aother , and getting the reward by
consulting the agents acons. If the agent stops searching, then
it selects the developed scheme with the highest reward:

y = max
k∈K

xk (2)

The system state is defined as a statistic (D̄, y). In addi-
tion, the state evaluation function 9(D̄, y) is defined as the
expected discount value by executing the optimal policywhen
the maximum reward is y and the undeveloped architecture
set is D̄. For each set D̄ and the maximum reward, the state
evaluation function needs to satisfy the following function.

9(D̄, y)

= max{y, 9self (D̄, y), 9other (D̄, y), 9cons(D̄, y)}

where

9self (D̄, y)

= max
k∈D̄
{−cselfk + β

self
k [9(D̄− {k}, y)

∫ y

−∞

dFk (xk )

+

∫
∞

y
9(D̄− {k}, xk )dFk (xk )]}

9other (D̄, y)

= max
k∈D̄
{−cotherk + βotherk [9(D̄− {k}, y)

∫ y

−∞

dFk (xk )

+

∫
∞

y
9(D̄− {k}, xk )dFk (xk )]}

9cons(D̄, y)

= max
k∈D̄
{
−cconsk

p
+ βconsk [9(D̄− {k}, y)

∫ y

−∞

dFk (xk )

+

∫
∞

y
9(D̄− {k}, xk )dFk (xk )]} (3)

The variables 9self (D̄, y), 9other (D̄, y), 9cons(D̄, y) repre-
sent the state evaluation function after executing the action
aself , aother , acons separately at the state (D̄, y). Furthermore,
the variable p is the probability that the agent can obtain
the required information. Specifically, the agent needs to
compare the expected discount values generated by different
type of actions:

• For the action aself , if the sampled reward xk ≤ y,
then the current maximum sampled reward remains at
y, and the current expected state evaluation value is
−cselfk + β

self
k 9(D̄− {k}, y); If xk > y, then the current

maximum sampled reward will be updated to xk , and
the current expected state evaluation value is −cselfk +

βk9(D̄− {k}, xk ).
• For the action aother , the current expected state evalua-
tion value is −cotherk + βotherk 9(D̄ − {k}, y) for xk ≤ y;
the current expected state evaluation value is −cotherk +

βk9(D̄− {k}, xk ) for xk > y.
• For the action acons, the current expected state evaluation
value is −

cconsk
p + βconsk 9(D̄ − {k}, y) for xk ≤ y;

the current expected state evaluation value is −
cconsk
p +

βk9(D̄− {k}, xk ) for xk > y.

The CSoSA searching problem is converted to a dynamic
planning problem based on Eq. 3. However, it is quite hard
to directly solve the recursive state evaluation function in
this dynamic programming problem. In the next section,
we propose an algorithm for optimally solving problems in
polynomial time.

IV. THE DYNAMIC PLANNING ALGORITHM
In this section, we propose a greedy search based dynamic
planning (GSDP) algorithm to solve the CSoSA dynamic
programming problem, where it makes decisions by judging
defined indicators.

A. DECISION INDICATORS
In this section, we define indicators for executing the action
aself , aother , and acons for each scheme k , where the indicators
are zself , zother , and zcons separately. The indicators zself ,
zother , and zcons are similar to the concept of expected benefits,
which are as follows:

zselfk = −cselfk +β
self
k [zselfk

∫ zselfk

−∞

dFk (xk )+
∫
∞

zselfk

xkdFk (xk )]

zotherk = −cotherk + βotherk [zotherk

∫ zotherk

−∞

dFk (xk )

+

∫
∞

zotherk

xkdFk (xk )]

zconsk = −
cconsk

p
+ βconsk [zconsk

∫ zconsk

−∞

dFk (xk )

+

∫
∞

zconsk

xkdFk (xk )] (4)
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Algorithm 1: The GSDP Algorithm
1 procedure Searching(D̄)
2 begin
3 for k ∈ D̄ do
4 zselfk ← Solving(cselfk =

β
self
k

∫
∞

zselfk
(xk − zk )dFk (xk )− (1− βselfk )zselfk );

5 zotherk ← Solving(cotherk = βotherk
∫
∞

zotherk
(xk−

zk )dFk (xk )− (1− βotherk )zotherk );

6 zconsk ← Solving(−
cconsk
p =

βconsk
∫
∞

zconsk
(xk − zk )dFk (xk )− (1− βconsk )zconsk );

7 π ← Sorting(zselfk , zotherk , zconsk |k ∈ D̄);
8 return SequrenceSearching(π, D̄)

Given the state 9(D̄, y) and the set of indicators
cselfk , cotherk , cconsk , we can design a simple but optimal search
rule that is divided into judgment rules and selection rules.
The judgment rule means that if the agent is going to further
explore a scheme with an unknown reward, the plan with
the highest indicator is selected. Then, the agent executes the
action corresponding to the highest indicator. The selection
rule refers to that the agent stops searching and selects a
developed scheme with the largest sampled reward.

