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ABSTRACT Hybrid precoding is an important issue in millimeter wave (mmWave) massive multi-input
and multi-output (MIMO) system. Specially, energy-saving hybrid precoding architectures and efficient
hybrid precoding schemes provide ideas for solving this issue. In this paper, we propose a hybrid precod-
ing/combining architecture that is low-cost and easy to implement. Specifically, a hybrid precoding archi-
tecture is realized by the lens sub-arrays at the base station (BS). Moreover, a hybrid combining architecture
applies the low-resolution analog-to-digital converters (ADCs) at the front end of the radio frequency (RF)
chains at the receiving terminal. Based on the hybrid precoding/combining architecture, the hybrid precoder
and combiner are jointly optimized tomaximize the spectrum efficiency (SE) in the downlink systems, which
is a combinatorial optimization problem due to hardware constraints. The cross-entropy (CE) approach
in machine learning (ML) is a simple way to solve the combinatorial optimization problem benefiting
from its adaptive update procedure. Therefore, we propose an adaptive hybrid precoder/combiner design
scheme (AHDS), in which a hybrid precoding algorithm based on the improved CE (ICE) inspired by
ML is adopted to design the optimal hybrid precoder, and an approximate optimization method (AOM)
is suggested when designing the hybrid combiner. In general, compared with the existing hybrid design
schemes, the proposed AHDS is demonstrated to have significant advantage in SE with low computational
complexity.

INDEX TERMS Hybrid precoding, machine learning, lens sub-array, low-resolution ADC, multi-input and
multi-output.

I. INTRODUCTION
Millimeter (mmWave) frequency between 30 to 300 GHz has
been attracting growing attention to enhance the throughput
in wireless networks [1], [2]. As for the abundant spec-
trum resources of the mmWave band, the next generation
of wireless communication is developing towards mmWave.

The associate editor coordinating the review of this article and approving
it for publication was Guan Gui.

In addition, massive multi-input and multi-output (MIMO)
is one of the emerging technologies. The combination of
mmWave and MIMO can be a great progress in the fifth
generation (5G) mobile communication system. Specifically,
inspired by the massive MIMO and mmWave technologies,
the mmWave massive MIMO is considered as a potential
technique to enhance the throughput of wireless communi-
cation system [3]. Except the abundant bandwidth resources,
the short wavelength of mmWave enables more antennas to
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be packed in the same physical space, and thus, can better
support massive MIMO communication [4].

ThemmWavemassiveMIMO system is capable of enhanc-
ing the spectrum efficiency (SE) by providing the large
array gain [5]. However, the large-scale antennas, the high-
resolution analog-to-digital converters (ADCs)/digital-to-
analog converters (DACs), and the fully digital precoding
scheme will result in big power consumption and unford-
able hardware costs. Therefore, it is a significant challenge
to develop the promising hybrid preocoding architecture
for overcoming power consumption and hardware costs.
At present, the popular hybrid precoding has been proposed
for mmWave massive MIMO system [6], which divides spa-
tial processing into radio frequency (RF) and digital base-
band (BB) domains [7]. Obviously, the hybrid precoding
architecture [8]–[11] can reduce the number of RF chains
required for mmWave massive MIMO systems while main-
taining efficient performance.

However, most of the existing hybrid precoding architec-
tures [12] have big power consumption and hardware costs.
The authors in [13] proposed an effective and energy-saving
switches selection network instead of the traditional phase
shifters (PSs) network, but the switches selection network
required strict channel conditions (independent and identi-
cally distributed (i.i.d.) Rayleigh fading channel). The authors
in [14] proposed an energy-saving hybrid precoding architec-
ture, in which the analog part was implemented by a small
number of switches and inverters. It has proven to have low
power consumption and hardware costs with little perfor-
mance loss. In addition, the authors in [15] proposed new
alternatives for traditional large-scale array antennas. Obvi-
ously, a wide range of applications of lens-array antennas
utilize the sparseness of mmWave channel [16], while the full
array multiplexing gain of large-scale antennas can always be
realized by low-cost lens.

Although hybrid precoding is beneficial for massive
MIMO systems, the number of the RF chains with
high-resolution DACs/ADCs is considerable. The utilization
of ultra low-resolution DACs/ADCs as alternatives of the
high-resolution DACs/ADCs for each RF chain is a poten-
tial solution. At present, the application of one-bit ADCs
has gained much interest [17]–[19]. However, most relevant
performance analysis were discussed in the uplink system
with low-resolution ADCs. In [20], the authors considered a
massive MIMO relaying system with low-resolution ADCs
at both relaying and destination. In conclusion, a small
number of contributions were proposed in the downlink
system. The authors in [21] proposed an alternate min-
imization algorithm to solve the hybrid precoding prob-
lem. However, there was a bottleneck due to one-bit ADC
processing at the receiver. Therefore, the achievable sum
rate needs to be improved in massive MIMO systems with
low-resolution ADCs.

