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ABSTRACT For remote sensing (RS) scene classification, most of the existing techniques annotate a scene
image with merely a single semantic label. However, with the recent advance of remote sensing technology,
more abundant information is contained in high-resolution scenes, making a scene image having multiple
semantic meanings (i.e., multilabels). Since multi-label RS scene image annotation is a domain full of
challenges due to the ambiguities between complicated scene contents and labels, it motivates us to present
a novel algorithm which is based on multi-bag integration. First, to describe the semantic content of RS
scene image, we propose to partition a scene image into image patches, defined by a regular grid, and
extract the heterogeneous features within each. Second, two kinds of image instance bag, namely segmented
instance bag (SIB) and layered instance bag (LIB), are designed to represent the scene image. Third, a
Mahalanobis distance-based K-Medoids approach is applied to cluster SIB and LIB, respectively, to convert
the multi-instance into single-instance, and then the obtained two single-instances are concatenated to
generate more powerful scene-aware representation. At last, a multi-class classification technique is used
to make predictions on the class labels. Experiments are performed on real remote sensing images and the
results show that the proposed method is valid and can achieve superior performance to a number of state-
of-the-art approaches.

INDEX TERMS Remote sensing, multi-label, scene classification, multi-bag.

I. INTRODUCTION
With the continuous advances in sensor technology, a great
number of high spatial resolution (HSR) remote sensing (RS)
images can now be available. These HSR images contain
abundant spatial and structural information, making the per-
spective of traditional remote sensing image understand-
ing change. In the traditional RS image understanding task,
a scene image is classified into a certain category and
assigned with only a unique semantic label. However, sin-
gle labels may be insufficient for annotating more complex
scenes with multiple semantic meanings or with ambiguous
semantic contents. Hence, multi-label classification frame-
work that can assign multiple labels to complex scenes
becomes crucial for effective and comprehensiveHSR remote
sensing image annotation [1]–[3].

The associate editor coordinating the review of this article and approving
it for publication was Byung-Gyu Kim.

Although multi-label classification has been studied in
the computer vision community in recent years, most works
focus on natural scene images captured by ground-level sen-
sors rather than remote sensing scene images captured by
airborne or space-borne ones. For instance, in [4], a binary
relevance (BR) strategy was proposed for multi-label natural
scene classification. In [5], a multi-label text classification
method via calibrated label ranking (CLR) was introduced.
In [6], a classifier chains method based on ensembles of
classifier chains (ECC) was addressed for classifying multi-
label datasets from a variety of domains. In [7], Bayesian
chain classifiers (BCC) were combined for multidimensional
classification. In [8], a method called random k-labelsets
(RAKEL) was proposed for multi-label classification. In [9],
a multi-label learning algorithm based on label specific fea-
tures (LIFT) was introduced. In [10], a distributed nearest
neighbor classificationmethod for large scalemulti-label data
on spark was proposed. In [11], a highly efficient parallel
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approach was presented for computing the multi-label
k-Nearest Neighbor classifier on GPUs.

In [12], [13], a multi-instance multi-label learning
(MIML) framework was proposed for multi-label classifi-
cation. In MIML, the training samples are represented as
bags [14], [15], each of which is described bymultiple feature
vectors named instances. A bag is labeled positively if at least
one of its instances is positive, while it is defined negatively
if all instances in it are negative. Compared to traditional
multi-label learning frameworks, MIML is more convenient
and reasonable for handling with multi-label problems, for it
cautiously explores the inner causality between the training
sample and its labels [12].

Although a number of MIML algorithms have been pro-
posed for a variety of image classification problems, few
promising methods have been developed for HSR remote
sensing scene classification. In addition, most algorithms
focus on the design of multi-label classifiers or the modeling
of relationships between instances and labels, but make less
research on how to construct full description of the semantics
for the original training data set, how to build effective bags,
as well as how to preserve the intrinsic information among
instances. Nevertheless, the impact of these factors on multi-
label classification performance is actually very large, espe-
cially for the multi-label RS scene classification tasks.

Thus, in this paper, we propose a novel MIML frame-
work for multi-label RS scene classification, which takes into
account all above factors. We demonstrate that the proposed
framework achieves superior classification performance for
RS scenes.

The main contributions of this paper are as follows.
• Given a RS scene image, proposing to partition it into
a set of image patches, defined by a regular grid, and
extracting the heterogeneous features within each patch.

• Designing two kinds of image instance bag, namely
segmented instance bag (referred to as SIB) and layered
instance bag (referred to as LIB), to represent the scene
image. Specifically, to build the SIB, the scene image
is first segmented into multiregions and then the SIB is
defined as a bag of instances corresponding to the seg-
mented regions in the image. To build the LIB, the scene
image is partitioned into subregions via the idea of spa-
tial pyramid, and then the LIB is composed of a set of
instances corresponding to the layered subregions.

