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ABSTRACT Rotor tracking control, which can be implemented by active magnetic bearing (AMB) system
with high precision, can realize many functions, such as attitude control and special surface processing.
However, large-motion rotor tracking control is difficult to implemented, due to AMB’s highly nonlinear
characteristics. In this paper, a dual-loop neural network sliding mode control (DL-NNSMC) system of
AMB is proposed for rotor radial tracking control. The complete model of the AMB system is established
and the dual-loop control system is designed. A circuit model that considers the rotor motion is established
and the model-based inner loop of current control is established, conjointly for dealing with the influence
of rotor motion on the current response and the unknown characteristics of the power amplifier. In the outer
loop, a nonlinear electromagnetic force model is applied and a wavelet neural network sliding mode control
algorithm is designed for accurate position control. Two cases of rotor trajectory tracking are simulated, and
the simulation results demonstrate the validity of the proposed control system for large-motion rotor tracking
control and its far superior control performance in terms of precision compared with common approaches
based on sliding mode control (SMC).

INDEX TERMS Active magnetic bearing, rotor tracking control, control system design, AMB system
modeling, sliding mode control.

I. INTRODUCTION
Active magnetic bearing (AMB), which is a typical mecha-
tronic system, realizes the stable suspension of a rotor via
the active control of the electromagnet current. Benefiting
from its features of no contact, no friction and active control,
AMB has many advantages over conventional bearings, such
as higher rotational speed, longer life, application in vacuum
environments and vibration control [1]. Therefore, AMB has
wide applications in turbo-machinery, precision processing
tools, flywheel systems and medical devices [2].

AMB is an open-loop unstable nonlinear system due to its
working principle and electromagnetic characteristics. There-
fore, the control system is the core of AMB. Various control
strategies have been applied in the control of AMB systems.
Presently, linear methods such as PID control/adaptive PID
control [3], robust control including robust nonlinear control
[4], [5], optimal control like LQR control [6] are widely used.
With the development of modern control theory, nonlinear

The associate editor coordinating the review of this article and approving
it for publication was Xiaodong Sun.

methods such as sliding mode control [7], model-based con-
trol such as internal model control [8], and fuzzy logic control
[9], along with intelligent algorithms such as neural networks
[10] and genetic algorithms [11], have expanding applica-
tions in AMB control. Furthermore, hybrids of different con-
trol methods [12], [13] combine the respective advantages
and improve the performance of the controllers.

Due to the active control characteristic of AMB, it is possi-
ble to control the rotor trajectory, in contrast to conventional
mechanical bearing support. Rotor tracking control has bright
prospects in applications of rotor attitude control, active
vibration control and special surface processing. Neverthe-
less, little research on this subject has been conducted. Chen
and Kuo [14] developed a neural network intelligent sliding-
mode controller for magnetic levitation systems for realizing
the positioning tracking of a steel ball and experiments on
the step motion demonstrated its effect. Minihan et al. [15]
compared the control performances of controllers that are
based on fuzzy logic, sliding mode, and direct lineariza-
tion on tracking the sinusoidal motion of a thrust active
magnetic bearing (TAMB). Although the simulation results
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demonstrated that fuzzy logic control and sliding mode con-
trol did not perform better, the model was too simple to
reflect the actual scenario and the control method was basic.
Smirnov et al. [16] and Pesch et al. [17] studied magnetic
bearing spindle tool tracking using PID and µ-synthesis con-
trol. They realized the tracking control of 30 um axial motion.
The performance was satisfactory, however, the motion range
was limited. Lin et al. [18] and [20] and Chen and Lin [19]
investigated much on the tracking control of TAMB. They
applied advanced complex control algorithms that are based
on sliding mode control, neural network method and their
hybrids, and they designed several controllers, thereby realiz-
ing the tracking control of a 1-DOFAMB system. Comparing
the experimental results of rotor step motion and sinusoidal
motion, their proposed controllers had higher precision than
PID control and the common sliding mode control, and the
controller based on nonsingular terminal slidingmode control
with a recurrent Hermite neural network performed the best.
Grochmal and Lynch [21] proposed a dual-layer closed-loop
control system with a nonlinear reduced-order disturbance
observer, and the experimental results demonstrated accurate
tracking control of a 5-DOF rotor system.

