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ABSTRACT The capability to perform facial analysis from video sequences has significant potential to
positively impact in many areas of life. One such area relates to the medical domain to specifically aid
in the diagnosis and rehabilitation of patients with facial palsy. With this application in mind, this paper
presents an end-to-end framework, named 3DPalsyNet, for the tasks of mouth motion recognition and facial
palsy grading. 3DPalsyNet utilizes a 3D CNN architecture with a ResNet backbone for the prediction of
these dynamic tasks. Leveraging transfer learning from a 3D CNNs pre-trained on the Kinetics data set for
general action recognition, the model is modified to apply joint supervised learning using center and softmax
loss concepts. 3DPalsyNet is evaluated on a test set consisting of individuals with varying ranges of facial
palsy and mouth motions and the results have shown an attractive level of classification accuracy in these
tasks of 82% and 86% respectively. The frame duration and the loss function affect was studied in terms
of the predictive qualities of the proposed 3DPalsyNet, where it was found shorter frame duration’s of 8
performed best for this specific task. Centre loss and softmax have shown improvements in spatio-temporal
feature learning than softmax loss alone, this is in agreement with earlier work involving the spatial domain.

INDEX TERMS Computer vision, face detection, facial action recognition, machine learning.

I. INTRODUCTION
The task of action recognition is a computer vision problem
that has been subject to a significant amount of research
for varying actions types. Specific sub-tasks within this
area have been studied such as human motion, sports and
facial exposition recognition where varying degrees of suc-
cess have been shown [1], [2]. Within the medical domain
there is significant interest in technology which can success-
fully detect human actions, primarily for medical pathologies
which affect an individual’s neuromuscular system result-
ing in atypical movements. Through tracking the levels of
atypical motion over time clinicians can establish the current
severity of both progressive and regressive conditions. One
such condition is facial palsy, in which sudden onset in the
loss of facial muscle motion occurs due to damage to the
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cranial nerve. This nerve damage produces an extreme asym-
metrical appearance which can be especially significant in the
eyes, brow and mouth regions of the face both when at rest
and during the forming of facial expressions. Previous med-
ical research [3]–[5] has highlighted the correlation between
patient outcomes and the diagnosis and rehabilitation pre-
scribed by trained medical professionals, specialised therapy
plans tailored via regular feedback resulted in the best patient
outcomes [6]. The potential to use such a system on a smart
device has the potential to provide the clinician with more
regular objective feedback on the condition and tailor therapy
without always needing to physically see the patient. This is
especially beneficial in scenarios where the distance between
clinician and patient is large or the availability of either party
to meet is limited. As the face plays a major role during inter-
personal communication and facial expression the onset of
facial palsy can have a significant psychological impact upon
the patients. The capability to track rehabilitation privately
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FIGURE 1. When is a smile a smile. The left image show the smile of a facial palsy patient, the centre a smile and on the right a
asymmetrical motion which is similar to a smile of a facial palsy patient but is not a classified as a smile in this situation.

within a comfortable setting like their own home may also
provide a benefit to some patients.

To develop an automated system that can assist medical
professionals in the tracking and planning of a facial palsy
rehabilitation plan, there are a number of challenges. Two
key functions of a potential system are the capability to
recognise facial motions and grade the facial palsy level. In
a clinical setting the medical professional would guide the
patient through a range of specific facial motions for facial
palsy grading so that the medical professional supervision
would ensure correct motions were carried out. The challenge
of recognising specific facial motions, for example a smile,
have been heavily researched especially in facial expression
recognition problems; however in the case of facial palsy
recognising the asymmetrical nature of the facial motion adds
a further challenge [1]. Fig.1 provides an example of this
specific challenge. In the case of automated grading of facial
palsy only a small amount of research has been conducted
mainly limited to traditional methods using Local Binary
Pattern features and a Support Vector Machine for classifier
on a small sample size [7], [8]. Recently, [9] have applied
a Convolutional Neural Network (CNN) based method to a
larger data set of 2000 images. While the method has shown
promising results the technique still uses images rather than
video data. It is known that the temporal information available
from video data can provide further discriminative infor-
mation to ascertain a facial expression [10]. This temporal
information also has the potential to boost facial palsy grading
thus providing the capability to examine the range of motion
across an entire action rather than a single frame of the current
methods.