Deep learning (DL) and machine learning (ML) have
attracted much interest in communication networks and

system design [22]–[24]. The cross-entropy (CE) [25]
approach was firstly introduced in 1997 and developed in
ML, which was initially used for estimating probabilities of
rare events in complex stochastic network. It is superior to
solve combinatorial optimization problems due to its adaptive
update procedure. Recently, several applications with CE
optimization were discussed, such as the unmanned aerial
vehicles (UAVs) task assignment [26], the buffer allocation
[27], and ML [28]. All of these works showed the effective-
ness and simplicity of CE optimization compared to typical
relaxation techniques. CE is a promising method to solve the
complicated combinatorial optimization, which is proved to
be simple, efficient, and general.

In this paper, we propose an energy-saving hybrid
transceiver of the massive MIMO system to realize efficient
hybrid precoding/combing with the help of CE optimization.
The specific hybrid precoding architecture is as follows: a
switch and inverter-based hybrid precoding architecture is
proposed, and the transmitter is equipped with the sub-lens
antennas. The hybrid combining architecture is realized
by the PSs, and low-resolution ADCs are applied at the
front end of RF chains. Based on the hybrid precod-
ing/combining architecture proposed in this paper, a hybrid
precoder/combiner design problem is formulated to maxi-
mize the SE of the downlink communication. To solve the
optimization problem, an adaptive hybrid precoder/combiner
design scheme (AHDS) is proposed in this paper. Specifi-
cally, the first stage is to design the optimal hybrid precoder
with a hybrid precoding algorithm based on the improved
CE (ICE) in ML, which refines the probability distribu-
tions iteratively via CE minimization. The second stage is
to design the optimal hybrid combiner with an approximate
optimization method (AOM), considering the quantization
error caused by the low-resolution ADCs. The simulation
results verify that the proposed AHDS in this paper can
achieve high SE with low computational complexity.

The major contributions in this paper are summarized as
follows:
• A hybrid precoding architecture-based the sub-lens
antennas at the base station (BS) and a hybrid com-
bining architecture-based low-resolution ADCs at the
user terminal are proposed, which is proved to have
low hardware cost and power consumption. In the
architecture, the analog precoder is implemented by
switches and inverters at the transmitter, and the
analog combiner is implemented by PSs. Moreover,
a hybrid precoder/combiner optimization problem is for-
mulated aiming to maximize the system SE and energy
efficiency (EE).

• We propose an adaptive hybrid precoder/combiner
design scheme (AHDS), in which a hybrid precoding
algorithm based on the improved CE (ICE) is adopted to
design the optimal hybrid precoder, and the approximate
optimization method (AOM) is suggested when design-
ing the optimal hybrid combiner. The proposed scheme
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FIGURE 1. mmWave massive MIMO hybrid transmitter/receiver architecture with lens sub-array antennas.

can obtain the optimal precoding matrix and combining
matrix to maximize the SE of mmWave massive MIMO
system, respectively.

• Simulation results show that the proposed AHDS can
achieve high SE and EE with low computational
complexity, which can be improved compared with the
existing hybrid design schemes significantly. Moreover,
simulations are also conducted to verify the feasibility
and effectiveness of the CE method in solving the com-
binational optimization problem.

The remainder of this paper is organized as follows.
Section II is a brief overview of the system model and
problem formulation. Section III introduces the algorithm
ideas and specific steps. In Section IV, we provide simulation
results and performance analysis of the proposed algorithm.
Finally, the conclusion of this paper is described in Section V.
Notations: In this paper, the boldface uppercase letters

denote matrices, and the boldface lowercase letters denote
column vectors. (·)H denotes the conjugate transposition.
(·)−1 and (·)∗ denote the inversion and transposition, respec-
tively. ‖·‖F denotes the Frobenius norm, |·| represents the
determinant. E (·) denotes the expectation operator. [B]m,n is
used to denote the (m; n) component of a matrix B. INr is
the identity matrix of the size Nr × Nr . ej is a zero column
vector with a one at the j-th element. CN

(
µ, δ2

)
denotes a

circularly symmetric complex-valued multi-variate Gaussian
distribution with a mean of µ and a variance of δ2. 1M×N is
the M × N matrix in which all elements are equal to one.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
In this paper, as shown in Fig. 1, a typical mmWave mas-
sive MIMO system with multi-antennas users is considered.
Specifically, the analog precoder is realized by the switches
and inverters at the transmitter. Moreover, the low-cost lens
antennas are applied at the transmitter. By employing the

lens (an electromagnetic lens with directional energy focus-
ing capability and a matching antenna array with elements
located in the focal surface of the lens [15]) sub-array anten-
nas, the signals from different directions can be concentrated
on different antennas. The analog combiner is realized by the
PSs at the receiver. In addition, the low-resolution ADCs are
applied at the front of RF chains at the receiver.