B. THE GSDP ALGORITHM
The calculation of each indicator is independent and is
not affected by the reward probability distribution of other
schemes. The relationship of these three algorithms is that
Algorithm 1 calls Algorithm 2, while Algorithm 2 calls
Algorithm 3. Specifically, Algorithm 1 denotes the GSDP
algorithm. Specifically, action indicators for all the schemes
are first calculated according to the Eq. 4. Second, the indi-
cators are sorted based on sorting methods, such as the heap
sorting method [28], and the sorting result is saved to the vec-
tor π . Third, the SequenceSearching procedure is executed to
get the optimal scheme.

Algorithm 2 denotes the SequenceSearching procedure.
The best scheme can be selected after no more than N itera-
tions. In each iteration, the current maximum sample reward
y is compared with the maximum indicator π (0). If y ≥
π (0), then the agent stops searching and the scheme with
the maximum sampled reward y is final selected. Otherwise,
the agent continues to search the scheme k by using the action
a that corresponds to π (0). If the agent gets the reward for
scheme k , then the variables D, D̄, π, y are updated, where
D̄ \ k is a set of schemes that removes k from D̄.

Algorithm 3 denotes the Developing procedure. If the
action is acons, then there is a judgement as to whether the
agent being consulted can query the reward of the scheme k .
The symbol ∼ means a sampling, and yk ∼ Fk (xk ) means a
sampling of the probability distribution Fk (xk ).

C. PERFORMANCE ANALYSIS
In this section, the complexity and optimality of the GSDP
algorithm are analyzed below.

Algorithm 2: The Sequence Searching Algorithm

1 procedure SequenceSearching(π, D̄)
2 begin
3 y← 0;
4 D← ∅;
5 for i = 1→ K do
6 k ← ParsingIndex(π (0));
7 a← ParsingAction(π(0));
8 if y > π(0) then
9 return y;

10 else
11 (IsUpdated, yk )← Developing(a, k);

12 if IsUpdated = TRUE then
13 D← D ∪ k;
14 D̄← D̄ \ k;
15 π ← π \ {zselfk , zotherk , zconsk };
16 if y < yk then
17 y← yk ;

18 else
19 k ← k − 1;

Algorithm 3: The Developing Algorithm

1 procedure Developing(π, D̄)
2 begin
3 if a = Counsultation then
4 if Available = TRUE then
5 IsUpdated ← TRUE ;
6 yk ∼ Fk (xk );

7 else
8 IsUpdated ← FALSE ;
9 yk ← 0;

10 else
11 IsUpdated ← TRUE ;
12 yk ∼ Fk (xk );

Theorem 1: GSDP is a polynomial time optimal algorithm
for the CSoSA searching problem.
Proof 1: First, the time complexity of SGDP depends on

the time complexity of the sorting algorithm. In the algorithm,
the agent performs the actions sequentially based on the
order of indicators, where the order does not change during
the search process. Therefore, the complexity of SGDP is
equal to the complexity of the sorting method. For example,
the time complexity of heap sorting is O(n log n) [29], and
the average time complexity of bubble sorting is O(n2) [30].
Second, SGDP is an optimal algorithm for the CSoSA
dynamic programming problem. The CSoSA dynamic pro-
gramming problem can be mapped to the classic Pandora
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problem, that is used to study economics problem [31].
In the CSoSA dynamic programming problem, each devel-
oped scheme is seen as a project k with a sample reward
rk . A undeveloped scheme k can be seen as three projects
kself , kother , kself , each of which has a cost cselfk , cotherk ,

cconsk
p

separately, and a reward probability distribution Fk (xk ). Once
the sampled reward for scheme k is obtained, the three
projects are moved into the explored set D. DSGP uses an
index-based search strategy, that is, if the agent is to explore
a new scheme, then it chooses the scheme with the highest
indicator, otherwise it chooses a developed scheme with the
largest sample reward. It proves that this kind of searching
policy can effectively solve the Pandora problem and get the
best expected reward [31]. Thus, Theorem 1 holds.
Further, an indicator function H is defined as follows:

H = β
∫
∞

z
(x − z)dF(x)− (1− β)z (5)

