IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

SPECIAL SECTION ON INNOVATION AND APPLICATION OF INTELLIGENT PROCESSING OF
DATA, INFORMATION AND KNOWLEDGE AS RESOURCES IN EDGE COMPUTING

Received August 9, 2019, accepted August 19, 2019, date of publication August 23, 2019, date of current version September 9, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2937107

Testing and Quality Validation for Al
Software-Perspectives, Issues, and Practices

CHUANQI TAO“ 23, JERRY GAO*, AND TIEXIN WANG'2

ICollege of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2Ministry Key Laboratory for Safety-Critical Software Development and Verification, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
3State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China

4Department of Computer Engineering, San José State University, San Jose, CA 95192-01809, USA

Corresponding author: Chuangi Tao (taochuanqgi @nuaa.edu.cn)
This work was supported by the National Key Research and Development Program of China under Grant 2018 YFB 1003900, in part by the

National Natural Science Foundation of China under Grant 61402229 and Grant 61602267, in part by the Collaborative Innovation Center
of Novel Software Technology and Industrialization, in part by the Fundamental Research Funds for the Central Universities under Grant

NS2019058, and in part by the Open Fund of the State Key Laboratory for Novel Software Technology under Grant KFKT2018B19.

ABSTRACT With the fast growth of artificial intelligence and big data computing technologies, more and
more software service systems have been developed using diverse machine learning models and technologies
to make business and intelligent decisions based on their multimedia input to achieve intelligent features,
such as image recognition, recommendation, decision making, prediction, etc. Nevertheless, there are
increasing quality problems resulting in erroneous testing costs in enterprises and businesses. Existing work
seldom discusses how to perform testing and quality validation for AI software. This paper focuses on
quality validation for Al software function features. The paper provides our understanding of Al software
testing for new features and requirements. In addition, current Al software testing categories are presented
and different testing approaches are discussed. Moreover, test quality assessment and criteria analysis are
illustrated. Furthermore, a practical study on quality validation for an image recognition system is performed
through a metamorphic testing method. Study results show the feasibility and effectiveness of the approach.

INDEX TERMS

Al software quality validation, Al testing, testing Al software.

I. INTRODUCTION

With the fast advance of big data analytics and Al tech-
nologies, numerous Al-based software and applications have
been widely accepted and used in people’s daily life. Al soft-
ware and applications are developed based on state-of-the-art
machine learning models and techniques through large-scale
data training to implement diverse artificial intelligent fea-
tures and capabilities. Current Al-based software and appli-
cations are classified such as natural language processing
systems, object recognition systems, recommendation sys-
tems, unman-controlled vehicles and so on. Therefore, how
to perform quality validation for Al software becomes a
critical concern and research topic from both academic and
industrial focuses. According to the report [1], the automa-
tion testing market size is expected to grow from USD
8.52 Billion in 2018 to USD 19.27 Billion by 2023, at a
Compound Annual Growth Rate (CAGR) of 17.7% dur-

The associate editor coordinating the review of this article and approving
it for publication was Honghao Gao.

120164

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

ing the forecast period (2018-2023). Based on recent test-
ing experiences from industry on Al applications such as
intelligent mobile apps, testing Al software has new prob-
lems, challenges, and needs due to their special features
below.

- Scientific-based development instead of engineering-
based development - Most Al software and applications are
developed using scientific approaches based on Al models
and training data by data scientists and big data engineers
without well-defined Al software engineering process and
development methods with clear quality validation require-
ments and criteria.

- Limited data training and validation - Al software is
built based on machine learning models and techniques, and
trained and validated with limited input data sets under ad-
hoc contexts.

- Data-driven learning features - These features provide
static and/or dynamic learning capabilities that affect the
under-test software results and actions.

VOLUME 7, 2019

https://orcid.org/0000-0002-0698-7307

C. Tao et al.: Testing and Quality Validation for Al Software—Perspectives, Issues, and Practices

IEEE Access

- Uncertainty in system outputs, responses, and decision
makings - Since existing Al-based models are dependent
on statistics algorithms, this brings the uncertainty in the
outcomes of Al software.

These unique Al software features above cause new dif-
ficulties and challenges in testing and quality validation.
Therefore, Al quality validation and assurance becomes a
critical concern and a hot research subject. Although there
have been many published papers addressing data quality and
quality assurance in the past [2]-[4], seldom researches focus
on validation for Al software from function or feature view.
There is an emergent need in current research to quality vali-
dation issues and quality assurance solutions for Al software
and applications. Testing Al software can be considered as
diverse testing activities with the intent of finding Al-based
software bugs (errors or other defects), verifying that the
Al-based software products are fit or use, assuring Al func-
tional features’ adequate quality and Al software’s QoS (qual-
ity of system service) parameters [41], [43]. Well-defined
quality validation models, methods, techniques, and tools
must be developed and applied for Al-based software to facil-
itate the test activities to achieve well-defined test require-
ments and meet pre-selected adequate testing criteria and
quality assurance standards. Typical issues of quality assur-
ance and validation for Al software and applications are listed
below.

- How to perform quality assurance for big data which
could be utilized as training data or testing data for intelligent
algorithms?

- How to make quality validation for application service,
e.g. what is the precision of the recommendation service?

- How to validate the quality of diverse intelligent algo-
rithms and models, such as data mining and machine learning
methods.

This paper is written to provide our perspective views
on Al software (specific to feature or function) testing
for quality validation. The paper is organized as follows.
Section II discusses the tutorial concepts about Al software
testing, including test focuses, features, and requirements.
Section III reviews Al-based machine testing, Al software
function testing, as well as the existing testing methods
potentially-used for Al software validation. Section IV dis-
cusses Al software testing quality parameters and evaluation
as well as test coverage analysis. Section V presents case
studies on an image recognition system using the proposed
quality validation approach. The conclusion remarks are in
Section VI.

Il. UNDERSTANDING Al SOFTWARE TESTING

Why do we need Al software testing? The fast-growing Al
software and the popularity of big data-based applications
bring new needs and motivations. Numerous current and
future software will be built with Al-based features and
functions. Existing techniques and tools are not adequate
to test Al-based features and functions. There are a lack
of well-defined and experience-approved quality validation

VOLUME 7, 2019

Expert system

|dentification & classification Intelligent learning capability

Human/animal/objects Business intelligence and decision

Recognition & profiling Recommendation & selection

Al
Software
Testing

Human/animal/objects— . .
Intelligent commands & actions

Behavior detection/analysis

Analytics and prediction capabili
Human/animal/objects & P pabilty

Question & answer capability
Context identification &
classification

Unmanned vehicles
Control validation and healthcare check

FIGURE 1. The scope of Al software testing.

models and assessment criteria. In addition, there is a lack
of Al-based testing methods and solutions for Al software.
Thus, the meaning of testing Al software is illustrated in a
definition below.

“Testing Al software refers to diverse testing activities
for Al-based software/systems. Well-defined quality valida-
tion models, methods, techniques, and tools must be devel-
oped and applied for Al-based software to facilitate the test
activities to achieve well-defined test requirements and meet
pre-selected adequate testing criteria and quality assurance
standards.”

