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ABSTRACT Due to the risk of radiation from computed tomography (CT) scanning on the human body,
the number of CT scans that can be performed on an individual each year is limited. However, CT images play
a very important role in medical diagnosis. Therefore, this study proposes a method of generating synthetic
CT to solve this problem. Considering that magnetic resonance imaging (MRI) is not harmful to the human
body, there is no limit on the number of scans that can be performed with this procedure. In this paper,
an image segmentation method is used to segment an MRI, and each segment is given a corresponding
Hounsfield Unit (HU) value to finally generate a synthetic CT image. Since the image segmentation
performance directly affects the generated synthetic CT image, this paper introduces a multitask learning
strategy into a maximum entropy clustering (MEC) algorithm. A multitask maximum entropy clustering
(MT-MEC) algorithm is proposed, which is used to effectively segment the MRI of the brain. The algorithm
can use knowledge from multiple tasks to improve the learning ability of all tasks, and the MEC algorithm
can effectively avoid interference from noise. The experimental results show that the proposed MT-MEC
algorithm has good image segmentation performance, which results in reliable performance of the final
synthetic CT image.

INDEX TERMS Synthetic CT, brain MRI, multitask learning, MEC algorithm.

I. INTRODUCTION
It is well known that CT scanning poses a radiation hazard
to the human body. The number of CT scans an individual
can receive each year is limited. Too many scans can result
in radiation-based harm to the human body. The risk of
CT-based damage to the brain—the most important organ in
the body—is even greater. Many patients with brain diseases
are anxious about obtaining CT scans, which can be an
inconvenience for their doctors. Faced with such a scenario,
some scholars have proposed a method for automatically
generating synthetic CT images [1]–[4]. During acquisition,

The associate editor coordinating the review of this article and approving
it for publication was Yongtao Hao.

so it can be used as the basis for synthetic CT imaging. The
MRI can be segmented using an image segmentation method,
and each segment can be assigned to a corresponding HU
value [5], resulting in the generation of a synthetic CT image.
The synthetic CT generation schematic is shown below

As seen from the schematic shown in FIGURE 1, image
segmentation performance directly affects the generation
of the synthetic CT. Therefore, it is important to perform
the image segmentation steps correctly Image segmentation
refers to dividing an image into a series of regions that do
not overlap each other. It is a key step in achieving image
understanding from image processing to image analysis.
Commonly used image segmentation algorithms mainly
include fuzzy clustering algorithms [6], [7], multiview
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FIGURE 1. Synthetic CT generation schematic.

clustering algorithms [8], [9], multitask clustering algo-
rithms [10], [11], transfer clustering algorithms [12], collab-
orative clustering algorithms [13], neural networks [14] and
other types of algorithms [15]–[17].

MRI has many advantages over other imaging techniques.
First, MRI has a good imaging effect, clearly reflecting the
anatomy of the tissues of organs and the structures of lesions.
Second, it is able to obtain an image of each section, unlike
other techniques. Finally, it is harmless to the body. These
benefits have given the MRI an important role in medicine,
so this article chooses to segment the MRI of the brain.

At present, there are many image segmentation algorithms
for brain MRIs. According to their different theoretical foun-
dations, they can be divided into the following categories:
active contours and level sets, overview classification based
on pixel statistical properties, map-based methods, and clus-
tering algorithms. Among them, the clustering algorithm is
the most widely used, and its advantages are very obvious:
it is simple, efficient, and does not need to be processed
by humans. Commonly used clustering algorithms include
k-means [18], fuzzy C-means (FCM) [19], MEC [20], prob-
ability clustering (PCM) [21], [22] and related, improved
algorithms. Prakash et al. proposed a fully automatic brain
MRI segmentation algorithm based on FCM, which can
effectively overcome the problem of noise sensitivity and
image nonuniformity, but the clustering performance of
the algorithm is not much improved compared with FCM
alone [23]. Deng et al. proposed an improved FCM algo-
rithm for brain MRI segmentation and bias field correc-
tion, which improved the robustness of the algorithm to
noise, but the running time of the algorithm increased [24].
Ahmed et al. improved the objective function of the FCM
algorithm to compensate for the defect of MRI intensity
nonuniformity [25]. Hanuman et al. applied an improved
fuzzy entropy clustering (IFEC) algorithm to brain MRIs.
This algorithm can process noisy data well, but it does not
consider local spatial information [26]. Because the MEC