• Introducing a Mahalanobis distance-based K-Medoids
approach to cluster the SIB and LIB, respectively, so as
to convert the multi-instance into single-instance, and
then the obtained two single-instances are concate-
nated in order to generate more powerful scene-aware
representation.

• Adopting an efficient classification method for the auto-
matic label prediction.

• Evalutating the superiority of the proposed framework
on real remote sensing image data set.

The rest of this paper is organized as follows: Section II
provides a necessary background in the area of multi-instance

multi-label learning. Section III introduces the proposed
multi-label remote sensing scene classification framework
in detail. Section IV presents the experimental results and
analysis. Finally, the conclusions are drawn in Section V.

II. BACKGROUND
In this section, we will give the necessary background infor-
mation on multi-instance multi-label learning.

Before introducing the multi-instance multi-label learning,
two learning frameworks, namelymulti-label learning (MLL)
and multi-instance learning (MIL), which are related to
MIML are reviewed briefly.

A. MULTI-LABEL LEARNING
Multi-label learning, also referred to as single-instance multi-
label learning, studies the problems in which an object is rep-
resented by a single instance while associated with a number
of labels [10], [11].

Suppose X is the instance space and Y is the set of class
labels. Given a dataset {(xi,Yi) |i = 1, 2, . . . ,N }, the goal of
MLL is to learn a function f : X → 2Y which maps an
instance xi ∈ X produced by an input image to a set of
labels Yi =

{
y1i , y

2
i , . . . , y

li
i

}
⊆ Y indicating which classes

the image belongs to, where li represents the number of
labels in Yi.

B. MULTI-INSTANCE LEARNING
Multi-instance learning, also referred to as multi-instance
single-label learning, studies the problems in which an object
is described by a bag of instances while associated with a
single label [14], [15].

Different from MLL, given a dataset {(Xi, yi)|
i = 1, 2, . . . ,N }, the goal of MIL is to learn a function
f : 2X → Y which maps a bag of instances Xi =
{x1i , x

2
i , . . . , x

mi
i } ⊆ X produced by an input image to a label

yi ∈ Y , where mi represents the number of instances in Xi.

C. MULTI-INSTANCE MULTI-LABEL LEARNING
MIML, closely related to MLL and MIL, is actually a more
general framework. It considers the ambiguities in both the
instance and the label spaces, and thus is more natural and
convenient to handle with tasks involving such objects [13].

Let {(Xi,Yi) |i = 1, 2, . . . ,N } be a given a dataset. Xi ={
x1i , x

2
i , . . . , x

mi
i

}
⊆ X is a bag of instances, and Yi ={

y1i , y
2
i , . . . , y

li
i

}
⊆ Y is a set of labels, where mi and li

represent the numbers of instances in Xi and labels in Yi,
respectively. The goal of MIML is to form a hypothesis f :
2X → 2Y which maps a bag of instances Xi produced by an
input image to a set of labels Yi.
Based on the MIML framework, two MIML algorithms,

namely MIMLBOOST and MIMLSVM were designed for
scene classification by using the degeneration strategy [13].
The former utilizes multi-instance learning as a bridge to
transform the MIML data set into a multi-instance data
set and then handles the problems by Boosting, while the
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FIGURE 1. Overall architecture of the proposed method.

latter uses multi-label learning as a bridge to convert the
MIML example into a number of multi-label learning tasks
and then solves them using support vector machine (SVM).
In [16], a Bayesian MIML algorithm based on Gaussian
process prior was presented. It can well exploit the connec-
tions between instances and labels as well as the correla-
tions among labels for MIML learning. In [17], two MIML
learning methods, MIMLSVM+ and E-MIMLSVM+ were
addressed to solve gene expression pattern annotation prob-
lem. In MIMLSVM+, a degeneration scheme is designed to
decompose the multi-label learning into a series of binary
learning tasks. And E-MIMLSVM+ is the extension of
MIMLSVM+. In [2], a hierarchical MIML algorithm using
Gaussian process was presented for image semantic anno-
tation. In [18], a MIML distance metric learning method
was proposed for genome-wide protein function prediction.
In [19], a fast MIML approach was studied for complicated
labels learning.

III. PROPOSED METHOD
In this section, a novel multi-label remote sensing scene
classification method based on multi-bag integration is pre-
sented in detail. Fig. 1 illustrates an overview of the pro-
posed framework, which consists of four main modules, such
as image partitioning and heterogeneous feature extraction,
multi-bag based scene representation, SIML with multi-bag
integration, and automatic scene labeling via SISL. Details of
each module are given as below.