Therefore, testing Al features of the software includes
different testing activities to find software errors, verify the
performance of software, and assuring quality validation
methods need to be developed. The testing goal is to achieve
well-defined test requirements, meet pre-defined testing cri-
teria, and standards of quality assurance of the under-test Al
software.

A. TEST SCOPE AND MAJOR FOCUSES

Since Al software is built with diverse machine learning
models and data-driven technologies, the scope of Al soft-
ware testing should cover current typically-used intelligent
features, such as prediction, recognition, and recommenda-
tion. Fig. 1 shows the primary scope of Al software test-
ing. Objects (human, animal) related testing such as object
identification, recognition, and behavior detection are an
important part of Al software testing. Various intelligent
applications such as business decision, recommendation and
selection [35], [36], [45], intelligent commands and actions,
analytics and prediction capability [37], [38], [40], [46],
as well as question and answer capability are current key Al
testing topics. In addition, with the advance of unmanned
vehicles and their potential huge markets, how to perform
control validation and healthcare check will be a big chal-
lenge for Al testing and quality validation. Moreover, Al soft-
ware usually involves context issues, such as scenario, loca-
tion [35], time, and stakeholders, thereby causing new testing
issues in context identification and classification. The major
focuses of Al software testing are summarized as follows.

120165

IEEE Access

C. Tao et al.: Testing and Quality Validation for Al Software—Perspectives, Issues, and Practices

(a) Testing Al functional features to assure their adequate
quality in accuracy, consistency, relevancy, timeliness, cor-
rectness, and so on using data-driven and Al approaches.

(b)Testing Al software’s quality of system service param-
eters based on well-defined quality standards and assessment
criteria. These include system performance, reliability, scal-
ability, availability, robustness, and security, and etc.

(c) Apply data-driven Al techniques to facilitate Al testing
processes and test automation.

B. NEW TESTING FEATURES AND REQUIREMENT
ANALYSIS FOR Al SOFTWARE

As discussed above, Al software and applications have
numerous unique testing features such as uncertainty and
limited training/test dataset. These unique features bring
more interesting quality validation and QoS requirements,
challenges, and needs. Based on the recent feedback from
engineers at Silicon Valley, how to assure the quality of Al
software becomes a critical concern and research subject cur-
rently. The primary testing features are presented as follows.

Multiple dimension-based rich media input data with
multi-input models. — This refers to new testing solutions
to deal with multi-dimensional large-scale input data sets
(such as numerous image graphs and videos) of Al software.
For example, the well-known Al application Seeit! supports
text, graph, voice, and audio with diverse input domains both
offline and online.

Test data set selection from big data pools. — This refers
to test data selection to address the special testing features
of Al software. In traditional software, test data is used for
finding software bugs. Nevertheless, in Al software, test data
is not just used for functional or program bugs. Bugs or
defects existed in training and learning models in Al software
are also needed to be discovered using specific test data.
A typical face recognition application ‘how old do I look’
from Microsoft’ can be tested with thousands of pictures to
indicate its correctness and accuracy. However, how to select
effective test data to discover its identification problems, e.g.,
the accuracy of ‘how old do I look’ is affected by lighting
condition or background objects. Furthermore, bugs from
models or learning algorithms can be detected with more test
data with specific goals.

Knowledge-based Al software features and behaviors —
This refers to apply the domain-specific knowledge to assist
in testing correct and precise Al software features and behav-
iors.

Uncertainty of Al software features and behaviors. — This
refers to how to define and modeling testing objects in a
certain way and obtain testable functions through different
test strategies, such as metamorphic testing, mutation testing,
and fuzzy testing.

Learning-based Al software features and behaviors. — This
refers to finding new testing approaches to address the leaning

1 https://itunes.apple.com/cn/app/seeit/id72191154971=en&mt=8
2https://Www.how-old.net/

120166

Object Relation

Object Identification
Position relation

\\\ a Single object
| multiple objects

Position relation

-

Ol\)Iect Context
2D Context

~ 3D Context

,//’
Object Behavior
Single behavior
Different behaviors
Current behaviors —

Classification
~ Single type of objects

| Different types of objects

FIGURE 2. A sample object model-based Al software.

features of Al software. For instance, the learning capa-
bility of Al software is needed to be tested in an evolved
environment.

Real-time context-based diverse inputs affecting system
outputs, actions, and behaviors. — This refers to modeling
complex context factors in a real-time instance, and analyze
the relationship among diverse contexts, inputs, outputs, and
actions.

After identifying the primary Al features, Al function
features are analyzed for testing. For each identified feature,
Al testing requirements are needed to analyze for future
testing. For example, before testing an object of Al software,
in order to facilitate function or scenario testing, diverse
features are required to classify with a well-defined category.
Test models are necessary to represent the diverse features
under testing. In general, models can be constructed from
different perspectives for Al software, such as a knowledge
test model, feature test model, object test model, and data
test model. As shown in Fig. 2, features of object relation,
object identification, object behavior, object classification,
and object context are selected for function testing with
diverse sub-features.

In general, Al software needs to be tested at both function
and system levels. Test planning, test modeling, test design,
and test execution are the indispensable parts of the overall
testing process for both Al software and traditional software.
Since Al software has special features such as non-oracles,
timeliness, and learning capability, here function test quality
evaluationis added particularly as the final step of Al software
testing process. In this step, different quality parameters are
measured using the pre-defined quality metrics based on test-
ing result analysis. If the evaluation results are not accepted
by stakeholders, the testing step goes to test modeling again
for a new testing iteration.

Ill. Al SOFTWARE QUALITY VALIDATION CATEGORY
AND APPROACHES

This section firstly illustrates a category of Al software test-
ing, including Turing testing, testing Al software, Al-based
software testing and Al-based machine testing. Then several
existing and potential approaches to Al software testing will

VOLUME 7, 2019

C. Tao et al.: Testing and Quality Validation for Al Software—Perspectives, Issues, and Practices

IEEE Access

be presented and discussed. Moreover, test quality evaluation
and test adequacy analysis are illustrated.

A. TURING TESTING

Turing test was introduced by Turing as the imitation game
in 1950 [5], aiming to test a machine’s ability to exhibit
intelligent behavior equivalent to, or indistinguishable from,
that of a human. Turing proposed that a tester would ask the
testee freely through some devices (such as a keyboard) in
the case where the tester is separated from the testee (one
person and one machine). After multiple tests, if more than
30% of the testers are unable to determine whether the testee
is a human or a machine, then the machine passes the test and
is considered to have human intelligence. The turning test has
been considered as the ““beginning” of artificial intelligence
(AI) [6], and it has also become an important concept related
to Al system testing. Although the Turing test was designed
to advance the development of artificial intelligence, it also
has several shortcomings [7].