Regarding the application objective, most existing research
considers TAMB, which is only a single-DOF system.
Whereas the radial dynamics of rotor, which may achieve
novel functions, includes nonlinear disturbance and coupling,
thereby rendering the tracking control more challenging.
Regarding control system design, AMBs operate in strong
nonlinear fields to realize large rotor motion, and the large
motion of the rotor strongly influences the current response.
Few studies focus on these aspects, thus the control effect
is realized with limited range of rotor motion and limited
running precision.

In this study, a dual-loop control system (DL-NNSMC)
for rotor tracking control of a 4-DOF AMB system is pro-
posed. In Section II, the model of an AMB-rotor system is
established. A circuit model in which the rotor motion is
considered for solving the nonlinear response of AMB circuit
caused by rotor’s large motion, and a nonlinear model of the
electromagnetic actuator instead of linearized forms is used
to solve for the control current. In Section III, the integral
control system is designed. The control system consists of
two closed loops: an inner loop for current control and an
outer loop for position control. A wavelet neural network
is used to identify and compensate the unknowns of the
system. In Section IV, rotor motions of various trajectories
are calculated via simulation (considering the rotor static
imbalance, periodic disturbances and the hydrodynamic seal)
and the control performance of the proposed control system
is discussed. Finally, conclusions are drawn in Section V.

II. AMB-ROTOR SYSTEM MODELING
The rotor of the AMB-rotor system has 5 DOFs. The support
system consists of 2 radial magnetic bearings and 1 axial
thrust magnetic bearing. In addition, there are 2 auxiliary
mechanical bearings utilized only in case of AMB failure to

protect the system. Since the axial translation DOF of the
rotor is controlled by the thrust magnetic bearing and it is
nearly decoupled from the other DOFs, the axial motion is
not considered in this study. The rotor tracking control of a
4-DOF AMB-rotor system is studied.

An AMB typically consists of 4 parts: a controller, elec-
tromagnetic actuators, power amplifiers and sensors. In this
section, the AMB-rotor system is decomposed into a sub-
system of rotor and electromagnetic actuators, a subsystem
of power amplifiers and circuit, and a subsystem of sensors
and signal processing devices, and corresponding models are
established.

FIGURE 1. Schematic diagram of a 4-DOF AMB-rigid rotor system.

A. ROTOR DYNAMICS
The schematic of a 4-DOF AMB-rotor system is shown
in Figure 1. Ignoring rotor deformation, and considering
gravity and gyroscopic effect, the dynamic model of 4-DOF
AMB-rigid rotor system can be described as

Mẍc + Gẋc = BFb + Fr + Fd
x = T · xc (1)

where, xc = [xc, xθ , yc, yθ ]T is the coordinate of the rotor
center, x = [xa, xb, ya, yb]T is the rotor displacement vector at
the AMB position,M is the mass matrix, G is the gyroscopic
matrix, Fb is the active control forces of AMBs, Fr is the
known forces such as gravity and unbalancing forces, Fd is
the unknown forces such as periodic disturbances and the
hydrodynamic seal force, and B and T are transformation
matrices.

(M =


m 0 0 0
0 Ix 0 0
0 0 m 0
0 0 0 Iy

 , G =


0 0 0 0
0 0 0 −Izω
0 0 0 0
0 −Izω 0 0

 ,

B =


1 1 0 0
0 0 −la lb
0 0 1 1
−la lb 0 0

 , T =


1 0 0 la
1 0 0 −lb
0 −la 1 0
0 lb 1 0

 ,
Fr =

[
ermω2 cos(ωt), 0, ermω2 sin(ωt)−mg, 0

]T
,

the parameters included are given in Table1.)
The magnetic force on each pole can be described as [1]

Fm =
1
4
µ0N 2Aa(

i
g
)2 = k(

i
g
)2 (2)
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TABLE 1. Parameters of AMB-rotor system.

where, µ0 is the permeability of vacuum, N is the number of
turns of the coil, Aa is the cross-sectional area of the pole,
i is the current, g is the air gap, and k is the electromagnetic
coefficient.

The AMBs are differential-driven, hence, the magnetic
force in each direction is:

Fb = k cosα[(
i0 − ic
g0 − x

)2 − (
i0 + ic
g0 + x

)2] (3)

where, α is the angle of the pole, i0 is the bias current, ic is
the control current, x is the rotor displacement at the AMB
position, and g0 is the rated air gap. The control current ic is
the input of the AMB-rotor system and the core variable of
control systems.