A. IMAGE PARTITIONING AND HETEROGENEOUS
FEATURE EXTRACTION
In the previous MIML learning literatures, researchers usu-
ally focus on how to design multi-label classifiers or
put emphasis on how to model the relationships between
instances and labels, but make less research on the construct
of full description of the semantics for the original training

data, which is actually very important for multi-label RS
scene classification. Therefore, in this paper, the first module
of our proposed framework is aiming at extracting the mean-
ingful features from each sample in the training set.

Suppose Train = {train1, train2, . . . , trainN } is the train-
ing set containing N remote sensing scene image samples.
Label = {label1, label2, . . . , labelN } is the corresponding
label set. Let L = {1, 2, . . . , |L|} be the set of all possible
class labels associated with the images in the training set.
Each training sample traini ∈ Train is associated with a
vector labeli =

[
l1i , l

2
i , . . . , l

|L|
i

]
of labels, where lci = 1 if

traini contains the class label c ∈ L and lci = 0 otherwise.
Considering that, for RS scene images, both rough and

smooth areas could contain important image information, and
what’s more, the semantic labels are related to regions rather
than the whole images, we present to extract a number of
dense regular patches from images, directly select the patch
centers as a key feature points, use visual descriptors to
describe the key feature points, and the results are used for
the representations for the patches. The specific steps are as
below.

First, each sample image traini is partitioned into ni image
patches

{
P1i ,P

2
i , . . . ,P

ni
i

}
based on a regular grid, where Pki

is the k-th patch of traini.
Then, for each image patch Pki , as mentioned above,

directly select the patch center as a key feature point. For
this key point, extract its dense speeded up robust feature
(referred to as D-SURF) Dki , Mean-Std feature (referred to
as Mean-Std) M k

i , as well as multiscale completed local
binary pattern feature (referred to as MS-CLBP) Ck

i by using
the heterogeneous feature extraction approaches presented
in our previous work [20]. The effectiveness of these var-
ious features for remote sensing scene representation has
been verified in [20]. The reader can be referred to the lit-
erature for detailed information about these heterogeneous
features.
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Third, in order to bridge the semantic gap between the
above low-level features and high-level semantic meanings
for RS scenes, a simple yet effective technique named
locality-constrained linear coding (LLC) [21] is applied to
code the heterogeneous features. Thus, the enhanced feature
vectors αki , β

k
i , υ

k
i for Pki are gotten, where α

k
i is the encoded

result of Dki (referred to as D-SURF-LLC), β
k
i is the encoded

result of M k
i (referred to as Mean-Std-LLC), and υki is the

encoded result of Ck
i (referred to as MS-CLBP-LLC).

At last, αki , β
k
i , υ

k
i are concatenated to obtain the final fused

feature vector for Pki :

f ki =

αkiβki
υki

 (1)

Note that the main reason for using the simple stacking
for the three types of features fusion is that these features
are heterogeneous, so they might be uncorrelated. Therefore,
the straightforward stacking of them not only would be an
efficient way (and thus low computational complexity), but
the fused feature would also be expected to be irredundant.

Fig. 2 shows an example of how image partitioning is done
for a training image. And the red points are selected as the
key feature points, for which the heterogeneous features are
extracted.

FIGURE 2. Example of image partitioning and heterogeneous feature
extraction.

B. MULTI-BAG BASED SCENE REPRESENTATION
In the MIML framework, an image is usually represented
as a bag consisting of multiple instances, and each instance
corresponds to a segmented region in the image. The bag
label is determined by the number of positive instances. For
a specific label, an image is labeled positively if at least
one segmented region has the corresponding semantic mean-
ing and negatively otherwise. According such bag-instance
setting, an image can be assigned with multiple semantic
meanings, i.e., labels. It is noted that the construction of
instances and bags is very important in MIML. To generate
the instances, most MIML algorithms adopt various image
segmentation techniques to obtain the regions at first, and
after segmentation, features are extracted from each region
to create a feature vector as an instance [22]–[25].

Although these algorithms are effective for a variety of
situations, they have two defects:

(1) The small regions of the image are obtained using
a certain image segmentation algorithm. Can it be ensured
that each small region corresponds to an independent object
with a specific semantic meaning in the image? Will there
be a situation where several objects with different semantic
meanings are included in a segmented region?Orwill there be
a situation where an object with a certain semantic meaning is
divided into several segmented regions? Therefore, the accu-
racy of the segmentation algorithm affects the performance
of the MIML learning significantly.

(2) After dividing the entire image by image segmenta-
tion, the relationship between different objects may be cut
off. However, a large scene is often composed of multiple
objects. The individual description of an object will lose the
associated information between the objects.