B. Al SOFTWARE TESTING

In this section, the main focus is on validating Al software
functions, external behaviors, and external visibility of QoS
using black-box testing techniques. To test software functions
and features, engineers could adopt convention black-box
approaches to validate software quality. Typical examples
include scenario analysis, decision table testing, equivalence
partitioning, boundary value analysis, cause-effect graph, and
SO on.

However, Al software testing differs from traditional soft-
ware testing, since Al applications are characterized by uncer-
tainty and probabilities, dependence on big data, random
input/output, difficulty in predicting all application scenarios,
and constant self-learning from past behavior. In recent years,
many studies have worked on researching how to test Al
software or systems [7]-[11].

Broggi et.al proposed the Public Road Urban
Driverless (PROUD) test conducted in Parma from the uni-
versity campus to the town center through different scenar-
ios such as urban, rural, and highway roads [7]. Similarly,
Li et al. [8] indicated the difficulties of intelligence tests
from four aspects and presented an example of how to
design intelligence tests for intelligent vehicles. The authors
gave the definition and generation of intelligence test tasks
for vehicles to combine the benefits of scenario-based test-
ing and functionality-based testing approaches based on a
semantic relation diagram for driving intelligence proposed
in [9]. In addition, the authors applied the parallel learning
method to the vehicle intelligent test and proposed a par-
allel system framework that combined the real-world and
simulation-world for testing [10], [11].

As discussed above, the process of testing Al functions
includes test planning, test modeling, test case generation,
test execution, and test quality evaluation. Decision table test-
ing design technique determines the different combinations
of inputs with their associated outputs and implements the

VOLUME 7, 2019

TABLE 1. A sample traditional scenario analysis on siri.

Scenario Description

1. Input voice command correctly;
output the correct text response and correct action.
2. Input voice command with the wrong syntax;
output the correct text response and correct action.
3. Input voice command that cannot do;
display command that cannot do;
APP response: “I’'m sorry. I’'m afraid I can’t do that.”, and then do not
put any action.
4. Input voice command that cannot understand,
display command that cannot understand,
APP response: “Sorry, I wasn’t able to...” or “Sorry, I didn’t get
that...”, and then do not put any action.
5. Input voice content that is not a voice command;
display sentence that is not command;

APP reply incorrect text response, and then do not put any action.

business requirements or rules of the system. It is also a
represented type of cause-and-effect testing or logical test-
ing. Black-box testing is used to test the end-user require-
ments [12], [13]. It attempts to uncover the errors in the
following categories: missing or incorrect functions, interface
errors, behavior or performance errors, and initialization or
termination errors.

Let us take Siri® from Apple for instance. The functions
of Siri based on voice command input are listed as below:
received voice commands, convert voice commands into
text commands (display entered commands), find the text
response and actions that match the recognized commands,
text response, action response. To verify the Al functions
of the software, the traditional scenario analysis method is
applied to analyze the scenarios of applications and test
whether the main functions are implemented correctly from
the perspective of the scene. Table 1 shows a description of
five scenarios in testing Siri.

Based on the analyzed results and testing experiences,
we conclude that the test cases designed by scenario analysis
are practical and effective to validate common features and
conditions. However, there are some defects to generate test
cases using scenario analysis as follows.

a. As a typical intelligent software application with Al
features, Siri has rich context information. The different test
contexts affect the results of testing Siri, such as the back-
ground noise, the tester’s gender, age, and accent.

However, the traditional scenario analysis does not
consider these external conditions for testing. Hence,
the designed use cases are incomplete, and the execution
results of some test cases failed.

b. Advanced Al software or systems have the ability to
learn from data and experiences. Furthermore, some Al sys-
tems even learn from environmental interactions and learn

3 https://www.apple.com/siri/

120167

IEEE Access

C. Tao et al.: Testing and Quality Validation for Al Software—Perspectives, Issues, and Practices

dynamically during interaction with users. Thus, the more
time you spend on using Siri, the better it will understand
you. Siri achieved this by learning about your accent and
some other characteristics of your voice. Therefore, if the
same tester repeatedly tests Siri for the same voice command,
its overall recognition of dialects and accents will continue
to improve, test results will be also affected. Unfortunately,
traditional scenario analysis does not take this into account.

In order to test the voice-command-based Al functions
more precisely, we should take different voice testing envi-
ronments into account with context factors and modeling
multi-dimensional testing space for Al features. Currently,
we are working on this in another paper.

C. AI-BASED SOFTWARE TESTING

Al-based software testing refers to the leverage and appli-
cations of Al methods and solutions to automatically opti-
mize a software testing process in test strategy selection, test
generation, test selection and execution, bug detection and
analysis, and quality prediction [39], [42], [47]. It includes
different testing activities in Al-based software testing. Due
to the complexity of Al software and applications, traditional
methods and test tools cannot meet the demands of testing
these Al systems. Given this, a more effective method to test
Al systems is desirable.

To deal with this problem, Souri er al. [14] used
an Al-based testing technique named as Multi-Objective
Genetic algorithm (MOGA) to reduce the number of test
cases for testing web applications yet achieve maximum
coverage with reduced cost, time and space. Considering
manual testing is a tedious and time-consuming task, and it
may also result in insufficient testing being performed and
critical defects going unidentified, Straub and Huber [15]
proposed an artificial intelligence test case producer (AITCP)
to test artificial intelligence system (AILS). AITCP starts from
a human-generated test scenario and makes changes to it
based upon a modification algorithm such as ant colony opti-
mization and genetic approaches. The authors compared the
results of the Al-based method and the manual-based method
for testing an autonomous navigation control system based on
selected four scenarios. The study results show that AITCP
can be utilized to effectively test AIS for both surface (two-
dimensional) and airborne (three-dimensional) robots.

Although there are many successful studies about the
automated generation of test cases, determining whether a
program has passed a given test remains largely manual.
Langdon et al. [16] proposed the use of search-based learning
from existing open-source test suites to automatically gener-
ate partially correct test oracles. They argued that mutation
testing, n-version computing, and machine learning could be
combined to allow automated output checking to catch up
with progress on automated input generation.

Al software testing differs from Al-based software testing
in diverse views such as test objectives, test focuses, test
scope, test coverage as well as test techniques and tools.
For example, Al-based testing primarily aims to increase

120168

efficiency for a test process, reduce testing costs by reduce
human operations, and increase bug detection effectiveness
and speed. Al testing aims to provide on-demand testing
services for Al software to support software validation and
quality engineering process. Al-based testing majorly focuses
on test selection, automatic test execution, bug detection and
prediction based large-scale testing history data and Al tech-
niques. In addition, Al testing needs innovative continuous,
timeliness, and currency testing techniques.

D. AI-BASED MACHINE TESTING

Al-based machine learning requires a huge number of inputs
as the knowledge and different intelligent algorithms in order
to make the right decision. By looking at an example using
technology in unmanned vehicles, there will be a basic under-
standing of how machine learning or machine intelligence
work. The development of machine intelligence is still far
from mimicking the cognitive competence of the human
brain. It is still challenging to deal with those data effectively
and making a driving decision accurately and quickly [17].
Machine learning sometimes returns an inaccurate prediction
based on the collection of training data and an engineer needs
to make some adjustments to avoid significant losses in terms
of public safety.