For conventional control of AMB, x << g0, (3) can be
linearized as

Fb = k cosα(
4i20
g30
x −

4i0
g20
ic) = ksx − kiic (4)

where, ks is the displacement coefficient and ki is the current
coefficient.

B. MODEL OF POWER AMPLIFIERS AND CIRCUIT
The power amplifier is typically regarded as a transcon-
ductance device with limited bandwidth, meaning that its
output current is linear with the voltage. Thus, it is usually
ignored or described as a simplified linear model.

However, the radial rotor motion changes the magnetic
flux, and the induced voltage influences the current response
characteristics. For conventional control of AMB, rotor radial
motion can be ignored since its displacement and velocity

are very slight. However, for rotor tracking control, the large-
amplitude and high-frequency radial motion of rotor can have
a strong impact on the current response, which results in a
sharp decrease in the total control performance. Therefore,
a model of power amplifiers and circuit that considers the
rotor motion is derived and established in this section.

The power amplifier circuit is expressed as

U = Ri+ UL = Ri+ d
Li
dt

(5)

where, U is the voltage of the power amplifier, UL is the
induced voltage of inductance, R is the coil resistance, and
L is the inductance.

According to

L =
NΦ
i

(6)

Φ = BAa =
µ0NiAa

2g
=

2k · i
N · g

(7)

where,Φ is the magnetic flux and B is the magnetic induction
intensity,

By substituting (6), (7) into (5), we obtain

U = Ri+ Nd
Φ

dt
= Ri+

d
dt
(
2ki
g
)

= Ri+
2k
g
di
dt
−

2ki
g2

dg
dt

(8)

Thus the model of the power amplifier circuit in each
direction is

Kc(i0 − ic) = Ri1 +
2k

g0 − x
di1
dt
+

2ki1
(g0 − x)2

dx
dt

Kc(i0 + ic) = Ri2 +
2k

g0 + x
di2
dt
−

2ki2
(g0 + x)2

dx
dt

(9)

where, Kc is the input gain of the power amplifier.
It’s obvious that the actual currents i1, i2 are far from the

assumed form i0 ± ic when x changes substantially.

C. MODEL OF SENSORS AND SIGNAL PROCESSING
DEVICES
Displacement sensors are used in AMBs for data measure-
ment and feedback. Assuming that the sensors have fixed gain
and bandwidth, the sensors can be regarded as simple first-
order low-pass filter.

To avoid the aliasing of signals, anti–aliasing filters that act
on the input signal are typically utilized. Anti–aliasing filters
can also be regarded as a first-order low-pass filter.

In addition, digital controllers introduce time delay
between signal sampling and instruction output, which is
typically approximately one to two sample intervals.

Therefore, the sensors, anti–aliasing filters, and the sample
delay of controller are merged to form a delayed module with
the model

d
dt
xin +

1
τ
xin =

KSC
τ

x (10)

where, x is the displacement detected by the sensors, xin is
the input signal of controller, τ is a time constant, which is
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the sum of time delay of sensors and anti–aliasing filters, and
sample delay of the controller, and KSC is the overall gain
between sensors and the controller.

III. CONTROL SYSTEM DESIGN
A. STRUCTURE OF PROPOSED CONTROL SYSTEM
For the AMB control system, closed-loop control is necessary
due to its open-loop unstable characteristics. As the rotor
position is the objective and the current is the approach,
simultaneous control of the two variables is adopted. The
integrated control system (dual-loop neural network sliding
mode control, DL-NNSMC) consists of the position closed-
loop control (the outer loop) and the current closed-loop
control (the inner loop). In the current control, since the rotor
motion has a substantial impact on the current response and
the characteristics of power amplifiers are usually unknown,
a model-based sliding mode controller is configured. In the
position control, wavelet neural network sliding mode con-
trol (WNNSMC) is applied. As discussed in Introduction,
the nonlinear characteristics, high robustness demand, and
complicated dynamics of the system are the key problems.
Sliding mode control (SMC) has the advantages of nonlinear
control algorithm and good global robustness, and wavelet
neural networks perform excellently at compensation control.
So WNNSMC, the combination of the two methods with
respective advantages, is well fit for this work.

FIGURE 2. Block diagram of AMB control system.