Based on the above analysis, this paper proposes a multi-
bag based scene representation algorithm, in which two dif-
ferent kinds of bags, namely segmented instance bag and
layered instance bag, are constructed.

1) SEGMENTED INSTANCE BAG
Given a sample image traini, an efficient segmentation algo-
rithm [26] is first chosen to segment it into ri semantically
meaningful regions

{
S1i , S

2
i , . . . , S

ri
i

}
. For instance, as shown

in Fig. 3, the scene image is segmented into ri = 4 regions.

FIGURE 3. Example of the segmented instance bag.

Second, according to the locations of the key feature
points which are obtained in Section III.A, each segmented
region Ski may contain a number of key points. Suppose{
f m1
i , f m2

i , . . . , f mti

}
are mt fused feature vectors of these key

points, we combine these vectors to form a matrix Bki =[
f m1
i , f m2

i , . . . , f mti

]
.

Third, for each segmented region Ski , a max pooling oper-
ation is applied to the matrix Bki , and thus a vector Inski can
be obtained, which just represents the instance of Ski .
Fourth, integrate all the instances

{
Ins1i , Ins

2
i , . . . , Ins

ri
i

}
together, and then a bag for the sample image traini can be
obtained, which is called the segmented instance bag and
represented as:

BagSi =
[
Ins1i , Ins

2
i , . . . , Ins

ri
i

]
(2)
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At last, for the whole training set Train = {train1, train2,
. . . , trainN }, by following the above steps, we can get its
segmented instance bag set:

TrBagS = [BagS1,BagS2, . . . ,BagSN ] (3)

2) LAYERED INSTANCE BAG
Besides the segmented instance bag, to overcome defects
mentioned at the beginning of Section III.B, in this subsec-
tion, we continue to propose another bag named the layered
instance bag for RS scene representation inspired by the idea
of spatial pyramid.

For a sample image traini, partition it via the idea of
spatial pyramid. Suppose the number of the spatial pyramid
layers is P. For the j-th layer, the image is partitioned into
2j−1 × 2j−1 sub-regions. Thus, we can obtain ui sub-regions{
L1i ,L

2
i , . . . ,L

ui
i

}
from all layers. For example, as shown in

Fig. 4, P is equal to 3, and the scene image is partitioned into
ui = 21 sub-regions.

FIGURE 4. Example of the layered instance bag.

Second, according to the locations of the key feature
points which are obtained in Section III.A, each partitioned
region Lki may contain a number of key points. Suppose{
f n1i , f

n2
i , . . . , f

nt
i

}
are nt fused feature vectors of these key

points, combine these vectors to form a matrix Eki =[
f n1i , f

n2
i , . . . , f

nt
i

]
.

Third, for each partitioned region Lki , a max pooling oper-
ation is applied to the matrix Eki , and thus a vector Inlki can
be obtained, which represents the instance of Lki .
Fourth, integrate all the instances

{
Inl1i , Inl

2
i , . . . , Inl

ui
i

}
together, and then a bag for the sample image traini can
be obtained, which is called the layered instance bag and
represented as:

BagLi =
[
Inl1i , Inl

2
i , . . . , Inl

ui
i

]
(4)

At last, for the whole training set Train, by using the above
steps, we can get its layered instance bag set:

TrBagL = [BagL1,BagL2, . . . ,BagLN ] (5)

As can be seen, LIB is composed of a set of instances cor-
responding to the layered sub-regions. Compared with SIB,
the advantage of LIB lies that it is based on the idea of spatial

pyramid, so it can describe the scene images hierarchically.
On the one hand, if there exist large objects in the scene
image, a wide range of descriptions can be used for the entire
large object and at the same time, it is also possible to describe
some small objects with associations. On the other hand,
as the range of descriptions is reduced, the local information
of the scene image can be well represented, and it also makes
the bag possess spatial structural information.

In all, for each image traini, both SIB and LIB are con-
structed. The integration of them will be very good for the
description of a complicated scene.

C. SIML WITH MULTI-BAG INTEGRATION
After obtaining the segmented instance bag as well as the
layered instance bag, the next module aims to simplify the
MIML learning problem into a single-instance multi-label
(SIML) learning task by using a degeneration strategy. This
is a commonly used way taken by the MIML algorithms,
such as MIMLBOOST, MIMLSVM, MIMLSVM+ and
E-MIMLSVM+ [13], [17]. In the degeneration process,
how to measure the distances between instances is a vital
step, and these algorithms always use Euclidean distance
to measure the dissimilarity between instances. Then with
the help of K-Medois clustering, the MIML learning task
can be transformed into the SIML learning task. However,
for multi-label RS scene classification, Euclidean distance
can hardly capture the intrinsic dissimilarity in the feature
and label spaces [27]. In addition, it is also unsuitable to
maximize the distance between bags when minimizing the
distance within each bag. Therefore, in this paper, we use
Mahalanobis distance instead of Euclidean distance, for the
Mahalanobis distance has been proven to be effective for
preserving the intrinsic geometric information of both feature
space and label space, and different distributions can be easily
distinguished under Mahalanobis distance [19].