algorithm is more anti-noise than other algorithms, this paper
chooses the MEC algorithm as the basis to achieve effective
segmentation of brain MRIs. Based on the traditional MEC
algorithm, this paper introduces a multitask learning strat-
egy and proposes an MT-MEC algorithm. The experimental
results show that the MT-MEC algorithm is robust to noise,
and the introduction of a multitask learning strategy takes into
account the association between tasks, which improves the
clustering performance of the algorithm and greatly improves
the segmentation accuracy of the image.

The main work of this study is summarized as follows:
(1) A method for generating a synthetic CT is proposed,

which can help obtain CT images without performing a CT
scan, resulting in a promising synthetic CT effect.

(2) An image segmentation method for automatically seg-
menting a brain MRI is proposed. This method introduces
a multitask learning strategy. In the simultaneous learning
of multiple tasks, the correlation between multiple tasks is
used to obtain the common properties of each task to avoid
underlearning by the learning machine and improve the gen-
eralization performance of individual learning tasks.

(3) Multitask maximum entropy clustering is applied to the
brain MRI segmentation to not only improve the segmenta-
tion performance of the image but also enhance the effect of
the synthetic CT.

The symbols used in the algorithm of this study are
described in the following table:

TABLE 1. Symbol description.

II. RELATED WORK
A. MAXIMUM ENTROPY CLUSTERING ALGORITHM
The MEC algorithm reconstructs the objective function of
the FCM with a unique entropy concept and obtains a fuzzy
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clustering algorithm based on the maximum entropy mean-
ing. The concrete expression of the classic MEC algorithm is
as follows. The sample setX =

{
xi
∣∣xi ∈ Rd , i = 1, 2, . . . ,N

}
is clustered into C(2 ≤ C < N ) subclasses according to a
similarity measure. The objective function of the algorithm is
as follows:

J (U ,V ) =
C∑
j=1

N∑
i=1

uij
∥∥xi − vj∥∥2 + γ C∑

j=1

N∑
i=1

uij ln uij (1)

The constraints that each item in Eq. (1) need to satisfy are as
follows

uij ∈ [0, 1] , 1 ≤ j ≤ C, 1 ≤ i ≤ N
C∑
j=1

uij = 1, 1 ≤ i ≤ N

0 <
N∑
i=1

uij < N

where ‖•‖ in Eq. (1) represents the Euclidean distance. Using
the Lagrange multiplier method to solve Eq. (1), the expres-
sions of the cluster center and membership degree are as
follows:

vj =

N∑
i=1

uijxi

N∑
i=1

uij

(2)

uij =
exp

(
−
∥∥xi − vj∥∥2 /γ)

C∑
h=1

exp
(
−‖xi − vh‖2 /γ

) (3)

The traditional MEC algorithm usually deals with single
task data. When processing multitask data, the algorithm uses
the same steps as the single task data to process multitask
data, which greatly affects the performance of the MEC algo-
rithm.FIGURE 2 shows the principal diagram explaining the
clustering of multitask data by the MEC algorithm.

FIGURE 2. Schematic diagram of MEC algorithm for processing multitask
data.

B. MULTITASK LEARNING STRATEGY
Machine learning algorithms that learn multiple tasks at the
same time usemultitask learning to improve traditional single
task learning performance [27]. In the process of learning
multiple tasks at the same time, the correlation between mul-
tiple tasks is used to obtain common properties of each task to
avoid underlearning by the learning machine and improve the
generalization performance of the individual learning tasks.
FIGURE 3 shows the multitask learning model.

FIGURE 3. Model of multitask learning.