Assuming that there are K users to be served by the BS
simultaneously, as shown in Fig. 1. The transmitting terminal
is equipped with Nt transmitting antennas (Lens) and N t

RF
(N t

RF ≤ Nt ) RF chains, which are used for sending Ns
data streams simultaneously. The receiving terminal is also
equippedwithNr receiving antennas andN r

RF (N r
RF ≤ Nr ) RF

chains. Without loss of generality, there is N t
RF = N r

RF = K .
However, as shown in Fig. 1, one RF chain connects to a lens
sub-array, so we have N t

RF ≤ K .
The lens antennas are equipped at the BS, so the traditional

channel is sparse. According to the sparse beamspace channel
matrix, only a small number of beams can be selected to serve
K users simultaneously. When Ns data streams are trans-
mitted through the beamspace channel, the receive vector
r =

[
r1, r2, . . . , rNr

]∗ of the user at the receiving terminal
can be represented as

r =
√
ρH̃Fs+ n, (1)

where ρ is the average transmit power per symbol. F ∈
CNt×Ns is a linear precoder. H̃ ∈ CNr×Nt is the beam spatial
channel matrix, which is generated due to the lens antennas.
s =

[
s1, s2, . . . , sNs

]∗ (n = 1, 2, . . . ,Ns) is the transmission
symbol vector with zero mean and normalized power of
E
[
ss∗
]
=

1
Ns
INs . n ∈ C

Nr denotes the zero-mean Gaussian
noise vector with E

[
nn∗

]
= INr .

We assume that the BS perfectly estimates the beamspace
channel matrix H̃ by applying an effective channel estimation
scheme. Since the lens sub-array antennas and the limited
scattering [9], we obtain the beam spatial channel matrix H̃ ∈
CNr×Nt from the physical space MIMO channel by discrete
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fourier transform (DFT). Specifically, the sparse beamspace
channel can be expressed as

H̃ =


H̃1,1 H̃1,2 · · · H̃1,Nt
H̃2,1 H̃2,2 · · · H̃2,Nt
...

...
. . .

...

H̃Nr ,1 H̃Nr ,2 · · · H̃Nr ,Nt



= U


g1,1 g1,2 · · · g1,Nt
g2,1 g2,2 · · · g2,Nt
...

...
. . .

...

gNr ,1 gNr,2 · · · gNr ,Nt

 (2)

In (2), H̃r,t (r = 1, 2, . . . ,Nr , t = 1, 2, . . . ,Nt ) is the channel
matrix between the r-th transmit antenna and the t-th receive
antenna of a user. gr,t is the spatial domain channel matrix
between the BS and the user terminal. U ∈ CNr×Nr is a
DFT matrix corresponding to a carefully designed discrete
lens array (DLA) antennas at the BS,

U =


a
(
ϕ1,1

)
a
(
ϕ1,2

)
· · · a

(
ϕ1,Nt

)
a
(
ϕ2,1

)
a
(
ϕ2,2

)
· · · a

(
ϕ2,Nt

)
...

. . .

a
(
ϕNr ,1

)
a
(
ϕNr ,2

)
· · · a

(
ϕNr ,Nt

)
 , (3)

where a
(
ϕr,t

)
(r = 1, 2, . . . ,Nr , t = 1, 2, . . . ,Nt ) is

the array steering vector. The Nr columns of the matrix
in (3) correspond to the orthogonal beamforming vec-
tors of Nr predefined directions covering the entire angu-
lar space, respectively, i.e., UHU = INr . We take the
first column in (3) as an example for analysis: ϕr,1 =
1
Nr

(
r − Nr+1

2

)
(r = 1, 2, . . . ,Nr ) denotes the normal-

ized spatial direction [17]. a
(
ϕr,1

)
=

1
√
Nr

[
e−j2πϕr,1i

]
i∈I

(I =
{
j− Nr−1

2 |j = 0, 1, . . . ,Nr − 1
}
) is corresponding

Nr ×1 array steering vector. The normalized spatial direction
ϕr,t is related to the physical angle of propagation θr,t by
ϕ = d

λ
sin θ , in which λ is the signal wavelength and d is the

antenna spacing. At mmWave frequency, d = λ/2 is usually
to minimize the space of the multi-antennas while achieving
the optimal diversity [9].