The specific procedures are given as below.
Given two instances xi and xj, supposeM is a positive semi-

definite matrix. Mahalanobis distance between xi and xj is
defined as:

dij =
√(

xi − xj
)T M (

xi − xj
)

(6)

Also, based onMahalanobis distance, the distance between
two bags Xi and Xj can be computed by:

Dij =
√(

X i − X j
)T
M
(
X i − X j

)
(7)

where X i,X j are the average values of all instances in Xi,Xj,
respectively.

Under Mahalanobis distance, we apply K-Medoids clus-
tering [18], [28] to the segmented instance bag set TrBagS
to seek for m cluster centers CS = [CS1,CS2, . . . ,CSm].
Then, for each sample traini, calculate the Mahalanobis
distance IS ji from its segmented bag BagSi to each clus-
ter center CSj (j = 1, 2, . . . ,m). Finally, integrate these
distances

{
IS1i , IS

2
i , . . . , IS

m
i

}
together to form a vector
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ISi =
[
IS1i , IS

2
i , . . . , IS

m
i

]
, which will be regarded as a single

instance for traini.
Similarly, for the layered instance bag set TrBagL, we also

perform Mahalanobis distance-based K-Medoids clustering
on it to find n cluster centers CL = [CL1,CL2, . . . ,CLn].
Then, for each sample traini, calculate the Mahalanobis
distance IL ji from its segmented bag BagLi to each cluster
center CLj (j = 1, 2, . . . , n). Finally, integrate these dis-
tances

{
IL1i , IL

2
i , . . . , IL

n
i

}
together to form a vector ILi =[

IL1i , IL
2
i , . . . , IL

n
i

]
, which will be regarded as another single

instance for traini.
Subsequently, for each sample traini, ISi and ILi which are

derived from different kinds of bags are integrated in series
to obtain a novel combined instance Ii = [ISi, ILi].
At last, for the whole training set Train, we can get all

combined instances I = [I1, I2, . . . , IN ]. Thus, based on the
multi-bag integration, theMIML learning task is successfully
transformed into the SIML learning task.

D. AUTOMATIC SCENE LABELING VIA SISL
The last module of the proposed framework is the automatic
scene labeling, which aims to assign appropriate labels to the
scene images via single-instance single-label (SISL) learn-
ing [29]–[31]. In the third module, the MIML learning has
been transformed into the SIML learning. Therefore, in this
module, we adopt the following steps to change SIML to
SISL for automatic scene labeling.

First, for each possible class label c ∈ {1, 2, . . . , |L|},
we train a binary SVM classifier. When training the clas-
sifier for the label c, all samples containing this label in
the training set Train are regarded as the positive sam-
ples, so that we can obtain the positive sample feature
set TrPos =

{
It1 , It2 , . . . , Itp

}
, where Iti is the combined

instance of trainti , and the sample trainti has the label c.
Furthermore, we can also get the negative sample feature
set TrNeg =

{
Iz1 , Iz2 , . . . , Izq

}
, where Izi is the combined

instance of trainzi , and the sample trainzi does not have the
label c. By using TrPos and TrNeg, a binary SVM classifier
can be trained.

Second, for complicated remote sensing scene images,
the proportion of positive and negative samples under each
label is usually unbalanced. Generally, the number of positive
samples is small, while the number of negative samples is
larger. Traditional classification methods may not perform
well when encountering such an unbalanced data set. In order
to solve this problem, we propose to set the weight of the
positive sample to w (w > 1) and the weight of the nega-
tive sample to 1 when training each binary SVM classifier.
In this way, the accuracy of the classifier can be effectively
improved.

After training all classifiers for various labels, multi-label
prediction can be performed on the test scene sample. Since
a binary classifier is trained for each label, the test sample
is predicted by all the classifiers at the same time. If the test
image is judged to be a positive sample under a label, it is

considered to have such a label and do not have this label oth-
erwise. Finally, after multiple classifier predictions, multiple
labels can be generated for the test image. For instance, for
a certain test sample, the results of automatic scene labeling
are shown in Eq. (8):

if


SVM1 (TeI ) = 1
SVM2 (TeI ) = 0
. . .