Deep Learning is designed to continually analyze data with
a logic structure as mimicking how a human can draw a
conclusion. The deep learning needs a huge number of data
sets to use input in the algorithms in order to result in a
more accurate prediction. For instance, Google’s AlphaGo,
a sharp intellect and intuition game, learns by itself with-
out predefined data. It makes a more specific move and
becomes the greatest player of all. Deep Learning defines
a new paradigm based on data-driven programming. Since
Machine Intelligence or Deep Learning depends on the train-
ing data, the accuracy and quality of data play a vital role
for public safety using machine learning in autonomous
vehicles.

Many kinds of research attempt to find solutions for the
current obstacles of Machine Learning Systems. To draw
optimal decision making, approaches such as Fault Tree
Analysis, Fuzzy Logic, Metaheuristic Algorithm, and Arti-
ficial Neural Network are developed to test with a huge
amount of training data by using different algorithms. How-
ever, the sufficiency and versatility of Deep Learning systems
are based on the accuracy of the test data set. It is diffi-
cult to provide adequate support due to the accessibility of
test data quality issue. The current Deep Learning systems
have various vulnerabilities and their system analysis and
defect detection are extremely difficult. Unlike traditional
software systems, Machine Intelligence does not have a clear
controllable logic and understandability since the process to
make decisions rely on the training data. The recent study
shows two major vulnerabilities in Deep Learning systems:
Software quality from the output of Deep Learning alone is
not adequate; and Failure in unseen attacks even though Deep
Learning is immune to known types of attacks [18], [19].

VOLUME 7, 2019

C. Tao et al.: Testing and Quality Validation for Al Software—Perspectives, Issues, and Practices

IEEE Access

Thus, how to make machine intelligent testable is a great
challenge for future Al-based machine testing.

E. TYPICAL VALIDATION APPROACHES FOR Al SOFTWARE
Al software testing could be performed using the following
approaches from different perspectives.

- Classification-based AI software testing, in which
classification models for test inputs, contexts, and out-
puts and events are set up to ensure the adequate test-
ing coverage of diverse input data classes, classified
contexts and conditions, and corresponding outputs and
classes [20]-[24].

- Model-based Al software testing, in which selected
intelligent learning models and data models are extended
to be traceable and testable Al test models to facilitate
Al software testing and operations in quality assessment
of training data and test data.

- Metamorphic (Non-Oracle) testing, in which a
property-based software testing technique is used as
an effective approach for addressing the test oracle
problem and test case generation problem [25]-[28].
The key element of metamorphic testing (MT) is a set
of Metamorphic Relations (MRs), which are necessary
features of the target function or algorithm in relation to
multiple inputs and their expected outputs.

- Learning-based Al software testing using the crowd-
sourced approach, in which selected machine learn-
ing models and approaches are used to learn from
crowd-sources testers in a service platform [30].

- Rule-based Al software testing, in which pre-defined
expert-based rules are established and used in Al test
generation and validation [32], [34].

Nevertheless, how to utilize the existing traditional or intel-
ligent approaches to Al software testing is still a great chal-
lenge currently.

F. DATA QUALITY VALIDATION FOR AI-BASED SOFTWARE
In recent years, data (such as image and video image) qual-
ity assessment has attracted significant attention. Besides,
the quality of big image/video datasets with labeled also have
an important impact on machine learning algorithms, such
as deep learning. Using a deep learning approach to train
artificial Al programs based on annotated training data sets is
a popular way to develop intelligent software using a super-
vised learning approach. With the increasing installation of
video cameras in many cities, image data quality assessment
is becoming a very hot research topic in computer vision and
smart cities.

There are a number of causes affecting the quality of image
data [48], [49], such as sharpness, noise, tone reproduc-
tion, contrast, distortion, etc. Thus, the typical image quality
factors are listed as accuracy, accessibility, readability and
understandability, consistency [44], etc.

According to the recent 2018 IEEE NAVIDA Al City
challenge [33], manually generating annotated data sets based

VOLUME 7, 2019

on image datasets from city street transportation cameras
bring diverse data quality issues in a deep learning process.
Their case study result clearly indicates that the accuracy
and quality of derived Al city transportation programs using
a deep learning approach highly depends on the quality
of annotated training data sets. Based on their experience
report, all of the challenge teams encountered diverse data
quality issues in annotated training datasets. And they also
discovered the urgent needs in quality validation models,
methods, and automatic tools for annotated datasets although
there are numerous data validation tools for structure data.
Therefore, the key issues of quality assurance for big data
applications are how to validate unstructured data quality and
how to validate system quality in terms of various quality
factors.

Data quality validation and services in a deep learning
process for Al software has three dimensions. They are shown
as follows.

- Raw data quality checking, which refers to the quality
checking process and activities for collected raw data,
such as camera-generated images, and videos. The pri-
mary objective is to perform raw data cleaning, quality
monitoring, and evaluation to ensure high-quality raw
data could be collected.

- Training data quality validation, which refers to qual-
ity validation processes and activities for manually or
semi-automatically generated training data sets, such
as annotated data sets. Its objective is to improve the
generation of training data quality in a deep learning
process to increase the training quality for an underlying
Al software. The typical concerns include: a) training
data scope and coverage, b) training data classification,
¢) training data quality, and d) training data coverage.

- Test data quality evaluation, which refers to test data
quality evaluation based on the validation results of
a targeted domain-specific application. For a machine
learning application system, the major focus of this
task should be facilitating Al system quality problem
detection, defect improvement, training quality coverage
and domain-based knowledge modeling issues for Al
systems.

IV. TESTING QUALITY ASSESSMENT AND ADEQUACY
ANALYSIS

A. TESTING QUALITY PARAMETERS AND QUALITY
ASSESSMENT FOR Al SOFTWARE

Like conventional software quality testing, quality parame-
ters such as performance, robustness, security, etc., can be
applicable to Al software and applications. In addition to the
system quality parameters, we must pay attention to specific
quality parameters for Al software functions and features.
Sample quality parameters for image recognition software are
presented as follows.

- Correctness — This quality factor reflects if the recogni-
tion result is true when faced with Boolean recognition

120169

IEEE Access

C. Tao et al.: Testing and Quality Validation for Al Software—Perspectives, Issues, and Practices

Al-Software
Timeline g o
F1

Correctnessy @ : Fk

Accuracy% Fn
o @ Aifeature set (AiF)

F-s ‘F- .‘-Sfﬂ Ai sub-feature set

QF

®o—©®
Quality factor set (QF) Qfl Qfi

Quality
factor set (QF)

~ _F-si(TC)
Test Complexity(TC)

Consistency% Completenessy

TC(ry TC(Tm)

L Tm
0

FIGURE 3. Al software test quality assessment.

items, such as gender, buy or not, recommend or not, age
group, etc.

- Accuracy — This reflects the accuracy of the recognition
result when faced with numerical recognition items,
such as age, gender, and color. Different math index
can be used to measure it, such as mean difference,
variance, standard deviation, distribution interval, con-
fidence level, absolute mean or relative mean.