The recognition tasks from video sequences are still chal-
lenging and as such they have yet to show the dramatic
increase in performance accuracy that has occurred in detec-
tion tasks from static images. While approaches applying
deep learning based methods have been proposed, such as
Recurrent Neural Networks (RNN) [11], Two-stream [12]
and C3D [13], from the research to date each method has
shown some limitations. RNN based networks have been
shown to be incapable of capturing the powerful convolu-
tional features for recognition tasks [1]. Two-stream methods

use both image data and optical flow features to represent
the spatial and temporal data, respectively, and have shown
to produce some of the most promising results through they
require pre-processed optical flow features that adds addi-
tional computational overhead. While the C3D method uses
3D convolutional layers to learn spatio-temporal features and
has demonstrated good performance accuracy on the sport
action data set, it does not generalise well to other more
complex recognition tasks [2]. This is mainly due to the
relatively small video data sets available for optimising the
large number of parameters in 3D CNNs. In addition the C3D
network is shallow in comparison to the state-of-the-art archi-
tectures used in image based recognition tasks where deeper
networks have generally performed better. The introduction
of a new Kinetics data set [14] that contains 300,000 videos
has provided a large scale data set has the potential to train
deep 3D CNNs that have the capability to generalise well to
other action recognition tasks [2].

Recently, the research team developed a new multi-task
framework for joint face detection and facial landmarks locat-
ing, namely Integrated Deep Model (IDM), which has been
demonstrated with robust performance on face and landmark
detection. Based on this initial work, a further novel frame-
work 3DPalsyNet, for facial palsy diagnosis is proposed,
where the IDM is cascaded with two further specific 3D
ResNet components that are designed to detect mouth motion
and carry out palsy level grading, respectively. Fig. 2 shows
the schematic view of the new 3DPalsyNet framework. In
the framework, besides engaging the IDM model to address
the challenge of facial palsy analysis, a fully 3D end-to-
end CNN architecture with ResNet backbone was specifi-
cally designed, while the framework leverages the Integrated
Deep Model [15] to initially perform face detection on video
sequence frames. The fully 3D end-to-end CNN network is
then trained via transfer learning for mouthmotion estimation
and facial palsy grading, respectively.

In summary, the novel contribution to knowledge, outlined
in this paper, includes,

1) Extending the IDM to video-based facial modelling
and proposing 3DPalsyNet a new framework for facial palsy
analysis;
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FIGURE 2. Overview of the proposed new 3DPalsyNet framework for facial palsy and mouth motion analysis.

2) 3DPalsyNet a new frameworkwhich includes a 3DCNN
architecture using ResNet backbone to address the needs of
facial mouth motion and facial palsy grading, respectively.

3) To train the 3D CNNs, a new Center Loss based trans-
fer learning scheme was developed for the spatio-temporal
domain. Transfer learning is also employedwhere initially the
model is trained for general action recognition on the Kinetics
dataset, and then fine-tuned for the two tasks using domain
specific data.

The ablation experiments were designed to investigate the
effect of loss function and frame duration on classification
accuracy.

The remainder of this paper comprises of a review of rele-
vant work within section II, followed by an in-depth overview
of the methods proposed within section III. Section IV is
a discussion of the experiments undertaken and the results
obtained. Section V presents a conclusion.

II. RELATED WORK
The task of action recognition is well established within
the field of computer vision, with applications ranging from
identifying sports based upon the movement of the partici-
pants [16] to human facial emotion recognition [17]. Unlike
the methods applied in object detection which deals with only
the spatial domain, the learning of discriminative temporal
domain features from motion data across n frames of a video
sequence adds further challenges to action recognition task.
A selection of the methods proposed for this challenge are
discussed within this section.