Proposition 1: If the indicator functions of all schemes are
the same and the relationships of {cselfk , cotherk , cconsk |k ∈ K }
are known, then the relationships of zselfk , zotherk , zconsk |k ∈ K
are determined.
Proof 2: The derivative function of the indicator function

H (z) for the variable z is as follows:

Ḣ (z) = −β(x − z)− (1− β) (6)

Since x ∈ [z,∞], β ∈ [0, 1], we know that Ḣ (z) ≤ 0.
Based on the Eq. 4, it can be derived that c = H (z). Thus the
variable z is negatively correlated with c. Thus, Proposition 1
holds. This property facilitates preliminary judgment and
may simplify the calculation process.
Proposition 2: The probability p is independent of indi-

cators {zselfk , zotherk |k ∈ K }; and if the costs {cinstk |k ∈ K }
are fixed, then the probability p is positively correlated with
{zconsk |k ∈ K }.
Proof 3: As mentioned in Eq. 4, each indicator is only

related to its corresponding scheme, and not related to other
schemes. Thus the probability p is independent of indicators
{zselfk , zotherk |k ∈ K }. In addition, we know that cconsk =

pH (zconsk ), and the indicator function H (z) decreases mono-
tonically as the variable z increases according to Proposi-
tion 1. Then, when the cost cconsk is fixed, the probability
p increases as z increases. This property indicates that the
greater the probability p, the greater the expected reward of
the scheme. Thus, Proposition 2 holds.

V. EMPIRICAL EVALUATION
In this section, the performance of the GSDP algorithm is
analyzed by comparing with some benchmark algorithms.

A. EXPERIMENT SETUP
In the experiment, an assumed battle scenario is given, that a
new CSoS is formed to complete some missions in a complex
environment. In this paper, the CSoS is developed based on
the CSoSA, where each CSoSA has an uncertain reward.
Since it is uneconomical to search all CSoSA schemes, it is a

challenging problem to select a best CSoSAwith a maximum
reward and a minimum total cost.

In order to evaluate the performance of the GSDP algo-
rithm, we define the following statistical indicators:
• The average reward is the objective function shown in
the Eq. 1, where the sampled reward in a simulation is
the reward for the selected scheme minus the costs of all
the developed schemes.

• The average number of consultations (NoC) is the aver-
age number of the agent that consult other agents.

• The average number of developed schemes (NoD) is the
average number of schemes that has been developed.

• The average runtime time (Time) is the real time each
algorithm runs.

The average reward and the runtime time are used to
evaluate the performance of the algorithm, the number of con-
sultations NoC and number of developed schemes NoD are
used to analyze the searching process. In addition, the GSDP
algorithm is compared with three benchmark algorithms
under the CSoSA searching framework.
• Random algorithm (RA), is that the agent randomly
selects an action in each decision. First, a scheme k is
randomly selected in the set K . If the scheme has been
developed k ∈ D, then the search is ended and the
scheme is selected as the final scheme; if the scheme k
is undeveloped k ∈ D̄, then the agent randomly executes
an action, such as aself , aother , acons, until the end of the
search.

• Global Exploration Algorithm (GEA), is that the agent
develops all the schemes and get the sampled reward of
each scheme. Specifically, for an undeveloped scheme
k , the agent executes the action with the least cost ak =
argminck {c

self
k , cotherk ,

cconsk
p }. When the agent completes

the development of all the schemes, the scheme with the
highest reward is selected.

• Local Exploration Algorithm (LEA), is that the agent
develops a scheme and chooses an action by judging an
indicator. The searching process of the LEA is similar
to that in GSDP, while the difference between them is
that is the calculation of the indicator, where the indi-
cators in LEA {z̃selfk , z̃otherk , z̃consk |k ∈ K } are {βE(xk ) −

cselfk , βE(xk )− cotherk , βE(xk )−
cconsk
p |k ∈ K } separately.

When the maximum reward in the developed schemes
exceeds this indicator, the agent stops searching and
selects the scheme with the highest reward.

These experiments run on a computer with a 2.6 GHz
dual-core CPU, and 8 GB of RAM.

B. PARAMETER SENSITIVITY EXPERIMENTS
In this section, the sensitivity of the parameters is analyzed.
As the example shown in Section III-A, the agent selects
the best scheme in the scheme space with K = 4. In this
experiment, let βselfk = βotherk = βconsk , k ∈ K , and let β
denote the discount rate. Some of the common parameters
are as follows:
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TABLE 1. Parameter values.