In this paper, we consider the extended Saleh-Valenzuela
channel model [29] for the proposed mmWave massive
MIMO system, i.e.,

gr,t = β(0)r,t
a
(
ϕ(0)
r,t

)
+

L∑
l=1

β(l)
r,t
a
(
ϕ(l)
r,t

)
, (4)

where β(0)
r,t
a
(
ϕ(0)
r,t

)
and β(l)

r,t
a
(
ϕ(l)
r,t

)
represent the channel

vector of the line of sight (LoS) and of the non-line of
sight (NLoS) link between the BS and the user, respectively.
The number of the NLOS links is L. β(0)

r,t
and β(l)

r,t
rep-

resent complex gain for LoS and the l-th NLoS channel,
respectively. ϕ(0)

r,t
and ϕ(l)

r,t
indicate the corresponding spatial

direction.

The received signal is processed through a linear combiner
W ∈ CNr×Ns . Thus, y can be expressed as

y = W∗r

=
√
ρW∗H̃Fs+W∗n, (5)

where the linear precoder F = FRFFBB is realized by the
analog precoder FRF ∈ CNt×N t

RF and the digital precoder
FBB ∈ CN t

RF×Ns . The linear combiner W = WRFWBB is
implemented by the analog combiner WRF ∈ CNr×N r

RF and
the digital combiner WBB ∈ CN r

RF×Ns .
The received signal after the one-bit quantization can be

expressed as

ỹ = Q (y)

= Q
(√
ρW∗H̃Fs+W∗n

)
, (6)

where Q (·) is the one-bit quantization function, which is
applied to component-wise and separately to the real and
imaginary parts. The digital signal is quantified to form a
sequence of specific length.

Although a quantitative process is the quantization oper-
ation of ADC, we can convert it to an equivalent linear
operation using the Bussgang theorem [30]. The theorem
obtains the statistical equivalent linear operator of any nonlin-
ear function of Gaussian signals. Particularly, for the one-bit
quantization in (6), the Bussgang theorem can be written as

ỹ = Ay+ q

=
√
ρAW∗H̃Fs+W∗n+ q

=
√
ρAW∗H̃Fs+ ñ, (7)

where A is a linear operator, q is a statistically equivalent
quantization noise. y denotes the received signal vector before
quantization. In order to facilitate the calculation, we combine
the interference except the transmitted signal, (i.e., ñ =
W∗n + q). The total noise ñ is composed of Gaussian noise
being combinatorial and quantization noise. In addition, A is
be approximated by the existing methods in [31], i.e.,

A =

√
2
π

√
1

1+ Pt
INr , (8)

where Pt is the total transmission power of all antennas at the
transmitter.

B. PROBLEM FORMULATION
Assuming that the transceiver can get perfect channel state
information (CSI). The aim of this paper is to maximize the
system SE by designing the hybrid precoder and combiner.
Firstly, the equivalent channel and noise covariance matrix
are defined as follows:

Hu
1
= AW∗H̃F, (9)

and

Ru
1
=W∗W. (10)
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Thus, the hybrid precoder/combiner design problem can be
stated as

maxR
F,W

= log2

∣∣∣∣INs + ρ

Ns
H∗uR

−1
u Hu

∣∣∣∣
s.t. C1:e∗j FRFFBB(FRFFBB)

∗ej 6 pj,

C2:
∣∣[FRF ]m,n∣∣ = 1,

C3:
∣∣[WRF ]m,n

∣∣ = 1,

C4: FRF ∈ CNt×N t
RF ,

C5: WRF ∈ CNr×N r
RF . (11)

C1 in (11) represents the individual power constraint at
each of the Nt transmit antennas, in which pj is the power
of per-antenna at the transmitter. C2 and C3 in (11) denote
the elements have unit amplitude in the analog precoding
matrix and combining matrix. C4 and C5 in (11) are the
hardware-specific constraints of analog precoder and com-
biner, respectively. Note that ej is the j-th element of the
standard basis.

It is simple to verify that problem (11) is a nondeterminis-
tic polynomial-time hard (NP-hard) problem. There are two
variables in (11) that need to be optimized: F = FRFFBB and
W = WRFWBB. Due to the hardware-specific constraints
C2-C5, the problem (11) is intractable.

III. TWO-STAGE DESIGN
In this section, we propose AHDS to obtain the optimal
solution of problem (11) by solving its two sub-problems,
i.e., (14) and (22). Specifically, (14) can be obtained by the
hybrid precoding algorithm-based ICE. According to the
probability of the elements in the hybrid precoder, the hybrid
precoding scheme first generates a hybrid precoder to
approximate the optimal one with the optimal probability.
Then, AOM is suggested to design the hybrid combiner.
Specifically, (22) is solved by determining a reasonable
approximation of the analog combiner by the singular value
decomposition (SVD) and convert problem (22) to a liner pro-
grammer. In the following, we provide the specific algorithm
designing process in detail and discuss the computational
complexity.