A. CLASSICAL METHODS
Prior to the rise of deep learning and convolutional neural
networks many techniques were proposed to extract spatio-
temporal features from videos frames for action recogni-
tion problems. Optical flow is a well established method
that depicts the pattern of apparent motion of image objects
between two consecutive frames, caused by the motion of

objects. More recently, Liu et al. [18] proposed a new optical
flow based feature, called Main Directional Mean Optical-
Flow (MDMO), which is a variant of Histogram of Optical
Flow (HOOF). This feature was validated on 36 separate
regions of interest on the subject’s face and has shown to
produce a very compact feature vector with each region being
described by only two values (the direction and magnitude of
the optical flow vector). Optical flow features are represented
by a 2D vector where each vector is a displacement vector
showing the movement of points from first frame to second.
As discussed later in this section optical flow is still useful
within some state-of-the-art methods [12]. Local Binary Pat-
terns on Three Orthogonal Planes (LBP-TOP) were proposed
for facial texture motion in Zhao et al. [19] and found pop-
ularity for action recognition problems due to their ability to
describe motion textures efficiently. Further improvement to
this method to reduce the feature size were proposed in [20].

B. 2D CONVOLUTIONAL NEURAL NETWORKS
The two-stream 2D CNN-based approach for action recog-
nition has proven to be a popular technique with this field.
Originally proposed by Simonyan and Zisserman [12] the
two-streams refer to one streamwhich takes RGB images data
for computing appearance features and the second stream
extracts stacked optical flow features to provide discrimina-
tive motion information. The combination of both appearance
and motion information resulted in improved results in the
benchmark action recognition performance at the time of
publication on the UCF-101 [21] and HMDB-51 [22] data
sets. The two-stream method has been further studied to
improve action recognition performance [23]–[25]. However,
the generation of stacked optical flow features usually result
in an increased computational complexity to this architecture.

C. 3D CONVOLUTIONAL NEURAL NETWORKS
Recently, 3D CNN-based approaches have begun to show
promise in the task of action recognition as they have been
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able to leverage the introduction of large-scale training data
sets. In contrast to the two-stream methods described previ-
ously these architectures require only a single input to the
network in the form of a video stacked as a set of indi-
vidual frames. The extension to 3D convolutional kernels
intuitively allows for the shift from the spatial domain to
feature domain in the spatio-temporal domain, where the 3rd

dimension captures the motion across the temporal plane.
One of the first fully 3D CNN based models was proposed
in Tran et al. which they termed C3D [13]. The model used
fully 3D convolutional kernels applying the Sports-1M data
set [16] for training of themodels parameters. Throughmodel
evaluations they found that 3 × 3 × 3 convolutional filters
produced the best performances. Expansion of the temporal
length showed further improvements in recognition accuracy
to the 3CD model were reported in [26]. In the same study
it was reported that applying optical flows as inputs to the
3D CNN resulted in a higher level of performance than can
be obtained from RGB inputs with the best performance
being achieved when using a combination of RGB and optical
flows. 3D CNN architectures using the Kinetics data set for
training from scratch displayed results that were comparable
with the results of ImageNet trained 2D CNN architectures
in [14]. Recently, complex 3D CNN architectures have been
explored where initial studies were limited to shallow ResNet
architectures [27]. However, more recently this has been
expanded to much deeper ResNets with up to 152 layers
and other architectures including ResNeXt-101 [2] which has
shown to achieve the best performance on the Kinetics test
set. The study has also found that a Kinetics data set pre-
trained on simple 3D architectures outperforms complex 2D
CNN architectures both on the UCF-101 and HMDB-51 data
sets, respectively.

III. METHOD
This section discusses the 3DPalsyNet framework proposed
for the tasks of mouth motion recognition and facial palsy
grading. 3DPalsyNet is comprised of two distinct stages: the
initial stage relates to video pre-processing employing face
detection and landmark localisation to locate the faces from
each frame of the sequence. The Integrated Deep Model is
used in this stage. The detected face images are then cropped
to the face and the number of frames per sequences are
normalised to fixed length. The second stage comprises of
two 3D CNNs one for each of the face analysis tasks. The
proposed 3DPalsyNet framework is shown in Fig.2.