The block diagram of the control system is presented
in Figure 2. Its operational process is described as follows.
The rotor displacement at the AMB position (x) obtained by
the sensors and the expected rotor trajectory (xcd ) are inputted
into the control system. First, the displacement of the rotor
axle center (xc) is calculated via transformation matrix T .
Second, the expected velocity, the expected acceleration and
the actual velocity of rotor axle center are calculated. Next,
in the position loop sliding mode controller, the required
magnetic force (Fc) is calculated and then the control current
(ice) is solved by (31). Then the actual control current (ic)
is outputted through the current loop controller calculated
via ice and feedback pole currents (i1, i2). Last, the power
amplifier translates ic to the pole voltage to generate the
control force (Fb) acting on the rotor.

B. NEURAL NETWORK SLIDING MODE CONTROL
For the controlled system

mẍ = u(t)+ f (x, ẋ, t)+ d(x, ẋ, t) (11)

where, u, f and d are the control force, the known forces and
unknown forces, respectively.

The sliding surface is defined by the position error (e =
xd − x, where xd is the desired displacement) and velocity
error as

s(t) = ce(t)+ ė(t) (12)

Neural network is an effective approach for improving
control accuracy of mechanical system and had been applied
in many forms in AMB control [22]. Wavelet neural network,
which has excellent nonlinear approximation ability [23],
is joint in the sliding mode control for online identification
and compensation control for reducing the position error.

The wavelet neural network consists of 3 parts: the input
layer, the hidden layer and the output layer. The structure
of the m-n-1 form wavelet neural network is illustrated
in Figure 3.

FIGURE 3. Structure of the m-n-1 wavelet neural network.

The operational process of neurons in the hidden layer is

hj = g(xh) =
m∑
i=1

xhi − bij
aij

j = 1, 2, . . . , n (13)

where, aij is the scale coefficient and bij is the shift coeffi-
cient.

The activation function of neurons can be different wavelet
functions. The Mexican hat function and the Morlet function
are commonly used due to their simple expressions as well
as good localization and symmetry feature in the time and
frequency domain [24]. Here theMexican hat function is used
as activation function ϕ :

φ(h) = (1− h2) exp(−
h2

2
) (14)

The output of the neural network is

uNN = y = ωT
· φ(h) (15)

where,ω is the weights of neurons, andω= [ω1,ω2, . . . ωn]T.
The objective function of the network is constructed based

on the sliding surface tomaintain the stability of the combined
control system and to reduce the error:

ENN = s · ṡ (16)

where, ṡ is the derivative of s :

ṡ = cė(t)+ ë(t) = cė(t)+ ẍ − ẍd

= cė(t)− ẍd +
1
m
(u(t)+ f (x, ẋ, t)+ d(x, ẋ, t)) (17)
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The weights of the neurons are updated via the gradient
descent method:

ω̇ = −γ0
∂ENN
∂ω
= −γ0

∂(s · ṡ)
∂u(t)

∂u(t)
∂ω

= −γ0 · s ·
∂ ṡ
∂u(t)

∂uNN (t)
∂ω

=
γ0

m
· s ·

∂uNN (t)
∂ω

= γ · s · φ(h) (18)

where, γ0 is a learning coefficient, and γ is the learning rate
of the neural network, which satisfies γ > 0.
The unknown disturbance is approximated by the neural

network [25]:

d(x, ẋ, t) = ω∗T · φ(h)+ ε (19)

where, ω∗ is the ideal weights of the neural network, and ε is
the ideal approximation error, which satisfies | ε |≤ εN .
Thus, the approximation error of the neural network is

d(x, ẋ, t)− uNN (t) = ω∗T · φ(h)+ ε − ωT
· φ(h)

= −ω̃T
· φ(h)+ ε (20)

The output of the neural network sliding mode controller
can be expressed as

u(t) = uSM (t)− uNN (t)+ uSG(t)

uSM (t) = m[ẍd (t)− cė(t)]− f (x, ẋ, t)

uNN (t) = ωT
· φ(h)

uSG(t) = −ka · s− δ · sat(s), ka > 0, δ > 0 (21)

where, uSM (t) is the sliding mode control term, uNN (t) is the
neural network control term, uSG(t) is the switching control
term, and ka, δ are the gains.
In the switching control term uSG(t), the exponential

approach law and quasi-sliding mode method are applied to
reduce chattering [26].

sat(s) =


1, s > 1

s/1, |s| ≤ 1
−1, s > 1

(22)

where, 1 is the width of the boundary layer.
Proof of the stability of the system: Based on the Lyapunov

stability theorem, the Lyapunov function is defined as

V =
1
2
s2 +

1
2mγ

ω̃Tω̃ (23)