- System Stability — This reflects the stability of the recog-
nition systems. For example, to recognize the same thing
twice or more times, the result should be stable.

- Timeliness — This reflects some indicators related to
time, such as the recognition time, training time, and
classify time.

- Recognition Ratio — This reflects the recognition ratio
of the image system, such as the perfect recognition ratio
which means the system recognizes the picture well,
or recognition ratio which is divided by absolute mean
or relative mean.

- System Robustness — This parameter indicates the
robustness of the system. For example, when performing
special operations on the recognized picture, we need
to check whether the system can still recognize it well.
The transformation includes overturning, mirror image,
enlarging or shrinking, shearing, shear, gray scale, and
changing the dpi.

- Image Quality — This checks whether the recogni-
tion systems can deal with the changing of the quality
attribute of image, such as gauss noise, spiced salt noise
due to the unreliable network transmission, etc.

Based on the discussed quality parameters above, testing
results are analyzed and evaluated for quality assessment. For
example, there are five quality factors in the set (QF) here
as shown in Fig. 3. As we mentioned, Al software have a
number of features (Fy,... ,F;), composed of corresponding
sub-features(F-sl1,..., F-si,..., F-sm). For each measurable
feature, we could perform test complexity (TC) analysis.
In addition, the quality factors can be measured in terms of
pre-defined quality metrics to show their percentage value.
Quality Measurement results can be represented using a
Radar Chart shown in the left part of Fig. 3. Nevertheless,

120170

those measurement results need to be validated in practice to
indicate their effectiveness.

B. Al SOFTWARE TEST ADEQUACY AND COVERAGE

When AI software can be operated under different contexts
and environments, it must be validated under diverse environ-
ments to achieve certain context test criteria for vendors and
customers. Thus, engineers need well-defined test criteria and
an effective test coverage analysis solution. As we discussed
in Section II, diverse test models can be constructed and
utilized for test coverage analysis. For a knowledge model,
Al knowledge test coverage analysis need to be performed;
for a feature model, Al features, sub-features, and feature
classification need to be analyzed for test coverage; and for
a data-based model, data classification, data relation, data
format, data range, etc., need to be addressed for test coverage
analysis.

V. CASE STUDIES- QUALITY VALIDATION FOR
ROBUSTNESS OF AN IMAGE RECOGNITION APPLICATION
We performed case studies to indicate the feasibility and
effectiveness of the proposed quality validation approach
provided in this paper. Here we selected a face recognition
system as the study object. We performed a case study on a
realistic Al application system- “‘Alibaba Cloud Computing
Services Facial Age Recognition API”” provided by Alibaba
Company using the metamorphic testing method. The base64
encoding of images is submitted to APIs, and the system
returns with the recognition results. The experiment data
sets are selected from the wiki_crop.tar in the open face
dataset IMDB-WIKI. There are total of 52444 face data,
and 10K images are selected randomly as experimental data
sets.

A. QUALITY VALIDATION METHOD DESIGN

The designed quality validation method is based on the
robustness of the age recognition system: The recognition
result is deemed better when the real age and recognition
age are closer to each other. Facial age recognition is a
commonly-used Al application using diverse machine learn-
ing algorithms and pattern recognition strategies. There are
existing non-oracle problems and due to the effect of picture
quality (such as clarity, lighting, background, and expres-
sion), network or other reasons, the robustness of an age
recognition system is a basic quality factor in quality assur-
ance. Thereby we need to test the robustness of the system.
Based on the understanding of facial age recognition system
above, we adopt metamorphic testing to validate the quality
of the system. We consider the possible situations that may
occur in a recognition process, such as image rotation, trans-
lation, landscaping, a watermark of a picture, or the distance
between face and camera.

In this study, we defined two major metamorphic relations
MR1 and MR2. For each metamorphic relation, we define
several sub-relations. For instance, in MR1, we give two
sub-relations MR1-1 and MR1-2, i.e., a) recognized age is

VOLUME 7, 2019

C. Tao et al.: Testing and Quality Validation for Al Software—Perspectives, Issues, and Practices

IEEE Access

TABLE 2. Metamorphic relation case partition.

metamorphic relationship

sub-metamorphic relationship

cases sub-cases division No. of cases

MRI1-1 (mirror)

MRI MRI1-2 (rotation)
MR2-1(translation)
MR2-2(tailor)
MR2

MR2-3(scaling)

1000 mirror 1000
+5° 1000

-5° 1000

+10° 1000

-10° 1000

+15° 1000

-15° 1000

12000 +20° 1000
-20° 1000

+25° 1000

-25¢° 1000

+30° 1000

-30° 1000

X20Y30 1000

X40Y50 1000

X50Y80 1000

X70Y70 1000

X80Y&0 1000

X100Y100 1000

12000 X130Y130 1000
X150Y150 1000

X-50Y-50 1000
X-100Y-100 1000
X-100Y100 1000
X100Y-100 1000

3:4 1000

4:3 1000

4000 9:16 1000
16:9 1000

400*300 1000

640*480 1000

320%240 1000

800*600 1000

1024*600 1000

100*100 1000

200*200 1000

15000 300*300 1000
400*400 1000

500*500 1000

600*600 1000

700*700 1000

800*800 1000

900*900 1000

1000*1000 1000

stable under the spherical transformation (mirror), and b)
recognized age is stable under image rotation. In the study,
we verified if the image system under testing satisfies the
defined MRs. The detailed metamorphic relations and their
sub-cases are shown in Table 2. The proposed metamorphic
relations are illustrated as follows.

MRI: When the size and color are unchanged and we
do some simple rotation transformation of the image, the

VOLUME 7, 2019

recognition age of before and after the operation should stay
the same.

MR2: When the color is unchanged and we do some change
on the size of the image but not affect the face part, the
recognition age of before and after the operation should stay
the same.

The corresponding sub-metamorphic relations for MR 1 and
MR2 are listed as follows.

120171

IEEE Access

C. Tao et al.: Testing and Quality Validation for Al Software—Perspectives, Issues, and Practices

MRI-1: When we perform image mirror transformation,
the recognition age of before and after the operation should
stay the same.

MRI-2: When we perform image rotation transformation
based on degrees, the recognition age of before and after the
operation should stay the same.

MR2-1: When we perform image translation, the recog-
nition age of before and after the operation should stay the
same.

MR2-2: When we perform image tailor, the recogni-
tion age of before and after the operation should stay the
same.

MR2-3: When we perform image scaling, the recognition
age of before and after the operation should stay the same.

In addition, due to non-oracle problems in big data intelli-
gence systems, we propose some quantitative quality evalu-
ation metrics to analyze the metamorphic testing results. For
instance, recognition accuracy is divided into two statistical
indicators: average absolute error (AAE), average relative
error (ARE). They are illustrated below.

- Average absolute error. It represents the error between
real age and recognition age. When the value is lower,
the closer the actual age and the age of recognition are,
and the better the recognition effect is. The formula is
below.