As seen from the above figure, multitask learning is a
method of transfer learning [28], which can use the mean-
ingful commonality of other related tasks to improve the
performance of the entire learning task. Multitask learning
has many advantages over traditional machine learning.
In terms of cluster analysis, Jacob et al. [29] proposed
a multitask learning clustering algorithm by assuming
that each task is clustered by group and that the tasks
within the same group are similar. Gu and Zhou [30] pro-
posed a shared subspace multitasking clustering analy-
sis algorithm. Zhang and Zhou [31] proposed a multitask
clustering algorithm based on domain adaptation [32].
Zhong and Kwok [33] proposed a flexible task-clustered
algorithm through the Accelerated proximal method [34].
Xu et al. [35] proposed a multitask learning collaborative
clustering algorithm with task characteristics. In terms of
pattern classification, Evgeniou and Pontil [36] applied a
hierarchical Bayesian model [37] to an SVM to propose
a multitask learning SVM. Liang et al. [38] proposed a
multitask enhanced SVM based on an enhanced SVM [39].
Zhu et al. [40] proposed amultitask infinite latent SVMbased
on an infinite SVM [41]. He et al. [42] proposed two types of
multitask SVM, MTL-OSVM I and MTL-OSVM II, based
on a one-class SVM [43]. Xu et al. [44] proposed a multi-
task least-squares SVM based on a least-squares SVM [45].
Li et al. [46] proposed a multitask proximal SVM based on a
proximal SVM [47]. Xie and Sun [48] proposed a multitask
centroid twin SVM based on a twin SVM [49].

III. MULTITASK MAXIMUM ENTROPY CLUSTERING
(MT-MEC) ALGORITHM APPLIED TO BRAIN MRI
SEGMENTATION
A. MULTITASK MAXIMUM ENTROPY CLUSTERING
ALGORITHM (MT-MEC)
The traditional MEC algorithm is mainly used to cluster
single task data sets. For the clustering of multitask data sets,
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the MEC algorithm is no longer applicable. To solve this
problem, this paper introduces a multitask learning strategy
into the MEC algorithm, called the MT-MEC algorithm.
FIGURE 4 shows the schematic of the algorithm for pro-
cessing multitask data.

FIGURE 4. Schematic diagram of clustering multitask data with the
MT-MEC algorithm.

The objective function of the MT-MEC algorithm is as
follows:

min J (U,V,R,O)

=

K∑
k=1

Ck∑
j=1

Nk∑
i=1

uij,k
∥∥xi,k −vj,k∥∥2

+ λ

K∑
k=1

P∑
p=1

Ck∑
j=1

rjp,k
∥∥vj,k − op

∥∥2
+ γ1

K∑
k=1

Ck∑
j=1

Nk∑
i=1

uij,k ln uij,k

+ γ2

K∑
k=1

P∑
p=1

Ck∑
j=1

rjp,k ln rjp,k

s.t. uij,k ∈ [0, 1],
∑C

j=1
uij,k = 1,

∑P

p=1
rjp,k = 1,

1 ≤ i ≤ Nk , 1 ≤ j ≤ Ck , 1 ≤ p ≤ P, 1 ≤ k ≤ K .

(4)

where λ is a balance parameter that can be used to adjust the
influence of the public clustering term. The optimal value
of coefficient λ(λ > 0) can be obtained using a cross-
validation strategy. rjp,k denotes the degree to which vj,k
belongs to the public clustering center op. The closer rjp,k is
to 1, the closer the private class center is to the public class

center. The purpose of the
K∑
k=1

Ck∑
j=1

Nk∑
i=1

uij,k
∥∥xi,k −vj,k∥∥2 +

γ1
K∑
k=1

Ck∑
j=1

Nk∑
i=1

uij,k ln uij,k in the above Eq. (4) is to obtain

the private class center V of each task. The purpose of the

λ
K∑
k=1

P∑
p=1

Ck∑
j=1

rjp,k
∥∥vj,k − op

∥∥2 + γ2 K∑
k=1

P∑
p=1

Ck∑
j=1

rjp,k ln rjp,k is

to obtain the public class center O of K tasks. In this way,
the public and private centers of each task can be obtained.
The segmentation result of each task is represented by a com-
bination of public and private class centers, namely, V k +O.