Thus,

V̇ = s · ṡ+
1
mγ

ω̃Tω̇ (24)

Substituting (17), (20), and (21) into (24) yields

V̇ = s · ṡ+
1
mγ

ω̃Tω̇

= s ·
1
m
(d(t)− uNN (t)− ka · s− δ · sat(s))+

1
mγ

ω̃Tω̇

=
1
m
(−ka · s2 − δ · s · sat(s)+ ε · s) (25)

Set δ > εN , and outside of the boundary layer, we can
obtain

V̇ =
1
m
(−ka · s2 − (δ − ε) |s|) < −

ka
m
s2 < 0 (26)

According to (26), the system is Lyapunov stable within
a small neighborhood of the sliding surface. Therefore the
stability of the system is guaranteed [26].

C. DESIGN OF THE POSITION SLIDING MODE
CONTROLLER
The sliding surface is set according to the position error and
the velocity error of the rotor center

s(xc) = cec + ėc (27)

The neural network compensation control is set only in
the 2 translation DOFs to simplify the control system. The
structure of the neural network is 4-9-2 and its inputs are the
nondimensionalized displacement and velocity of the rotor
axle center. The output of the neural network is

uNNW = [ωT
1 · φ(h1), 0, ωT

2 · φ(h2), 0 ]T (28)

A strategy of subsection control is applied to avoid the huge
jitter that is caused by the online adjustment of neural network
weights in the initial control if the error is large. The neural
network is set offline when the error is large, hence, the output
of neural network control can be expressed as{

uNN (t) = 0, s > 51
uNN (t) = uNNW (t), s ≤ 51

(29)

The output of the position sliding mode controller
(required magnetic force) is expressed as

Fc = u(t) = B−1 · [M · (ẍcd − cė− δ1 · sat(s)− ka · s)

+G · ẋc − Fr − uNN ] (30)

The magnetic force is described as a nonlinear model
instead of a linearization. The control current is directly
solved by (3) and the amplitude of the output is limited. Thus
the control current in each direction can be obtained as

ic=



−
g20
4ki0

, x = 0

(g20 + x
2)i0

2g0x
,

x · (Fc +
k cosα(g20 − x

2)2i20
g0x(g0 − x)2(g0 + x)2

) < 0

i0
2g0x

[(g20+x
2)− (g20 − x

2)

√
1+

g0x

i20
·
Fc
k
], others

(31)

The final output of the position loop controller is ice =
[icexa, icexb, iceya, iceyb]T.
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D. DESIGN OF THE CURRRENT SLIDING MODE
CONTROLLER
The controller is based on the circuit model. Define ica =
(i2 − i1)/2. From (9) we obtain

ic ≈ ica +
2k
Rg0

i̇ca −
2ki0
Rg20

ẋ (32)

The sliding surface is set as

si = ei = ica − ice
ṡi = ėi = i̇ca − i̇ce = −δ2 · sat(si) (33)

Hence, the output of the current loop controller is

ic = ica +
2k
Rg0

(i̇ce − δ2 · sat(si))−
2ki0
Rg20

ẋ (34)

IV. SIMULATION ANALYSIS
A. PARAMETER SETTINGS
The main parameters of the AMB-rotor system are listed
in Table 1.

The unknown disturbance in the simulation is set as

Fd = Td · d(t)+ Fs (35)

where, d(t) is the periodic disturbance loaded at the rotor
headend, Td is its transformation matrix, and Fs is the
hydrodynamic seal force calculated using the Muszynska
model [27].

Numerical simulation is conducted with the sampling fre-
quency of 10 kHz. Measurement noises of feedback signals
and signal filtering processing are also considered.

B. CONTROL OF THE STEP RESPONSE OF ROTOR
Ssimulation of the step response in the x direction is con-
ducted. The motion of the rotor center is plotted in Figure 4.
It shows that the response of the proposed control system
is very fast. The response time is less than 0.03 s without
overshoot, and the vibration in the y direction remains tiny.

FIGURE 4. Motion of the rotor center: (a) in the x direction and (b) in the
y direction.

FIGURE 5. Rotor position at each AMB.The position error of each
translation DOF: (a) in the x direction and (b) in the y direction.