A. HYBRID PRECODER DESIGN
In this subsection, the problem of maximizing the system
SE can be formulated as the hybrid precoder optimization
problem for designing the optimal digital precoder and the
analog precoder. Inspired by the sampling approach devel-
oped in ML, the probabilistic model is established and the
original problem is reformulated as a CE minimization prob-
lem learning the probability distribution of the elements in
hybrid precoding matrix.
Theorem 1: Let 8 ∈ CNr×Ns and 0 ∈ CNt×Ns comprise

the Ns left and right singular vectors of the channel matrix H
corresponding to the Ns largest singular values, respectively.
Then, the solution to the problem (11) with C1 is given by

F =
√
p00Q, (12)

Algorithm 1 Hybrid Precoding Algorithm-Based ICE
Input: Channel matrix H; Number of iterations I ; The

number of elements in the precoding matrix M .
Output: Analog precoding matrix F[1]

RF ; Digital precoding
matrix F[1]

BB.
1: Initialization: i = 0, u(0) = 1

2 × 1N×1(1 is the all-one
vector);

2: for i = 0 to I do
3: Randomly generate M analog precoders {fm}Mm=1

based on probability model 5
(
F;p(i)

)
;

4: Compute corresponding digital precoding matrix
by (16) and (17);

5: Calculate the chord distance {=m}Mm=1 according to an
iteratively updated precoding matrix, and sort them in
a descend;

6: Select 1 ≤ m ≤ Melite as targets;
7: for m = 0 to Melite do
8: Update p(i+1) by (21);
9: i← i+ 1.
10: end for
11: end for

and

W = 8T, (13)

with Q ∈ CNs×Ns an arbitrary unitary matrix, and T ∈
CNs×Ns an arbitrary invertible matrix.

The proof is shown in Appendix A.
According to Theorem 1, any orthogonal basis for the

subspace spanned by the columns of 0 is optimal for prob-
lem (11) with constraint C1. Inspired by this fact, the hybrid
precoder design problem is formulated as

max
FRF ,FBB

∥∥0∗FRFFBB∥∥2F
s.t. C1:e∗j FRFFBB(FRFFBB)

∗ej 6 pj,

C2:[FRF ]m,n ∈
1
√
Nt
{+1,−1} ,

C3:FRF ∈ CNt×N t
RF . (14)

The problem (14) is non-convex with hardware-specific
constraints C2, C3, and the per-antenna constraint C1. Fortu-
nately, since the switches and inverters are used, the elements
in the analog precoding matrix are limited, i.e., constraints
C2 and C3. Due to the analog precoders are implemented
by the inverters and switches, so each element of the analog
precoding matrix FRF is limited to {+1,−1}. Moreover, FRF
in (14) is a block diagonal matrix because each RF chain is
connected to the lens sub-array, as shown in Fig. 1. Therefore,
FRF can be expressed as

FRF =


fRF1 0 . . . 0
0 fRFn 0
...

. . .
...

0 0 · · · fRFN t
RF


Nt×N t

RF

, (15)
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where fRFn represents the
(
Nt/N t

RF

)
× 1 analog precoder on

the n-th lens sub-array.
The application of CE in the artificial neural net-

works (ANNs) [32] provides the solution to (14). The CE
can be used to measure the difference between two prob-
ability distributions. In this problem, we first take out the
non-zero elements in the analog precoding matrix FRF to
form a target vector f =

[
f∗1, f
∗

2, . . . , f
∗
NRF

]∗
, where the

elements in the target vector take values between + 1
√
Nt

and

−
1
√
Nt

with equal probability. Next, the probability vector

is set as p =
[
p1, p2, . . . , pNt

]∗, in which the elements
represent the probability that the lens changes the phase of
signal. It corresponds to the value of analog precoding matrix
elements, i.e.,+ 1

√
Nt

and− 1
√
Nt
. In the following, we initialize

p(0) = 1
2 × 1Nt×1. In step 3, M prediction targets {fm}Mm=1

are randomly generated based on 5
(
F;p(i)

)
(i.e., generate

F according to p(i)), and reshape them as matrices belong
to). And new vector groups are reshaped into a set of block
diagonal matrices belonging to F , where each block is a Nt

N t
RF

dimension vector and the off-diagonal blocks are zero vec-
tors. In step 4, the digital precoding matrix can be calculated
based on the ZF digital precoding scheme, which corresponds
to the analog precoding matrix. In principle, the ZF digi-
tal precoding scheme can be obtained by setting the digital
precoding matrix, which is equal to the pseudo-inverse of
the effective channel matrix. Therefore, the digital precoding
matrix can be calculated as