SVM|L| (TeI ) = 1

⇒LabelTe = [1, 0, . . . , 1] (8)

where TeI is the combined instance of the test sample test .
SVMc is the trained binary SVM classifier for the label c.
LabelTe is the final label vector for test , in which if the
element is equal to 1, it means the test image is assigned
the corresponding label; if the element is equal to 0, it means
the test image is not assigned the corresponding label.

IV. EXPERIMENTS
A. EXPERIMENTAL SETUP
1) DATASET DESCRIPTION
Since this paper makes research on the multi-label remote
sensing scene classification problem, the publicly avail-
able RS datasets with single labels, such as UC Merced
Land Use dataset [32], SIRI-WHU [33], and WHU-RS [34],
are no longer appropriate. Therefore, we manually extract
637 multi-label images from Google Earth to construct the
multi-label RS scene dataset. Each image contains at least one
class of scenes, including agriculture, forest, habitation, road,
river, and sparse building. The size of each image is 320×320
pixels. Over 91% images in the dataset contain more than
two categories of labels. The specific label distribution of our
multi-label dataset is shown in Table 1, and some examples
are illustrated in Fig. 5.

A well-known concern about machine learning is general
over fitting. Therefore, to avoid over-fitting, among these
637 images, 60% of the images under per category are ran-
domly selected for training, and the other 40% of images are
used for testing.

2) EVALUATION METRICS
According to [35]–[39], five commonly used evaluation
metrics, including Hamming Loss, Coverage, One Error,
Ranking Loss, and Average Precision, are adopted to quan-
titatively evaluate the multi-label scene classification perfor-
mance. The definition of these metrics is given as below. Let
S = {(xi,Yi) |1 ≤ i ≤ p } be the test set. h (·) denotes the
multi-label classifier. 1 represents the symmetric difference
between two label sets: one is the set of computed labels,
and the other is the true label set. q denotes the size of label
space. rankf (x, y) returns the rank of y in the label space via
descending order. f (x, y) returns the confidence of y being
proper label of x [35]–[39]. Y is the complementary set of Y .
〈ζ 〉 returns 1 if ζ holds, and 0 otherwise. ψ (·, ·) returns the
number of positive samples which are wrongly predicted.
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TABLE 1. Label distribution of the multi-label dataset (f: forest, a: agriculture, h: habitation, ro: road, ri: river, sb: sparse building).

FIGURE 5. Examples of the multi-label remote sensing scene dataset.

(1) Hamming Loss: indicates the fraction of wrong labels
to the total number of labels. Since it is a loss function,
the lower the value of it is, the better the classification
performance is.

HammingLoss (h) =
1
p

p∑
i=1

1
q
|h (xi)1Yi| (9)

(2) Coverage: indicates the average depth to cover all true
labels. Also, the smaller the value of it is, the better the
classification performance is.

Coverage (f ) =
1
p

p∑
i=1

max
y∈Yi

rankf (xi, y)− 1 (10)

(3) One Error: judges whether the top ranked label is not
in set of true labels. The lower the value of it is, the better the

classification performance is.

OneError (f ) =
1
p

p∑
i=1

〈[
argmax
y∈Y

f (xi, y)

]
/∈ Yi

〉
(11)

(4) Ranking Loss: evaluates the average fraction of
miss-ordered label pairs. Obviously, the lower the value of
it is, the better the classification performance is.

RankingLoss (f ) =
1
p

p∑
i=1

1

|Yi|
∣∣Y i∣∣ ∣∣{(y′, y′′)∣∣ f (xi, y′)

≤ f
(
xi, y′′

)
,
(
y′, y′′

)
∈ Yi × Y

}∣∣
(12)

(5) Average Precision: assesses the average fraction of
labels ranked above a specific label. Different from the above
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four metrics, for average precision, the higher the value of it
is, the better the classification performance is.

AveragePrecison (f )

=
1
p

p∑
i=1

1
|Yi|

∑
y∈Yi

×

∣∣{y′ ∣∣rankf (xi, y′) ≤ rankf (xi, y) , y′ ∈ Yi }∣∣
rankf (xi, y)

(13)

Besides the above five metrics, to more intuitively reflect
the multi-label classification results, in this work, we propose
three novel metrics, i.e., All Accuracy, All Error, and Correct
One as supplement. They are defined as follows.

(6) All Accuracy: denotes the proportion of correctly pre-
dicted samples to the total number of samples. The larger the
value of it is, the better the classification performance is.

AllAccuracy (h) =
1
p

p∑
i=1

〈h (xi) == Yi〉 (14)

(7) All Error: indicates the proportion of positive samples
which are wrongly predicted to the total number of samples.
The lower the value of it is, the better the classification
performance is.