FIGURE 5. The average rewards of four algorithms in Scenario A1.

• Scenario A1: Let the probability p be 0.05, and the
impact of the discount rate β = {0, 0.1, . . . , 1} is
evaluated. Each algorithm runs 1000 simulations in each
scenario.

• Scenario A2: Let the discount rate β be 0.95, and the
impact of the probability p = {0, 0.1, . . . , 1} is eval-
uated. Each algorithm runs 1000 simulations in each
scenario.

Fig. 5 shows the average rewards of four algorithms in
Scenario A1. It shows that as the discount rate increases,
the average reward gradually increases. The experimental
results are in line with the actual situation, that is, the smaller
the discount rate, the smaller the benefit, and vice versa.
In addition, the reward of GSDP is slightly higher than the
reward of other algorithms in all scenarios.

Fig. 6(a) shows the average NoC of the four algorithms
in Scenario A1. It shows that the average NoC of GEA is
significantly higher than other algorithms, and the average
NoC of GSDP is similar to that of LEA. Fig. 6(b) shows the
average NoD of the four algorithms in Scenario A1. Since
GEA develops all the schemes, the average NoD is equal to
the number of schemes. Note that the average NoD of GSDP
is between 1-2, which is slightly higher than that of LEA and
lower than that of RA and GEA.

Fig.7 shows the average rewards of four algorithms in
scenario A2. It shows that as the probability p increases,
the average reward gradually increases. The experiment result
shows that the cost of consulting is often less than the cost
of development in many scenarios. In addition, the average
reward of GSDP is slightly higher than the reward of GEA,
and it is significantly higher than the reward of RA and LEA
in all scenarios.

Fig. 8(a) shows the average NoC of the four algorithms
in Scenario A2. It shows that as the probability p increases,

FIGURE 6. NoC and NoD of four algorithms in Scenario A1. Fig. 6(a)
shows the NoC in Scenario A1; Fig. 6(b) shows the NoD in Scenario A1.

FIGURE 7. The average rewards of four algorithms in Scenario A2.

FIGURE 8. NoC and NoD of four algorithms in Scenario A2. Fig. 8(a)
shows the NoC in Scenario A2; Fig. 8(b) shows the NoD in Scenario A2.

the NoC decreases gradually. Similar to the results in Sce-
nario A1, the average NoC of GEA is s higher than other
algorithms, and the average NoC of GSDP is similar to that
of LEA. Fig. 8(b) shows the average NoD of the four algo-
rithms in Scenario A2. Since GEA develops all the schemes,
the average NoD is equal to the number of schemes. Note that
the average NoD of GSDP is between 1.5-2, which is slightly
higher than that of LEA and lower than that of RA and GEA.

These results clearly illustrate that higher the β or p,
the higher the average reward, that helps to improve the
performance of these algorithms. As the discount rate β
increases, the sampled reward will increase, while the
probability p increases, the cost will decrease.

C. THE SCALABILITY EXPERIMENT
In this section, three scenarios are construct to evaluate
the scalability of the scheme space on these algorithms.
In general, the time and cost of the action acons is lest, the time
of aother is less than that of aself and the cost of aother is high
than that of aself , i.e. cconsk < cselfk < cotherk , βconsk < βotherk <

β
self
k . Some of the common parameters are as follows.
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TABLE 2. Average rewards in Scenario B1.

FIGURE 9. NoC and NoD of four algorithms in Scenario B1. Fig. 9(a)
shows the NoC in Scenario B1; Fig. 9(b) shows the NoD in Scenario B1.

Let all the reward distributions Fk (xk ) follow the uniform
distribution, i.e. Fk (xk ) ∼ U (ak , bk ), where ak ∼ U (10, 15),
ak ∼ U (15, 20). In addition, let the costs be cselfk ∼

U (0.2, 2), cotherk ∼ U (1, 5), cconsk ∼ U (0.01, 0.1), and the
discount rate βselfk ∼ U (0.75, 0.85), βotherk ∼ U (0.85, 0.95),
β
self
k ∼ U (0.95, 1), k ∈ K . Let the probability be p =
{0, 0.1, . . . , 1}, and each algorithm runs 1000 simulations in
each scenario.
• Scenario B1: The agent searches the best scheme in the
scheme space with K = 102.

• Scenario B2: The agent searches the best scheme in the
scheme space with K = 104.

• Scenario B3: The agent searches the best scheme in the
scheme space with K = 106.

The average rewards of four algorithms in scenario B1 are
tabulated in Table 2. It shows that as the probability p
increases, the average reward increases. The reward of GSDP
is much higher than that of other algorithms in all scenarios.