G =
(
H̃FRF

)H(H̃FRF
(
H̃FRF

)H)−1
, (16)

FBB =
√
ρ

‖FRFG‖F
G, (17)

where ρ is the normalized power.
Due to = 1

= ‖0∗FRFFBB‖2F , we evaluate the objective
values by calculating the corresponding {=m}Mm=1 and sort
them in descending order. To select 1 ≤ m ≤ Melite as
the targets, and the weight of the elements in each analog
precoding matrix can be obtained by

wm =
=m

Melite∑
m=1
=m

. (18)

Based on (18), (19) updates p(i+1) by minimizing CE, i.e.,

p(i+1) = argmin
p(i)

1
M

Melite∑
m=1

wm ln5
(
F;p(i)

)
. (19)

As for the probability of fn = + 1
√
Nt

is p(i)n and the

probability of fn = − 1
√
Nt

is 1− p(i)n . Therefore, we have

5
(
F;p(i)

)
=

N∏
n=1

(
p(i)n
) 1

2

(
1+
√
Nt f

[m]
n

)(
1− p(i)n

) 1
2

(
1−
√
Nt f

[m]
n

)
. (20)

Finally, the following expression by substituting (20)
into (19) can be rewritten as

p(i+1)

= argmin
p(i)

Melite∑
m=1

wm

((
1+
√
Nt f

[m]
n

2p(i)

)
−

(
1−
√
Nt f

[m]
n

2
(
1− p(i)

) ))
(21)

B. HYBRID COMBINER DESIGN
In this subsection, with the aim of maximizing the achievable
SE, we formulate the hybrid combiner optimization problem
for designing the digital combinerWBB and the analog com-
biner WRF . Similar to the design problem of the hybrid pre-
coder, the sub-scheme first designs the optimization problem
based on Theorem 1. Therefore, the hybrid combiner design
problem can be obtained by solving

Algorithm 2 Approximate Optimization Method (AOM)

1: Set φ̃j,k according to the beam spatial channel matrix H̃;
2: Compute WRF by (23);
3: Set A = 8∗WRF and SVD A = UA6AV∗A WBB =

UW6WV∗W ;
4: Compute 6W by solving (30);
5: Compute WBB by (25).

max
FRF ,FBB

∥∥8∗WRFWBB
∥∥2
F

s.t. C1:
∣∣[WRF ]m,n

∣∣ = 1,

C2:WRF ∈ CNr×N r
RF ,

C3:(WRFWBB)∗(WRFWBB) = INs . (22)

C1, C2, and C3 in (22) are hardware-specific constraints
for the hybrid combiner designing problem, which makes
problem (22) as an NP-hard problem. Since the analog com-
biners are realized by the PSs, which only adjust the phases
of the signals, each element of the analog combining matrix
WRF is limited to the same norm, i.e., unit modulus constraint
C1. As mentioned in [9], maximizing the above objective
function is equivalent to maximizing mutual information.
This term is related to the chordal distance between 8 and
WRFWBB in the Grassmann manifold when8 andWRFWBB
is made semi-unitary. We use the approximate optimization
method to solve problem (22).

Assuming 8̃ ∈ CNr×N r
RF is the N r

RF left singular vectors of
H̃ corresponding to the N r

RF largest singular values, and φ̃j,k
represent the (j, k)-th element of 8̃.

Let

(WRF )j,k =
φ̃jk∣∣φ̃jk ∣∣ , (23)

andwe take (23) as the approximate value ofWRF . According
to the Theorem 1, WRF have orthonormal columns, there is
no loss of the performance in terms of SE. Then, the variable
that needs to be optimized in (22) is only WBB with C3.
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Let A = 8∗WRF . By considering the SVD to A and WBB,
the optimization variables in (22) can be expressed as

A = UA6AV∗A, (24)

WBB = UW6WV∗W . (25)

Then, the optimization problem in (22) is formulated as∥∥AW∗BB∥∥2F = tr
(
A∗AW∗BBWBB

)
≤ tr

(
62
A6

2
W

)
, (26)

when VA = VW , the ‘‘=’’ is established. We chose WBB =

6WVA as the digital combiner. Without loss of optimality,
we take UW = INs . Then, (22) is rewritten as

max
6W

tr
(
62
A6

2
W

)
s.t. VW6

2
WV∗W = INs . (27)

The definitions of 6W and VW are discretized as follows:

6W = diag
{
σW ,1, σW ,2, . . . , σW ,Ns

}
, (28)

and

VW = diag
{
σV ,1, σV ,2, . . . , σV ,Ns

}
. (29)

Then, (27) is rewritten as

max{
σ 2W ,k

}
Ns∑
k=1

σ 2
W ,kσ

2
V ,k

s.t.
Ns∑
k=1

∣∣σV ,k ∣∣2σ 2
W ,k = 1. (30)

Foutunately, (30) is a linear program that is easy to solve.