AllError (h) =
1
p

p∑
i=1

ψ (h (xi) ,Yi) (15)

(8) Correct One: reflects the proportion of correctly pre-
dicted samples as well as the samples in which only one
positive or negative label is predicted wrongly to the total
number of samples. The higher the value of it is, the better
the classification performance is.

CorrectOne (h) =
1
p

( p∑
i=1

〈h (xi) == Yi〉

+

p∑
i=1

〈(h (xi)1Yi) == 1〉

)
(16)

3) COMPARED METHODS
First, we evaluate the effects of heterogeneous feature extrac-
tion on multi-label RS scene classification. Since in our
proposed framework, three different features, D-SURF-LLC,
Mean-Std-LLC, and MS-CLBP-LLC, are adopted. We com-
pare them as well as their fused result with a commonly used
feature extraction approach (named SBN) in [13].

Second, in our framework, two bags, namely segmented
instance bag and layered instance bag, are designed and
then integrated for complex scene representation. Therefore,
we separately utilize these three different kinds of bags
(i.e., the segmented instance bag, the layered instance bag,
and the multi-bag integration) to verify the effectiveness of
our proposed multi-bag integration scheme.

Third, to verify the overall performance of our whole
framework, we compare it with a number of widely used
MIML algorithms, including MIMLBOOST, MIMLSVM,

MIMLSVM+ and E-MIMLSVM+. The first two methods
compared in our experiments are the classical MIML meth-
ods, which are proposed by Zhou et al. [13] for scene classifi-
cation based on a simple degeneration scheme.MIMLSVM+
and E-MIMLSVM+ are two improved MIML approaches
and have been popularly adopted in existing literatures.

For our method, it involves some parameters, for instance,
the region number ri by the region segmentation, the sub-
region number ui by the sub-region partition, and the class
number m and n by the K-Medoids clustering for the seg-
mented instance bag set and layered instance bag set. There-
into, for each sample image, the parameter ri is adaptively
chosen by using the strategy adopted in [26]. For the parame-
ter ui, its value depends on the number of the spatial pyramid
layers P (P ≥ 2). When the value of P become larger, the sub-
sequent computational cost may continuously increase, and
more importantly, an object with a certain semantic meaning
may be partitioned into several sub-regions. Therefore, P is
chosen as 3 by our tests on training sets. And thus, ui is equal
to 21. In addition, in our experiment, we empirically set the
class number m and n of the K-Medoids clustering to be 20%
of the number of training bags. Actually, it has been verified
that the setting of this class number does not significantly
affect the performance of MIML [12], [13], [20]. At last,
to make a fair comparison, these algorithms are set to the best
parameters which are reported in the papers.

All the experiments are performed on our multi-label
dataset with ten trials of randomly partition of this dataset.
The average performances of different methods under various
metrics are calculated.

B. RESULTS AND DISCUSSION
1) EFFECTS OF HETEROGENEOUS FEATURE EXTRACTION
In this subsection, we evaluate the effects of different feature
extraction methods on multi-label classification. In order to
make the comparisons as fair and simple as possible, after
obtaining the features, we only use the segmented instance
bag for scene representation, and then adopt the same auto-
matic labeling prediction approach introduced in our work for
classification.

The comparison results are shown in Table 2. As can be
seen, our proposed fused feature method achieves the best
performance. Also, the results of each heterogeneous fea-
ture, D-SURF-LLC, Mean-Std-LLC, and MS-CLBP-LLC,
are better than those of SBN. This reflects that feature extrac-
tion is a vital step for multi-label classification.

Specifically, the Hamming Loss result for our method indi-
cates that our method achieves the lowest value of the fraction
of wrong labels to the total number of labels. Besides, our
method also achieves the lowest Coverage, One Error, Rank-
ing Loss, All Error values, indicating the better performance
against the other four algorithms. Furthermore, Table 2 also
shows the Average Precision, All Accuracy, Correct One
results of different approaches, the higher the values of which
are, the better the performance is. Thus, it can be easily seen
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TABLE 2. Performance comparison based on various features (‘↓’ indicates that smaller is better, ‘↑’ indicates that larger is better).

TABLE 3. Performance comparison of different kinds of bags (‘ ↓’ indicates that smaller is better, ‘↑’ indicates that larger is better).

that ourmethod gets the highest values for these threemetrics,
supporting our our proposed fused feature method as a com-
petitive feature extraction method for multi-label RS scene
classification. By designing suitable features and combining
them together, the feature discriminative capability can be
effectively enhanced.

2) EFFECTS OF MULTI-BAG INTEGRATION
In this subsection, we examine the ability of the proposed
multi-bag integration technique. It is also compared with the
separate bags, i.e., the segmented instance bag and the layered
instance bag.