A. FACE DETECTION AND VIDEO SEQUENCE
PRE-PROCESSING
The Integrated Deep Model (IDM) [15] allows for accurate
face detection which has shown to provide both high recall
and precision. The requirement for accurate face detection
is essential to ensure that faces from each frame of the
video sequences are extracted for the second stage of the
framework. While face tracking could replace face detection
in this framework, due to the specific nature of the face

analysis tasks proposed the faces within each sequence are
constrained in that there is only one single face and minimal
head movement, therefore the added kinematic information
provided by tracking methods like [28], [29], would not
provide any advantage in this specific framework. Potential
added computational overhead of using tracking methods is
also a consideration, while object detection and specifically
the IDM method have shown excellent face detection perfor-
mance providing a high level of detection confidence in this
critical first stage of the framework.

The IDM method leverages a cascaded approach integrat-
ing a Faster R-CNN network trained for face detection and
a Facial Alignment Network (FAN) to strengthen face detec-
tion precision. This integration is achieved through a heatmap
transformation and integrates a loss function. Given the heat
map output of the FAN as H = h1, h2, . . . , hn where each
hi is a n x m matrix equal in dimensions to the input image
for the ith facial landmark, each value in hi corresponds to
the probability of the facial landmark being located at that
specific pixel location within a given face image. We propose
a novel method as given by equation (1) to transform the heat
mapH to a probability score that can be applied to the task of
face detection by integrating it with the loss function of the
Faster R-CNN face detector.

pfan =
1
N

∑
i=n

max(Hi)γi (1)

Given by the maximum probability max(Hi) for the ith

facial landmark a specific scaling factor γi is applied for the
corresponding landmark. The sum of the scaled probability
is then normalised and can be considered as the probability
of a face detection derived from the FAN network defined as
pfan. The scaling value γ is primarily introduced to deal with
wide ranging face poses, in which certain landmarks retain
visibility across all poses, where others become occluded.
Two values are applied to γ where facial landmarks that are
visible across all facial poses are given a value of γ = 1,
while other landmarks are given γ = 0.75. The values for γ
were selected as they have been shown to perform optimally
in Storey et al. [15].

pface =
(pfan + (pfasterδ))

2
(2)

The next step is to define the joint probability of a face
region termed as pface defined in equation (2) where pfaster
is the probability based upon the output of the trained Faster
Face features. The penalisation factor δ is specifically intro-
duced for situations where extremely small detections are
classed in the very high 90% probability range as being faces
when they are not. The value of δ is determined by equation
(3) where det is the width of the face detection box and img
is the width of the image. It is worth noting that a probability
penalisation is only applied when a face width is less that 2%
of the total image width. Finally the pface is used within the
loss function for the face detection classification as described
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FIGURE 3. ResNet block architecture.

in equation (4).

δ =

{
0.7 if det * (100 / img) ≤ 2
1 otherwise

(3)

lossface=
1
Ncls

∑
i=n

−(1−p∗i )· log(1−pface,i)−p
∗
i · log(pface,i)

(4)

B. 3D CNN ARCHITECTURE
3D convolutional architectures are a natural extension of the
2D counterparts that have been widely applied successfully to
many image classification tasks.While 2D convolution filters
have proven efficacy at learning discriminative features in
the spatial domain, they lack the capability to extract spatio-
temporal features in action classification tasks, where the
input is typically video sequences. The 3rd dimension of
the 3D CNN provides the mechanism to learn these spatio-
temporal features. The proposed 3D CNN method adopts the
ResNet [30] architecture as the backbone of the network, this
architecture has been highly successful for image classifica-
tion tasks. The capacity to develop deep ResNet architectures
is related to the use of shortcut connections, allowing the data
signal to bypass one layer and moves to the next layer in the
sequence; this permits the gradients flow from later layers
to the early layers. A basic ResNet block consists of two
convolutional layers (Fig. 3 highlights the block design), and
each convolutional layer is followed by a batch normalisation
and a ReLU. A shortcut pass connects the top of the block to
the layer just before the last ReLU in the block.