To reduce the class center of each task as much as possible
and obtain the optimal clustering effect of the multitask data,
this paper proposes the following central reduction strategy:

0 =


vj,k is very close to public op,
and then delete vj,k from private Vk ; if rjp,k ≥ 2

vj,k is far away from public op,
and then take no operation; if rjp,k < 2

(5)

The algorithm performance is optimal when the threshold 2
is set to 0.95. V k + O changes to V ’

k + O following the
center reduction strategy. To solve Eq. (4), it is converted to
the following unconstrained minimization problem

J (U,R,V,O) =
K∑
k=1

Ck∑
j=1

Nk∑
i=1

uij,k
∥∥xi,k −vj,k∥∥2

+ λ

K∑
k=1

P∑
p=1

Ck∑
j=1

rjp,k
∥∥vj,k − op

∥∥2
+ γ1

K∑
k=1

Ck∑
j=1

Nk∑
i=1

uij,k ln uij,k

+ γ2

K∑
k=1

P∑
p=1

Ck∑
j=1

rjp,k ln rjp,k

+

K∑
k=1

Nk∑
i=1

αi,k (1−
∑C

j=1
uij,k )

+

K∑
k=1

Ck∑
j=1

βj,k (1−
∑P

p=1
rjp,k ) (6)

The derivative of each variable in Eq. (6) is then set to 0,
resulting in the following variable expressions:

uij,k = exp

(
−

∥∥xi,k −vj,k∥∥2
γ1

)/
C∑
l=1

(
−

∥∥xi,k −vl,k∥∥2
γ1

)
(7)

vj,k = (
Nk∑
i=1

uij,k xi,k+λ
P∑
p=1

rjp,kop)
/

(
Nk∑
i=1

uij,k + λ
P∑
p=1

rjp,k )

(8)

rjp,k = exp

(
−

∥∥vj,k − op
∥∥2

γ2

)/
P∑
l=1

(
−

∥∥vj,k − ol
∥∥2

γ2

)
(9)

op =

K∑
k=1

Ck∑
j=1

rjp,kvj,k

/
K∑
k=1

Ck∑
j=1

rjp,k (10)

The execution steps of the MT-MEC algorithm are as
follows:

B. BRAIN MRI DATA SET INTRODUCTION
We adopted a real ultrashort echo time (UTE) and the modi-
fied Dixon PET/MR brain image dataset, which was used in
our pervious several studies [50]–[52]. This dataset consists

VOLUME 7, 2019 119647



Y. Jiang et al.: Novel Synthetic CT Generation Method Using MT-MEC

Algorithm 1 MT-MEC
Step 1 Set the total number of tasksK , the number of private

classes Ck for each task, the number of public class

centers p
(
2 ≤ p ≤

K∑
k=1

Ck

)
for all tasks, the preci-

sion threshold ε, the maximum number of iterations
Tmax , the regular parameters γ1 and γ2, the threshold
of the central reduction strategy 2, and the balance
parameters λ(λ > 0). Initialize the private class
center vj,k for each task and the public class center
op for all tasks;

Step 2 Iteratively calculate the uij,k of each task using (7);
Step 3 Iteratively calculate the vj,k of each task using (8);
Step 4 Iteratively calculate the rjp,k of each task using (9);
Step 5 Iteratively calculate op using (10);
Step 6 The iteration terminates when the iteration termina-

tion condition is met, otherwise it jumps to step 2 to
continue the iteration.

of three different sequences (Dixon-fat, Dixon-water, and
R2∗) from 9 patients, an example of which is shown in
FIGURE 5. A detailed introduction to and description of this
dataset can be found in our previous studies [50]–[52].

FIGURE 5. The adopted brain images.

IV. EXPERIMENTAL STUDY
The segmentation performance of the proposed MT-MEC
algorithm will be evaluated in the following sections. The
comparison algorithms are the classic FCM and MEC. The
data set used in the experiment is the Ultra Short Echo Time
(UTE) and modified Dixon PET/MR [50]–[52].

A. EXPERIMENTAL SETTINGS
The amount of data in medical images can be on the order
of millions of data instances. Therefore, in order to improve
the applicability of the algorithm, a sample strategy is used

in the process of performing the clustering algorithm, that
is, the label of the data instance is obtained by the k-nearest
neighbor strategy. The sampling strategy used guarantees
the consistency of the algorithm and ensures the fairness of
random data quality, reporting all results after ten runs of each
method under each parameter set. This process judges the
robustness of the sampling strategy and the performance of
the algorithm.