R, = Zabs(agel — ageZ)/N (1)

where agel and age? represents the real age and recognition
age respectively, and N refers to the total cases that pass the
recognition system.

- Average relative error. Here we use ARE to avoid the
side-effect of age size. The formula is as follows.

Ry — Z abs(agel — age2) @

agel

where agel and age?2 represents the real age and recognition
age respectively, and N refers to the total cases that pass the
recognition system.

B. STUDY RESULTS AND ANALYSIS

MRI-AAE Result: From Fig. 4 we can see the AAE value
of MR1-1 is around 3, and AAE of MR1-2 depends on the
rotation degrees. When the degree is larger, the absolute error
is bigger. The rotation direction does not affect the study
result significantly.

MRI-ARE Result: Fig. 5 shows that the relative error of
MRI1-1 is about 5%, and the relative error of MR1-2 depends
on the rotation degrees. When the degree is larger, the relative
error is bigger. The rotation direction seems to do not affect
the result.

MR2-AAE Result: Fig. 6-8 shows the study result of AAE
of MR2-1, MR2-2, and MR2-3 respectively. AAE value of
MR2-1 and MR2-2 is relatively low and did not change
significantly. In Fig. 8, we discover that when performing
image uniform scaling, the AAE result is stable. However,

120172

L]

8% & & &8
00 00009

»—-—muo.o.oo. - e e

B Mirror [l +5° W -5° H+10° W -10°
M +15° H-15 W 200 W-200 W25
W25 [l +30 W -30°
FIGURE 4. Study results of AAE in MR1.
1.4 - e :
. . " I
12 '. . i il
. = L] - -
1 - o H
- ! :
0.3 « ! .
L] : 2 L]
e e
06 :
I
|
0.4 i

i S

W Mirror W +5° W 50
W20 H-200 W 250

100 -0 W15 W50
W25 H+300 W30

FIGURE 5. Study results of ARE in MR1.

® @ o e ® © @ @ ® & 8 @

] e o e+ o o e s = -

.

W X20 Y30 Il X40 Y50 Il Xs50 Y20 W X70 Y70
I X80 YE0 I X100 Y100 W X130 Y130 I X150 Y150
W X-50Y-50 W xX-100Y-100 W X-100 Y100 [X100 ¥Y-100

FIGURE 6. Study results of AAE in MR2-1.

when we perform image non-uniform scaling, the AAE result
changes significantly.

MR2-ARE Result: Fig. 9-11 shows the study result of
AAE of MR2-1, MR2-2, and MR2-3 respectively. ARE of
MR2-1 and MR2-2 is relatively low and did not change

VOLUME 7, 2019

C. Tao et al.: Testing and Quality Validation for Al Software—Perspectives, Issues, and Practices

IEEE Access

W

ra
®

1
W 3:04 W403 Mo:1s M 16:08

FIGURE 7. Study results of AAE in MR2-2.

M 3207240 M400°300 [640%480 W E00*600 [1024*500
W 100°100 M200°200 (300300 EM400*400 [500+500
M s00*600 M 700°700 M B00*E00 [o00*900 [1000%1000
FIGURE 8. Study results of AAE in MR2-3.
0.25 L | - g
. M i 3 i fi i -
0.2 - ! - . o HE)
1. § b 1 § o8¢]]
015 e
0.1
0.05
0
1
M x20Y¥30 M %40 Y50 I 50 Y30 MW X70Y70
Il X80 Y80 W x100¥100 M X130 vi30 I X150 Y150
W %50v50 M %-100Y-100 W %-100Y100 [X100 ¥-100

FIGURE 9. Study results of ARE in MR2-1.

significantly. Similar to MR2-AAE result, we discover that
when performing image uniform scaling, the AAE result is
stable, and when we perform image non-uniform scaling, the
AAE result changes significantly.

In general, the studied system shows good performance in
robustness. When performing image rotation, the AAE and
ARE of the system become larger with the increasing of the
rotation angle. Nevertheless, the system robustness is good
if the rotation angle is kept unchanged regardless of rotation
direction. According to our discussion with face recognition
system developers, most of the current recognition algorithms
could not deal with skew face issues (e.g., image rotation)
very well. The system shows good robustness in image trans-
lation and tailor. However, when performing image non-
uniform scaling, AAE and ARE of the system increase
significantly. The possible reason is that image non-uniform
scaling might make the facial features of each face image

VOLUME 7, 2019

0.2
0.18
0.16
0.14
012

01
0.08
0.06
0.04
0.02 |

x—%x:moem

W24 W4:3 @916 WM16:9

FIGURE 10. Study results of ARE in MR2-2.

12
.
1 . ¢
. * . -
08 - ! .
. ® g, L] .
0e M L LI
4 H L] .8
. .
04 i s il
H .
- u'u
0
W 320240 W 400+300 M 640*480 I BOO*600 W 1024*500
H 100*100 W 200*200 I 300¢300 I 400+400 W 500*500
W 600600 W 700700 I 800*800 [900*S00 [l 1000+1000

FIGURE 11. Study results of ARE in MR2-3.

(such as the face, eyebrow spacing, etc.) occur large defor-
mation, resulting in the recognition bugs of adopted facial
feature recognition algorithms. In addition, scaling images
may also cause picture distortion problems.

VI. CONCLUSION

With the fast advance of artificial intelligence technologies
and data-driven machine learning techniques, how to build
high-quality Al software and applications becomes a very
hot subject. The special features of Al software bring new
challenges and issues for validating software or system qual-
ity. Aiming to clarify the primary issues on Al software
testing, this paper provides perspective views on Al software
quality validation, including the tutorial concepts, test fea-
tures and focuses, as well as a validation process. Moreover,
the primary types of Al software testing and existing valida-
tion approaches are analyzed and discussed. The paper also
points out the test quality evaluation and coverage problems
in Al software. Furthermore, case studies on practical Al
software applications are performed to indicate the feasi-
bility and effectiveness of the proposed quality validation
approach.

REFERENCES

[1]1 Automation Testing Market by Technology (10T, Al, and Big Data), Testing
Type (Functional, Performance, Compatibility, and Security), Service
(Advisory & Consulting, Managed, and Implementation), Endpoint
Interface, and Region—Global Forecast to 2023. Accessed: Jun. 18, 2019.
[Online]. Available: https://www.marketsandmarkets.com/Market-
Reports/automation-testing-market-113583451.html

120173

IEEE Access

C. Tao et al.: Testing and Quality Validation for Al Software—Perspectives, Issues, and Practices

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

J. Gao, C. L. Xie, and C. Q. Tao, “Quality assurance for big data-issuss,
challenges, and needs,” in Proc. IEEE 10th Int. Symp. Service Oriented
Syst. Eng., Apr. 2016, pp. 433-441.

A.O.Mohammed and S. A. Talab, “Enhanced extraction clinical data tech-
nique to improve data quality in clinical data warehouse,” Int. J. Database
Theory Appl., vol. 8, no. 3, pp. 333-342, 2015.