Unlike previous 3D CNN works in [2] we adopt the joint
supervised learning of both softmax loss and center loss.
It has been shown in other facial analysis tasks that using
softmax loss only results in large intra-class variations of
the learned features [31]. Therefore, the adoption and use of
center loss will improve the inherent inter-class dispensation
and intra-class compactness.

losssoftmax =
m∑
i=1

log
eW

T
yi
xi+byi∑n

j=1 e
W T
yj
xi+bj

(5)

Softmax loss is calculated as given in equation (5), where
xi ∈ Rd is the ith feature of the yith class, the feature
dimension is defined by d . Wj ∈ Rd denotes the jth column
of the weights W ∈ Rdn in the last fully connected layer and
b ∈ Rn is the bias term. Mini-batch size and the total number
of class are defined as m and n, respectively.

losscenter =
1
2

m∑
i=1

‖ xi − cyi ‖
2
2 (6)

Center loss is defined in equation (6), where cyi ∈
d is

the yith class centre of the learnt feature. The feature centers
are updated after each mini-batch of training data. The total
loss of the network is calculated by equation (7), where λ is
used for balancing the two loss functions. Center loss is a
significantly larger value and therefore requires scaling down.
Based upon the experimentation in [31] a value of λ = 0.001
is used within the proposed 3D CNN.

losstotal = losssoftmax + λlosscenter (7)

C. 3D CNN MODEL TRAINING
Both of the proposed 3D CNN architectures are trained with
the following protocols for their specific task. Initially a
ResNet18 model is pre-trained on the Kinetics data set for
the action recognition task [2]. Transfer learning is then used
to train the models for their respective facial analysis task,
where the initial layers weight parameters are frozen, only the
last convolutional layers parameters and the fully connected
layers trained. The layers of the network are trained using a
hybrid data set by combining samples from the CK+ emotion
and a facial palsy data set with relevant labels for the associ-
ated task (Section IV details the breakdown of the dataset and
the associated class labelling). To address the class imbalance
within the dataset a weighted sampling is employed so that
eachmini-batch has a similar distribution of class labels. Prior
to the training process the video sequences in the training
set are first passed through the face detection stage of the
3DPalsyNet and the faces are extracted. The extracted face
sequences are then re-sized spatially to 112 pixels x 112
pixels and temporally to n total frames. In this work we
consider different values for n. When a sequence is less than
n frames duplicate frames are interpolated into the sequence
while those greater than n have frames removed at equally
spaced intervals. Data augmentation techniques are applied to
increase the total samples. To help avoid over-fitting random

VOLUME 7, 2019 121659



G. Storey et al.: 3DPalsyNet: Facial Palsy Grading and Motion Recognition Framework

TABLE 1. House-Brackmann facial paralysis grading scale.

FIGURE 4. Example of mouth motion sequences from test subject 5. (Top) - Other motion correct classification, (Middle) - Smile motion
correct classification, (Bottom) - Other motion incorrect classification as a smile motion.

flipping, rotation and colour jitter with 50% probability are
employed. Two stochastic gradient descent optimisers are
then applied to train the network in order to model and fine
tune the parameters and to tune the center loss parameters.
The training parameters include a learning rate of 0.1, with
a weight decay of 0.001 and 0.9 for momentum. Each model
was trained for 50 epochs which was sufficient to minimise
model loss.

IV. EXPERIMENTAL EVALUATION
This section presents a thorough experimental evaluation of
the proposed 3DPalsyNet framework for both facial palsy
grading and mouth motion recognition. All experiments are
conducted using PyTorch 0.4 on Windows 10 with a Nvidia
GTX 1080 GPU.

For the evaluation of the proposed method data the
Extended Cohn-Kanade (CK+) [32] and a Facial Palsy
dataset were used. The CK+ database consists of 593
sequences generated from 113 subjects, while the facial palsy
data set consists of 696 different sequences with 17 subjects
collected from online sources. Since the CK+ sequences
range from a neutral face and ends at the full expression, they
are aligned with the facial palsy dataset by adding reversed
frames, so that the last frame is also a neutral expression.
While all samples from the CK+ data set are posed, the
facial palsy set contains both posed motions and also general
motions such as talking. In the case of mouth motion recog-
nition each sequence is labelled as follows: no motion, smile,
mouth open and other mouth motions. For the grading of
facial palsy the labelling follows the House-Brackmann scale

FIGURE 5. Overall mouth motion confusion matrix.

as shown in table.1, which is commonly applied by medical
professionals.