Figure 5 shows the position errors in the two translation
DOFs of the rotor center. The steady-state error is less than
1 µm. The results also demonstrate that the error increases
with the radial displacement becoming larger.

The position error of the rotor center is defined as

ec =
√
e2xc + e2yc (36)

The position errors of 3 control systems are plotted in
Figure 6. It is indicated that the errors of the proposed dual-
loop control systems (DL-NNSMC and DL-SMC) are much
smaller than the error of common SMCwith a linear magnetic
force model (4). Benefiting from the compensation control by
the neural network, which is based on its nonlinear approxi-
mation performance, theDL-NNSMCcontrol system realizes
the highest tracking precision.

FIGURE 6. Error comparison of 3 controllers.

C. CONTROL OF THE CIRCULAR TRAJECTORY OF ROTOR
In this case, the rotor is controlled to track a 10 Hz circular
trajectory. The trajectory is an involute circle from the origin
and the final radius is 0.3 mm.

The trajectory diagram of the rotor center is shown in
Figure 7, which indicates that the proposed control system
can realize complex dynamic orbit control over a large range
in the available air gap.
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FIGURE 7. Trajectory diagram of the rotor center.

FIGURE 8. Parameters of Bearing 1 in the y direction: (a) the control
current and (b) the pole voltage.

The required control current (icya) and pole voltages (Uya1
& Uya2) of bearing 1 in the y direction are shown in Figure 8.
Due to the influence of rotor radial motion on the current
response, the pole voltages have much more large shake than
the control current.

The position errors of each translation DOF, which are
plotted in Figure 9, indicate good control effect in this case.
The maximum position error is approximately 9 µm (3%).
Comparing with the data of the step response shown in Fig-
ure 5, the error of dynamic trajectory control is substantially
larger than the error of static-state control.

Figure10 shows the position errors of 3 control systems.
Similar to the results in the case of the step response,
the proposed dual-loop control systems (DL-NNSMC and
DL-SMC) have much smaller error than common SMC, and
the DL-NNSMC control system exhibits the best perfor-
mance in terms of precision.

D. CONTROL EFFECT COMPARISON
The performance measures of the control systems in the
above 2 cases are presented in Table 2, Table 3 and Figure 11.
Table 2 represents the data of the second step response in

FIGURE 9. Position error of each translation DOF: (a) in the x direction,
and (b) in the y direction.

FIGURE 10. Error comparison of 3 controllers.

TABLE 2. Control effect comparison on the step response.

case 1, and Table 3 represents the data of the stable circular
trajectory with the final radius in case 2. The simulation
results demonstrate that the proposed control system has a
good effect on rotor tracking control and it substantially
outperforms the common sliding mode control, especially
under large dynamic motion of the rotor.

Three points aremade for the results. First, the term of rotor
motion in (9) improves the accuracy of the model, so that
the error decreases significantly, and the special inner loop
controller for the current increases the response and precision
effectively. Second, the use of a nonlinear equation for the
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TABLE 3. Control effect comparison on the circular trajectory.

FIGURE 11. Steady-state error comparison of 3 controllers in 2 cases.

magnetic force reduces the effect of the rotor position on
error. According to Figure 6., the average error of SMC
increases from 2.0µm to 4.7µmwhen rotor position changes
from 0.1 mm to 0.2 mm, while the average errors of the
proposed control systems less than double. Third, the wavelet
neural network compensates the disturbance and uncertain-
ties of the system efficiently, hence, the DL-NNSMC control
system exhibits the best performance.

V. CONCLUSION
Aiming at large-motion rotor tracking control of AMB sys-
tems, a dual-loop nonlinear control system is presented in this
paper. The current control loop and the circuit model, which
consider the rotor motion, decrease the influence of large
motion of the rotor on the current response. The AMB model
in the control system, which is not linearized, deals with
the highly nonlinear characteristics that are introduced by
large rotor motion. In the position loop, sliding mode control
is applied and a wavelet neural network is added for com-
pensation control, thereby leading to high control precision.

Finally, simulation of rotor radial trajectory tracking control
on a 4-DOF AMB system is implemented in two cases, and
from the results, the following conclusions are drawn: the
processing of the control system is effective and thereby
enables the proposed control system to realize accurate rotor
trajectory tracking of large dynamicmotion, and the proposed
control system exhibits a substantial advantage in terms of
precision for rotor tracking control under both static operation
and dynamic motion.
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