Fig. 9(a) shows the average NoC of the four algorithms
in Scenario B1. It shows that as the probability p increases,
the NoC decreases gradually. The NoC of GEA is signifi-
cantly higher than that of other algorithms. The RA, LEA
and GSDP have similar NoC . Fig. 9(b) shows the average
NoD of the four algorithms in Scenario B1. It shows that the
average NoD of GSDP is between 1-4 and the NoD of LEA
developments is 1 in these scenarios.

The average rewards of four algorithms in scenario B2 are
tabulated in Table. 3. It shows that as the probability p
increases, the average reward of GSDP gradually increases
and converges. GSDP has a higher average reward than that
of other algorithms in all scenarios.

TABLE 3. Average rewards in Scenario B2.

FIGURE 10. NoC and NoD of four algorithms in Scenario B2. Fig. 10(a)
shows the NoC in Scenario B2; Fig. 10(b) shows the NoD in Scenario B2.

TABLE 4. Average rewards in Scenario B2.

Fig. 10(a) shows the average NoC of the four algorithms
in Scenario B2. The NoC of GEA is significantly higher than
that of other algorithms. The NoC of GSDP is between RA
and LEA. Fig. 10(b) shows the average NoD of the four algo-
rithms in Scenario B2. It shows the average NoD of GSDP
is less than 10 and the average NoD of LEA developments is
always 1 in these scenarios.

The average rewards of four algorithms in Scenario B3 are
tabulated in Table. 4. Similar to the results in Scenario
B2, as the probability p increases, the average reward of
GSDP gradually increases and converges. GSDP has a higher
average reward than that of other algorithms in all scenarios.

Fig. 11(a) shows the average NoC of the four algorithms
in Scenario B3. The NoC of GEA is significantly higher
than that of other algorithms. The NoC of GSDP is between
RA and LEA. Fig. 11(b) shows the average NoD of the four
algorithms in Scenario B3. It shows the average NoD of
GSDP is about 20 and the averageNoD of LEA developments
is always 1 in these scenarios.
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FIGURE 11. NoC and NoD of four algorithms in Scenario B3. Fig. 11(a)
shows the NoC in Scenario B3; Fig. 11(b) shows the NoD in Scenario B3.

FIGURE 12. Average rewards and average running times of GSDP and LEA
in Scenarios B1, B2, B3. Fig. 12(a) shows the average rewards; Fig. 12(b)
shows the average running times.

Further, the average rewards and average running times
in Scenario B1, Scenario B2, and Scenario B3, are com-
prehensively analyzed. The average rewards of GSDP and
LEA in these scenarios are shown in Fig. 12(a). It shows that
the average reward of GSDP is higher than that of LEA in
these scenarios, and as the increasing of the scheme space,
the average reward of GSDP also increases. The running time
of GSDP and LEA in these scenarios are shown in Fig. 12(b).
As the increasing of the scheme space, the average runtime
of GSPD shows a polynomial increase. In Scenario B1 and
Scenario B2, the running time of GSPD and LEA is similar.
In Scenario B3, the running time of GSDP is slightly higher
than that of LEA.

In general, the experiment results show that GSDP
is significantly better than the benchmarking algorithms.
In addition, rewards can be significantly improved through
good consulting and high discount rates. It is because that
GSDP only develops a small number of schemes and stop to
choose the scheme with the highest reward, and GSDP greed-
ily selects schemes by using an indicator-based algorithm,
where these indicators can assist in searching the optimal
scheme.

VI. CONCLUSION
The CSoSA optimization method is an important attempt
of the system-of-systems engineering in the network-centric
warfare, that provides an idea for guiding the development
of the CSoS. In this paper, we first propose a super-network
model for the CSoSA, which covers the elements of the CSoS
capability generating. Second, a novel model is proposed

to formalize the architecture searching problem under the
environment with uncertain knowledge and assists of other
agents. Specifically, we consider the scenario that an agent
explores several architectures and selects the optimal archi-
tecture, where the performance of these architectures to
be explored is unknown until the agent explores or other
agents query. A polynomial time optimal scheme exploration
method is proposed to solve the formulation, where our algo-
rithm is much better than other benchmarking algorithms.
In addition, our algorithm can be extended to some more
general problems, such as maximizing a general function
with the collection of all explored architectures. Future work
will focus on the problem that the agent is going to select a
given number of optimal architectures from the architectural
space. Further, we hope to study the problem of parallel
collaborative search of multiple agents.
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