To test the models accuracy for the two classification tasks
a leave-one-subject-out (LOSO) protocol is adopted. This is
to allow for the testing on unseen faces thus reducing any
potential overfitting to previously seen faces. In practice we
do not build the models to test all subjects in the data set.
10 subjects have been used for the evaluation process; they
are split equally into 5 having facial palsy (Subjects 1 to 5)
and 5 who do not have facial palsy (Subjects 6 to 10). The
10 selected subjects cover the total range of labels for both
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FIGURE 6. Subject 5 mouth motion confusion matrix.

FIGURE 7. F1 score by subject test set.

tasks. Therefore, in total there are 397 samples used for the
evaluation.

A. MOUTH MOTION RECOGNITION
Figure 5 provides the overall results for the mouth motion
recognition, where it was found that the proposed model has
a good predictive capability in this task producing an F1 Score
of 82%. In the Figure 7 the results for each of the LOSO test
sets are given, we find that all subjects perform reasonably
well with F1 Scores close to 80% with the exception of
subject 5. On inspection (Figure 6 shows the confusionmatrix
for this sample) this subject and the samples which prove dif-
ficult to classify correctly are a magnification of the incorrect
classifications for all test subjects. This surrounds the overlap
in motions that occur between those labelled as others and the
rest. There are motions which are similar to a smile, due to the
frame normalisation resulting in the possible loss of frames
which can differentiate these motions. Figure 4 provides a
graphical example of this issue, where the wrongly classified
example sequence has a ground truth label of other but is
classified as a smile. The sequence itself depicts the subject

FIGURE 8. Overall palsy level grading results.

FIGURE 9. Comparative average F1 score by subject test set.

in conversation not smiling however the visually the frames
closely resemble the smile sequence, rather than the correctly
labelled but visually very different other mouth motion exam-
ple shown in Figure 4. As this method also uses the global
features for learning features it is possible that other motions
such as those from the movement of the eyes and brows show
overlap across classes therefore reducing accuracy.

B. FACIAL PALSY GRADING
The overall results for the facial palsy grading evaluation are
shown in Figure 8. It was found that the proposed model
provides a high level of accuracy with a F1 Score of 88%.
In Figure 7 the results for each of the LOSO test sets are
depicted, showing that all subjects from the CK+ data sets,
have a palsy grading label of 1 and are all correctly classi-
fied. Subject 1 shows a very poor accuracy in comparison
to all other subjects. Subject 1 has 29 samples, out of the
20 incorrect grading 16 are within 1± grades. Subject 1 is
a specifically difficult set of sequences as most of the facial
expression are not posed but of the individual during normal
conversation.
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FIGURE 10. Loss function results. top row - 3DPalsyNet center loss scheme, bottom row - softmax loss.

C. COMPARATIVE EVALUATION
The overall results for both the facial palsy grading andmouth
motion task for the proposed 3DPlasyNet in comparison to
the 3D CNN method [2] using a ResNet18 backbone are
shown in Figure 9. It was found that the proposed 3DPlasyNet
provides a significant increase in accuracy with a average F1
Score of 85% in comparison to that of 68% for 3D CNN. In
8 of the 10 subjects the 3DPlasyNet performs better, while
subject 6 performance is equal and in subject 7 slight worse.
In the case of subject 7 the number of samples is smaller than
the average samples across all subjects of 39 and there is only
a single classification error leading to this difference. Specif-
ically all subjects with facial palsy (Subjects 1 to 5) show a
higher classification performance with the proposed method.