M. R. Wigan and R. Clake, “Big data’s big unintended consequences,”
Computer, vol. 46, no. 6, pp. 4653, 2013.

A. M. Turing, “Computing machinery and intelligence,” Mind, vol. 59,
no. 236, pp. 433-460, Oct. 1950.

A. P. Saygin, I. Cicekli, and V. Akman, “Turing test: 50 years later,” Minds
Mach., vol. 10, no. 4, pp. 463-518, 2000.

A. Broggi, P. Cerri, S. Debattisti, M. C. Laghi, P. Medici, D. Molinari,
M. Panciroli, and A. Prioletti, “PROUD—Public road urban driverless-
car test,” IEEE Trans. Intell. Transp. Syst., vol. 16, no. 6, pp. 3508-3519,
Dec. 2015.

L. Li, Y.-L. Lin, N.-N. Zheng, F.-Y. Wang, Y. Liu, D. Cao, K. Wang,
and W.-L. Huang, “Artificial intelligence test: A case study of intelligent
vehicles,” Artif. Intell. Rev., vol. 10, no. 3, pp. 441-465, 2018.

L. Li, W.-L. Huang, Y. Liu, N.-N. Zheng, and F.-Y. Wang, “Intelligence
testing for autonomous vehicles: A new approach,” IEEE Trans. Intell.
Veh., vol. 1, no. 2, pp. 158-166, Jun. 2016.

L. Li and D. Wen, “Parallel systems for traffic control: A rethink-
ing,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 4, pp. 1179-1182,
Apr. 2016.

L. Li, Y. Lin, N. Zheng, and F.-Y. Wang, ‘Parallel learning: A perspective
and a framework,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 3, pp. 389-395,
Jul. 2017.

T. J. Ostrand and M. J. Balcer, “The category-partition method for spec-
ifying and generating fuctional tests,” Commun. ACM, vol. 31, no. 6,
pp. 676-686, 1988.

L. Copeland, A Practitioner’s Guide to Software Test Design. Norwood,
MA, USA: Artech House, 2004.

A. Souri, M. E. Akbari, and A. Salehpour, “Reduction and modification of
test cases in Web applications by using multi objective genetic algorithm,”
J. Amer: Sci., vol. 8, no. 4, pp. 757-762, 2012.

J. Straub and J. Huber, “A characterization of the utility of using artificial
intelligence to test two artificial intelligence systems,” Computers, vol. 2,
no. 2, pp. 67-87, 2013.

W.B. Langdon, S. Yoo, and M. Harman, ““Inferring automatic test oracles,”
in Proc. IEEE/ACM 10th Int. Workshop Search-Based Softw. Test. (SBST),
May 2017, pp. 5-6.

X. Zhang, H. Gao, M. Guo, G. Li, Y. Liu, and D. Li, “A study on key
technologies of unmanned driving,” CAAI Trans. Intell. Technol., vol. 1,
no. 1, pp. 4-13, 2016.

L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su,
L.Li, Y. Liu, J. Zhao, and Y. Wang, ‘“DeepGauge: Multi-granularity testing
criteria for deep learning systems,” in Proc. 33rd ACM/IEEE Int. Conf.
Automated Softw. Eng. (ASE), Sep. 2018, pp. 120-131.

S. Kovach, Google Quietly Stopped Publishing Monthly Accident Reports
for Its Self Driving Cars. New York, NY, USA: Business Insider,
2018.

M. Last, M. Friedman, and A. Kandel, “The data mining approach to
automated software testing,” in Proc. 9th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining (KDD), 2003, pp. 388-396.

M. Vanmali, M. Last, and A. Kandel, “Using a neural network in the
software testing process,” Int. J. Intell. Syst., vol. 17, no. 1, pp. 45-62,
2002.

A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and
B. Wang, “Automated support for classifying software failure reports,” in
Proc. 25th Int. Conf. Softw. Eng. (ICSE), May 2003, pp. 465-475.

P. Francis, D. Leon, M. Minch, and A. Podgurski, “Tree-based methods
for classifying software failures,” in Proc. 15th Int. Symp. Softw. Rel.
Eng. (ISSRE), Nov. 2004, pp. 451-462.

J. F. Bowring, J. M. Rehg, and M. J. Harrold, “Active learning for auto-
matic classification of software behavior,” in Proc. ACM SIGSOFT Int.
Symp. Softw. Test. Anal. (ISSTA), 2004, pp. 195-205.

X. Xie, J. W. K. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y. Chen, ““Test-
ing and validating machine learning classifiers by metamorphic testing,”
J. Syst. Softw., vol. 84, no. 4, pp. 544-558, 2011.

C. Murphy, G. E. Kaiser, and L. Wu, “Properties of machine learning
applications for use in metamorphic testing,” in Proc. 20th Int. Conf. Softw.
Eng. Knowl. Eng. (SEKE), 2008, pp. 867-872.

120174

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

[36]

(371

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

(49]

T. Y. Chen, J. W. K. Ho, H. Liu, and X. Xie, “An innovative approach for
testing bioinformatics programs using metamorphic testing,” BMC Bioinf.,
vol. 10, p. 24, Jan. 2009.

T. Y. Chen, J. Feng, and T. H. Tse, “Metamorphic testing of
programs on partial differential equations: A case study,” in Proc.
26th Annu. Int. Comput. Softw. Appl. (CMPSAC), Aug. 2002,
pp. 327-333.

J. Mayer and R. Guderlei, “On random testing of image processing
applications,” in Proc. 6th Int. Conf. Qual. Softw. (QSIC), Oct. 2006,
pp. 85-92.

K. Meinke and F. Niu, “A learning-based approach to unit testing of
numerical software,” in Proc. 22nd IFIP WG 6.1 Int. Conf. Test. Softw.
Syst., 2010, pp. 221-235.

S. A. Vilkomir, W. T. Swain, J. H. Poore, and K. T. Clarno, “Modeling
input space for testing scientific computational software: A case study,” in
Proc. 8th Int. Conf. Comput. Sci., 2008, pp. 291-300.

W. H. Deason, D. B. Brown, K.-H. Chang, and J. H. Cross, II, “A rule-
based software test data generator,” IEEE Trans. Knowl. Data Eng., vol. 3,
no. 1, pp. 108-117, Mar. 1991.

M. Naphade, D. C. Anastasiu, A. Sharma, V. Jagrlamudi, H. Jeon,
K. Liu, M.-C. Chang, S. Lyu, and Z. Gao, “The NVIDIA AI City
Challenge,” in Proc. IEEE SmartWorld, Ubiquitous Intell. Comput., Adv.
Trusted Comput., Scalable Comput. Commun., Cloud Big Data Com-
put., Internet People Smart City Innov. (SmartWorld/SCALCOM/UIC/ATC/
CBDCom/IOP/SCI), Aug. 2017, pp. 1-6.