Table 3 summarizes the experimental results by using dif-
ferent kinds of bags. According to the experimental results,
the following observations can be obtained: the proposed lay-
ered instance bag achieves a more satisfied performance than
the segmented instance bag in terms of all the metrics. Specif-
ically, the Hamming Loss, Coverage, One Error, Ranking
Loss, as well as All Error values of the layered bag are much

lower than those of the segmented bag, while the Average
Precision, All Accuracy, and Correct One values of LIB are
obviously higher than those of SIB. Furthermore, the multi-
bag integration approach further enhances the classification
power and obtains the best performance.

This behavior emphasizes the importance of integrating
these two different kinds of bags. Based on the segmented
instance bag, various objects with different semantic mean-
ings may be divided into different segmented regions; while
based on the layered instance bag, both of the large and
small objects could be well described for LIB’s spatial pyra-
mid idea. As a result, by combining these two different
kinds of bags together, the remote sensing scene can be well
represented.

3) COMPARISON WITH OTHER ALGORITHMS
In this subsection, a comparison between the proposed frame-
work of this paper and other algorithms-MIMLBOOST,
MIMLSVM, MIMLSVM+ and E-MIMLSVM+ is made.
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TABLE 4. Performance comparison of different MIML algorithms (‘ ↓’ indicates that smaller is better, ‘ ↑ ’ indicates that larger is better).

The results of a quantitative comparison using eight evalua-
tionmetrics are shown in Table 4. As expected, it can be found
that our proposed method outperforms existing state-of-the-
arts for multi-label remote sensing scene classification.

For instance, the proposed method obtains around 30%,
41%, 17%, and 17% improvements compared toMIMLSVM,
MIMLBoost, MIMLSVM+, and E-MIMLSVM+ about the
metric of Average Precision, respectively. And the value
of Hamming Loss for the proposed method is about 20%,
25%, 12%, and 10% less than those of MIMLSVM,
MIMLBoost, MIMLSVM+, and E-MIMLSVM+, respec-
tively. The reasonsmainly lie in three-fold: image partitioning
and heterogeneous feature extraction, multi-bag based scene
representation, and SIML with multi-bag integration.

4) COMPUTATIONAL TIME EVALUATION
All experiments are run on a PC with Intel Core 2.3 GHz pro-
cessor and 4.00 GB RAM. The implementation environment
was under MATLAB 2010a.

For each training or testing image with the size of 320 ×
320, the average computational time for heterogeneous fea-
tures extraction and multi-bag construction is about 35 s.
Then, the training time of the MIML classifier is about
612 s. Finally, the testing time for all test samples is about
2 s. As can be seen, the efficiency of the heterogeneous fea-
tures extraction and multi-bag construction is not very high,
since our method adopts multiple types of features as well as
multiple kinds of bags, which brings a heavy burden on the
methods. However, just because of this, our method achieves
good performance for multi-label RS scene classification.

In fact, to reduce the overall execution time of the pro-
posed method, an efficient C/C++ implement or even a
parallel architecture could be used. Besides, as indicated
in [10], [11], [14], the multi-label RS scene classifica-
tion problem can be handled using parallel computing in
a distributed environment, for it can considerably improve
the performance by offering all shared computational and

memory resources. Therefore, we will make deep research
on this topic in the near future.

V. CONCLUSION
This paper focuses on the multi-label classification problem
for remote sensing scene images. We have proposed a novel
framework based on multi-bag integration for the problem.

This framework was divided into four main parts: image
partitioning and heterogeneous feature extraction, multi-bag
based scene representation, SIMLwith multi-bag integration,
and automatic scene labeling via SISL. Through extracting
heterogeneous features for scene images, the semantic con-
tents can be well exploited. We also propose two kinds of
bags: SIB and LIB. By integrating them together, the scenes
can be effectively represented, which is significantly ben-
eficial to multi-label classification. Also, the Mahalanobis
distance-based K-Medoids approach is applied for SIML
learning, and automatic scene labeling is done via SISL.

Experimental study was conducted on a real multi-label
remote sensing scene dataset. Results showed that the pro-
posed method significantly outperforms the existing ones.
This was especially reflected in the average comparison,
shown in Tables 2, 3, and 4, over Hamming Loss, Coverage,
One Error, Ranking Loss, All Error, Average Precision, All
Accuracy, and Correct One, where the proposed method was
best in rank.

Obtained results encourage us to pursue future work in the
area of applying the proposedmethod to a large set of datasets
from different sources & problems. In addition, we plan
to utilize the convolutional neural network to construct the
image bags. At last, given the high computational complexity
of MIML, we will also do research on the application of
parallel and distributed strategies to our proposed method.
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