D. ABLATION STUDY - FRAME DURATION
Frame duration is a potentially significant parameter when
processing video sequences. Reducing the sequences to a
short frame duration can remove important features while
long frame duration’s may add redundant information result-
ing in more computational overhead of the method. In action
recognition work of [2] a frame duration of 16 were found to
work well, as the task of face motion are typically shorter
in duration this study proposes to evaluate shorter frame
duration. In this experiment the performance effect on the
frame duration is evaluated. Table.2 illustrates the F1 scores

TABLE 2. Frame duration results.

achieved for each duration over the test sets for frame duration
of 8, 12 and 16. From the results it can be seen that a frame
duration of 8 seems to give the best performances. It is to be
noted that there are samples which are correctly classified in
the larger frame duration but incorrectly graded in the 8 frame
duration. This is due to the lack of uniformity across motion
duration in these tasks. Not only does this parameter have an
affect on the accuracy presented by the model, it also has a
large effect on the computational overhead of the framework.
This can be seen in Table.2 where the use of an additional
4 frames adds about 1 hour to the time the model took to train
for 50 epochs of the data set.

E. ABLATION STUDY - LOSS FUNCTION
A joint supervised method for model training, applying both
center loss and softmax loss, has demonstrated the capacity
to learn a more discriminative feature representation in the
spatial domain, then when applying softmax loss alone. In
this paper the experiment has been revisited for the spatio-
temporal domain, specifically modified for the proposed
3DPalsyNet framework. The study used Subjects 1 to 5 and
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the results obtained are shown in Fig.10. For the 366 samples
in the facial palsy test, it was found that F1 scores of 86%
and 82% for center and softmax loss and softmax loss alone,
respectively. This has resulted in a small improvement of
the performances as might be expected in image recognition
problems. On the other hand, the results obtained for mouth
motion recognition have shown to more difficult to improve
as demonstrated by a significant decrease of F1 score going
from 82% to 49% when also applying center loss.

V. CONCLUSION
This paper has presented a fully end-to-end framework named
3DPalsyNet for mouth motion detection and facial palsy
grading using a modified 3D CNN architecture with an
ResNet backbone for capturing the dynamic actions of the
video data. The architecture has been evaluated using 2
datasets achieving an F1 score of 82% and 88% F1 score
for the mouth motion and facial palsy grading, respectively.
These results are significantly higher than 3D CNN which
achieves an average F1 score of 68% on the test sets in com-
parison with the 3DPalsyNets 85%. The proposed method
can be a useful aid for facial palsy grading to assist in the
rehabilitation process. It has also been demonstrated that
there is potential in using pre-trained Kinetics based 3D CNN
for tasks outside of general action detection.

While the results are promising there are many areas in
which this research can be taken forward. Firstly there is the
potential to investigate more complex backbone and deeper
networks, which in this work is limited due to the compu-
tational overheads of 3D CNN’s. As shown in the frame
duration experiment this parameter plays a part in the model
accuracy but, there is not universal best parameters when
sequences length can vary within the data set; there is poten-
tial to look at other pre-processing rather than simple frame
duplication or reduction. Specifically for the task presented in
this work a larger set of labelling for mouthmotion is required
to better separate similar facial motions.

In training the 3D CNN models of the proposed 3DPal-
syNet, transfer learning is adopted to learn domain specific
features for the mouth motion detection and facial palsy
grading tasks at the later layers of the network. While transfer
learning has proven to successful in deep leaning scenarios
where the target domain data set is limited in sample size,
other methods such as heterogeneous domain adaptation [33]
and transfer hashing [34] have shown excellent results in text
and image classification tasks, the extension of such methods
to spatio-temporal features could provide more discrimina-
tive learnt features in future work.

In section III a rationale was presented as to why object
detection rather than object tracking was applied to this spe-
cific framework for the initial face detection stage. There
are however limitations to the two-stage approach of the
proposed framework, specifically when applying motion
detection in application domains which require real-time
analysis. In future work the potential to introduce a single
stage parallel framework for tracking the face and also per-

forming face motion analysis would be highly different appli-
cations. The 3D CNN architecture has proven very proficient
at learning spatio-temporal features in this paper, the use of
these features in a multiple sparse representation framework
[28], [29] for face tracking could provide real-time face anal-
ysis and tracking.
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