C. COMPLEXITY ANALYSIS
Due to the hardware constraints imposed by the hybrid
precoding architecture based-switches and inverters, each
antenna is to turn off for transmitting signals. When the
switch is ‘‘off’’, the n-th entry of the f is taken to be 1. And
since the inverter ia applied, it can only adjust the phase of
the signal, so the value of fn is {+1,−1}. As result, the cor-
responding search space (complexity) is 2Nt (e.g., 264 ≈
1.84 × 1019 when Nt = 64). The overall complexity of the
algorithm is O

(
2N t

RF I
)
.

IV. EXPERIMENT AND DISCUSSION
In this section, we provide simulation results for the
proposed AHDS. In the simulations, a typical downlink
mmWave massive MIMO system is considered, in which the
DLA with transmit antennas configuration of a half wave-
length spacing deployed at the BS and the uniform linear
arrays (ULA) assumed at the receiver. The simulation param-
eters are listed in Table 1, in which PRF is the transmitted
power of per-antenna, PBB is the power consumption of
BB, PSW is the power consumption of the switches, and
PIN is the power consumption of the inverters. B is the
bandwidth.

TABLE 1. Simulation paramenters.

FIGURE 2. Spectrum efficiency against SNR.

FIGURE 3. Energy efficiency against SNR.

The parameters of the channel model are set as fol-
lows [29]: the path gain follows β(0)r,t ∼ CN (0, 1) and β(l)r,t ∼
CN

(
0, 10−1

)
. The ϕ obeys the uniform distribution within[

−
1
2 ,

1
2

]
. The number of LoS link is set to 1 and the number

of NLoS links is set to 2.
This paper compares the SE with various schemes: the

full-digital solution at the transmitter and receiver, the
precoder and combiner are designed by the orthogonal
multiplex access (OMA) precoding scheme [33] based on
PSs, the conventional antenna selection (AS) precoding
scheme and combining scheme-based PSs [34], the con-
ventional two-stage precoding scheme-based PSs [35],
and the proposed AHDS including the hybrid precoding
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FIGURE 4. Spectrum efficiency against the number of the user, K .

FIGURE 5. Spectrum efficiency against the iteration times.

scheme-based lens array antennas with ICE and the combin-
ing scheme-based PSs with AOM.

Fig. 2 shows the SE performance against the signal-
to-noise ratio (SNR) of the proposed hybrid precod-
ing/combining architecture.We can observe that the proposed
AHDS achieves SE closing to the OMA method with small
performance loss. The conventional AS precoding scheme
is not ideal because of the uncertainty of antenna selec-
tion. Furthermore, when the SNR increases, the performance
gap of AHDS and the fully digital scheme is becoming
larger. But the gap is less than 20 bits/Hz. This superior
performance further demonstrates the effectiveness of the
proposed AHDS.

Fig. 3 shows the EE against SNR. The EE is defined as
the ratio between the achievable sum-rate and the total power
consumption. We can observe that the EE performance of
the proposed AHDS-based the proposed hybrid architecture
is superior to other schemes, including the AS precoding
scheme and the fully digital precoding scheme. Meanwhile,
the power consumption of the proposed AHDS is inferior to
the OMA scheme. It is intuitive that the fully digital scheme
can achieve the worst EE, as shown in Fig. 3, since the
fully-connected mapping needs NRF = Nt = 64 RF chains

to sever all users. The lens antennas take full advantage of
the sparseness of the beam-space, so the hardware loss of the
proposed AHDS caused by RF chains will reduced.

Fig. 4 shows the performance of the different design
schemes in terms of SE against the number of the users for the
fixed SNR. In general, the proposed AHDS achieves SE clos-
ing to the fully digital design scheme. As the number of the
users is increasing, the different users may choose the same
beam for transmitting the signal. Therefore, the conventional
two-stage hybrid precoding will undergo the performance
loss, because some users maybe not be served. Moreover,
the OMA scheme preforms for conflicting users, so the SE
is not worst.

Fig. 5 shows the iteration times against the SE, where the
SNR is set to 10 dB. In this simulation, the iteration times are
set to 25. The number of elements in the precoding matrix
is set to 250. As shown in Fig. 5, the SE tends to be stable
after 10 times of iteration, which verifies the rationality of
iteration value.