A. Andrews, A. O’Fallon, and T. Chen, “A rule-based software testing
method for VHDL models,” in Proc. VLSI-SOC, vol. 92, 2003, pp. 1-6.
Y. Yin, L. Chen, Y. Xu, and J. Wan, “Location-aware service recommenda-
tion with enhanced probabilistic matrix factorization,” IEEE Access, vol. 6,
pp. 62815-62825, 2018.

X. Sun, H. Yang, X. Xia, and B. Li, “Enhancing developer recommen-
dation with supplementary information via mining historical commits,”
J. Syst. Softw., vol. 134, pp. 355-368, Dec. 2017.

H. Gao, K. Zhang, J. Yang, F. Wu, and H. Liu, “Applying improved particle
swarm optimization for dynamic service composition focusing on quality
of service evaluations under hybrid networks,” Int. J. Distrib. Sensor Netw.,
vol. 14, no. 2, pp. 1-14, 2018.

Y. Yin, W. Xu, Y. Xu, H. Li, and L. Yu, “Collaborative QoS prediction for
mobile service with data filtering and SlopeOne model,” Mobile Inf. Syst.,
vol. 2017, Jun. 2017, Art. no. 7356213.

X. Sun, X. Peng, K. Zhang, Y. Liu, and Y. Cai, “How security bugs are
fixed and what can be improved: An empirical study with Mozilla,” Sci.
China Inf. Sci., vol. 62, no. 1, 2019, Art. no. 19102.

Y. Yin, S. Aihua, G. Min, X. Yueshen, and W. Shuoping, “QoS prediction
for Web service recommendation with network location-aware neighbor
selection,” Int. J. Softw. Eng. Knowl. Eng., vol. 26, no. 4, pp. 611-632,
2016.

H. Gao, W. Huang, X. Yang, Y. Duan, and Y. Yin, “Toward service
selection for workflow reconfiguration: An interface-based computing
solution,” Future Gener. Comput. Syst., vol. 87, pp. 298-311, Oct. 2018.
X. Sun, T. Zhou, G. Li, J. Hu, H. Yang, and B. Li, “An empirical study
on real bugs for machine learning programs,” in Proc. 24th Asia—Pacific
Softw. Eng. Conf. (APSEC), Dec. 2017, pp. 348-357.

H. Gao, S. Mao, W. Huang, and X. Yang, “Applying probabilistic model
checking to financial production risk evaluation and control: A case study
of Alibaba’s Yu’e Bao,” IEEE Trans. Comput. Social Syst., vol. 5, no. 3,
pp. 785-795, Sep. 2018.

H. Gao, Y. Duan, H. Miao, and Y. Yin, “An approach to data consistency
checking for the dynamic replacement of service process,” IEEE Access,
vol. 5, pp. 11700-11711, 2017.

L. Qi, W. Dou, W. Wang, G. Li, H. Yu, and S. Wan, “Dynamic mobile
crowdsourcing selection for electricity load forecasting,” IEEE Access,
vol. 6, pp. 46926-46937, 2018.

L. Qi, X. Zhang, W. Dou, and Q. Ni, “A distributed locality-sensitive
hashing-based approach for cloud service recommendation from multi-
source data,” IEEE J. Sel. Areas Commun., vol. 35, no. 11, pp. 2616-2624,
Nov. 2017.

X. Sun, X. Peng, H. Leung, and B. Li, “ComboRT: A new approach for
generating regression test cases for evolving programs,” Int. J. Softw. Eng.
Knowl. Eng., vol. 26, no. 6, pp. 1001-1026, 2016.

Y. Weng, T. Zhou, L. Liu, and C. Xia, “Automatic convolutional neural
architecture search for image classification under different scenes,” IEEE
Access, vol. 7, pp. 38495-38506, 2019.

Y. Weng, T. Zhou, Y. Li, and X. Qiu, “NAS-Unet: Neural architec-
ture search for medical image segmentation,” IEEE Access, vol. 7,
pp. 44247-44257, 2019.

VOLUME 7, 2019

C. Tao et al.: Testing and Quality Validation for Al Software—Perspectives, Issues, and Practices I E E EACCGSS

CHUANAQI TAO received the Ph.D. degree in soft-
ware engineering from the School of Computer
Science and Engineering, Southeast University,

—— in 2013. From August 2010 to September 2011,
= 7” he was a Visiting Scholar with San José State
L University, CA, USA. He is currently an Associate

and Technology, Nanjing University of Aeronau-
tics and Astronautics, China. His research inter-
=== estsinclude intelligent software testing, regression

} Professor with the College of Computer Science
(sl

e

I
i

-
A

|

{

testing, cloud-based mobile testing as a service, and quality assurance for big
data applications. He has published over 30 articles in the software testing
and quality assurance domain in IEEE journals, international conferences,
and workshops.

JERRY GAO is currently a Full Professor with the
College of Computer Engineering, San José State
University, USA. He had over 15 years of aca-
demic research and teaching experience and over
ten years of industry working and management
experience on software engineering and IT devel-
opment applications. He has published over 100
(180) publications in IEEE/ACM journals, mag-
azines, international conferences, and workshops.
His research interests include big data testing and
quality validation, cloud-based mobile testing, and smart city.

VOLUME 7, 2019

TIEXIN WANG received the bachelor’s and mas-
ter’s degrees from the Harbin Institute of Tech-
nology (HIT), in 2010 and 2012, respectively,
the another master’s degree from University of
Bordeaux, in 2012, and the Ph.D. degree from the
Ecole des Mines d’Albi, France, supervised by
Prof. F. Benaben, in October 2015. He did one
year Postdoctoral research at ARMINES, France.
He is currently with the College of Computer Sci-
ence and Technology, Nanjing University of Aero-
nautics and Astronautics, China. His research interests include enterprise
engineering, collaboration management, model transformation, and semantic
checks. He has published around 20 research articles. He used to take part in
a H2020 Project *“Cloud Collaborative Manufacturing Networks: C2Net.”

120175

	INTRODUCTION
	UNDERSTANDING AI SOFTWARE TESTING
	TEST SCOPE AND MAJOR FOCUSES
	NEW TESTING FEATURES AND REQUIREMENT ANALYSIS FOR AI SOFTWARE

	AI SOFTWARE QUALITY VALIDATION CATEGORY AND APPROACHES
	TURING TESTING
	AI SOFTWARE TESTING
	AI-BASED SOFTWARE TESTING
	AI-BASED MACHINE TESTING
	TYPICAL VALIDATION APPROACHES FOR AI SOFTWARE
	DATA QUALITY VALIDATION FOR AI-BASED SOFTWARE

	TESTING QUALITY ASSESSMENT AND ADEQUACY ANALYSIS
	TESTING QUALITY PARAMETERS AND QUALITY ASSESSMENT FOR AI SOFTWARE
	AI SOFTWARE TEST ADEQUACY AND COVERAGE

	CASE STUDIES- QUALITY VALIDATION FOR ROBUSTNESS OF AN IMAGE RECOGNITION APPLICATION
	QUALITY VALIDATION METHOD DESIGN
	STUDY RESULTS AND ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	CHUANQI TAO
	JERRY GAO
	TIEXIN WANG