During the experiment, the parameters of the comparison
algorithms FCM and MEC and the proposed MT-MEC are
as follows. The fuzzy coefficient m of the FCM algorithm
is selected from the set {1.1:0.1:2.5}. The parameter γ of
theMEC is selected from the set {10−6, 10−5, . . . , 105, 106}.
The parameters λ, γ1 and γ2 of our proposed MT-MEC are
all selected from the set {10−6, 10−5, . . . , 105, 106}. All the
parameters used in the experiment were determined using a
grid search strategy with normalized experimental data.

To verify whether the effect of the synthetic CT is ideal,
the contrast image used in this paper is a real brain CT map.
The evaluation indexes are the root mean square error
(RMSE), the mean absolute prediction deviation (MAPD),
and R [53]. Smaller values of RMSE and MAPD and larger
values of R indicate better performance of the algorithm.
The PC used in the experiment was an Intel Core i5-6200
2.30 GHz CPU with 4 GB RAM, and the simulation was run
with MATLAB R2016a (64-bit).

B. EXPERIMENTAL RESULTS AND DISCUSSION
Table 2 shows the brain MRI segmentation results of nine
patients we randomly selected from the data set. The seg-
mentation results are given using the mean and standard
deviation values of RMSE, MAPD and R. It can be seen from
the results in Table 2 that the segmentation performance of
the MT-MEC algorithm is better than the FCM and MEC
algorithms. This is because the introduction of a multitask
learning strategymakes the algorithm consider the correlation
between tasks and improves the clustering performance of
the algorithm. It can be inferred from the standard deviation
values that the MT-MEC algorithm has good stability, with
minimal fluctuations in the results after each operation. After
segmenting the brain MRIs using the MT-MEC algorithm,
each class of HU values is assigned to generate a synthetic
CT image. FIGURE 6 shows the synthetic CT generated
image following MRI segmentation for 9 patients and the
corresponding real brain CT image.

Combining the segmentation results given in Table 2 with
the results of the synthetic CT given in Figure 6, the following
can be analyzed:

1) In terms of image segmentation performance, it can be
seen from the values of the three evaluation indicators that the
performance of theMT-MEC algorithm is substantially better
than that of the FCM and MEC algorithms. The standard
deviation values of the MT-MEC algorithm are lower than
those of the two comparison algorithms, indicating that the
MT-MEC algorithm is robust and insensitive to parameter
changes.
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FIGURE 6. Synthetic CT images generated with our proposed MT-MEC algorithm for Patients 1 to 9.
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FIGURE 6. (Continued.) Synthetic CT images generated with our proposed MT-MEC algorithm for Patients 1 to 9.
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TABLE 2. Performance comparison of the three clustering algorithms.

2) The synthetic CT image in Figure 6 shows that the
MT-MEC algorithm can accurately segment the bone, soft
tissue and air in the brain. The segmentation result of the
MT-MEC algorithm is more accurate than that of the com-
parison algorithms.

3) Visual observation of the comparison results in
Figure 6 shows that the synthetic CT images of Patients 1-9
are very close to the real images, which fully demonstrates
the effectiveness of the synthetic CT generation method in
this paper. However, there are still a few cases where the
tissue imaging is not clear enough in the synthetic CT image.
It is possible that some noise affects the segmentation perfor-
mance of the MT-MEC algorithm.

V. CONCLUSION
This study proposes a method of automatically generating a
synthetic CT image. The method first performs image seg-
mentation on a brain MRI, assigns HU values to each class,
and finally generates a synthetic CT image. The main con-
tribution of this paper is the proposal of the MT-MEC algo-
rithm, which was applied to the segmentation of brain MRIs.
Because the proposed MT-MEC algorithm considers the cor-
relation between multiple tasks, and the MEC algorithm has
better antinoise performance than other clustering algorithms,
the MT-MEC algorithm has good segmentation performance
for brain MRIs, which produces accurate, clear CT images.
Experiments show that the proposed MT-MEC algorithm has
better segmentation performance than the FCM and MEC
algorithms, resulting in a very good synthetic CT effect and
can serve as a valuable reference for medical diagnosis.
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