V. CONCLUSION
In this paper, we proposeAHDSwith the idea of CE optimiza-
tion using lens sub-arrays antennas-based hybrid architecture.
Moreover, the simulation results demonstrate the proposed
AHDS is superior in SE and EE. Furthermore, this paper
shows the CE optimization method has an advantage in solv-
ing the complicated combinatorial problems, which is proved
to be simple, efficient and general. Specifically, the CE-loss
function can be used to measure the true distribution and
the predicted distribution of the trained model in ML while
avoiding the problem of reduced learning rate and sensitivity
to outliers. However, the combination of hybrid precoding
and CE makes strict hardware on the hybrid precoding archi-
tecture, which guarantees the corresponding distribution of
specific model. In future work, we plan to develop DL-based
precoding algorithms in mmWave massive MIMO systems
while extending the applicability of the hybrid precoding
architecture.

APPENDIX A
Considering the SVD of precoder and combiner, i.e.,

F = UF6FV∗F , (31)

W = UW6WV∗W . (32)

We submit (31) and (32) into (11), so the optimization
objective function in (10) is rewritten as

R = log2

∣∣∣∣INs + ρ

Ns
U∗W H̃UF (A6F )

2U∗F H̃
∗UW

∣∣∣∣ . (33)

Therefore, (11) is reformulated with constraints (34)-(36)

U∗WUW = INs , (34)

U∗FUF = INs , (35)

p0INs ≥ 6
2
F , (36)
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where p0 is defined as p0
1
= minj

{
pj
}
.

Let

6F = diag
{
ρ1ρ2 · · · ρNs

}
, (37)

X =
(
ρ

Ns
U∗F H̃

∗UWU∗W H̃UF

)−1
, (38)

R = log2
∣∣∣INs + X−1(6FA)2

∣∣∣
= log2

∣∣∣X−1∣∣∣+ log2
∣∣∣X+ (6FA)2

∣∣∣ . (39)

Denoting Xk = X+
∑

i 6=k pieie
∗
i , one has

∣∣∣X+ (6FA)2
∣∣∣ = ∣∣∣∣∣X+

Ns∑
i=1

ρ2i eie
∗
i

∣∣∣∣∣
=

(
1+ ρ2k e

∗
kX
−1
k ek

)
|Xk | , (40)

where the value of ρ2k ∈ [0, p0]. When ρ2k = p0 (k = 1,
2, . . . ,Ns) is established, the

∣∣X+(6FA)2
∣∣ is maximal.

Hence, (6FA)2 = p0INs is optimal. Thus, we have

R = log2

∣∣∣∣INs + ρp0Ns U∗W H̃UFU∗F H̃
∗UW

∣∣∣∣ . (41)

Let G =
ρp0
Ns

H̃UFU∗F H̃
∗, and the optimization func-

tion (33) is rewritten as

R = log2
∣∣INs + U∗WGUW

∣∣ . (42)

For B ∈ Cn×n Hermite, let λ1 (B) ≥ λ2 (B) ≥ · · · ≥
λn (B) be its ordered eigenvalues. Using lemma 3 in [36].

∣∣INr + UWU∗WG
∣∣ ≤ Nr∏

i=1

(
1+ λi

(
UWU∗W

)
λi (G)

)

=

Ns∏
i=1

(1+ λi (G)), (43)

when the columns of UW constitute an orthonormal basis for
the subspace spanned by the Ns dominant eigenvectors of G,
the upper bounder is achieved.

It remains to maximizing (43) with respect toUF . Note that

Ns∏
i=1

(1+ λi (G)) ≤
Nr∏
i=1

(1+ λi (G))

=
∣∣INr +G

∣∣
=

∣∣∣∣INr + ρp0Ns H̃UFU∗F H̃
∗

∣∣∣∣
=

∣∣∣∣INs + ρp0Ns UFU∗F H̃
∗H̃
∣∣∣∣

≤

Nr∏
i=1

(
1+

ρp0
Ns
λi
(
UFU∗F

)
λi
(
H̃∗H̃

))

=

Nr∏
i=1

(
1+

ρp0
Ns
λi
(
H̃∗H̃

))
, (44)

when the columns of UF span the subspace of the Ns dom-
inant right singular vectors of H̃, the upper bound in (44)
is achieved. This yields H̃UFU∗F H̃ = 8628∗, where 8 ∈
CNr×Ns comprises the Ns dominant left singular vectors
of H̃, and 6 ∈ CNs×Ns is diagonal with the corresponding
Ns largest singular values.
Hence, the optimum UW is of the form UW = 8R for any

R ∈ CNs×Ns unitary. The maximize value of R is given as

R =

∣∣∣∣INs + ρp0Ns 62
∣∣∣∣ . (45)
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