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ABSTRACT Short-term prediction of passengers’ flow is one of the essential elements of the operation and
real time control for public transit. Although fine prediction methodologies have been reported, they still need
improvement in terms of accuracy when the current or future data either exhibit fluctuations or significant
change. To address this issue, in this study, a fusion method including Kalman filtering and K-Nearest
Neighbor approach is proposed. The core point of this method is to design a framework to dynamically
adjust the weight coefficients of the predicted values obtained by Kalman filtering and K-Nearest Neighbor
approach. The Kalman filtering and K-Nearest Neighbor approach can handle different variation trend of
the data. The dynamic weight coefficient can more accurately predict the final value by giving more weight
to the appropriately predicted method. In the case study of real-world data, the predicted values of alighting
passengers and boarding passengers are presented by four predicted methods involving Kalman filtering,
K-Nearest Neighbor approach, support vector machine, and the proposed method. According to the compar-
ison of the test results, the proposed fusion method performed better in terms of predicting accuracy, even
if time-series data abruptly varied or exhibited wide fluctuations. The proposed methodology was found as
one of the effective approaches based on the historical data and current data in the area of passengers’ flow

forecasting for urban public transit.

INDEX TERMS Short-term forecasting, urban public transit, passenger flow, fusion model.

I. INTRODUCTION

Intelligent Transportation Systems (ITS) is a global applica-
tion deploying significant amount of advanced systems and
techniques to solve traffic problems, such as traffic conges-
tion and traffic environment. Obtaining accurate information
about the future traffic flow including vehicle intelligent
system, vehicle routing, and congestion management has a
significant application in ITS. Considering the traffic flow
changes with time and the real-time requirement of traffic
control, the real time data could not be used as the direct
input into the ITS [16]-[20]. Traffic prediction becomes one
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of the central topics in ITS, fundamentally requiring the
advanced and smart transportation technologies. Optimizing
traffic prediction performance can provide the prior traffic
information for the traffic control and management [30], [32].
Over the past few decades, traffic prediction has attracted sig-
nificant attention [11], [15], [35], [41], [44], [52]. However,
for stochastic characteristics of traffic parameters, accurate
traffic prediction is not a straightforward task.

Various traffic techniques have been deployed and widely
applied to solve the traffic prediction problem. The existing
prediction methods can be generally classified into three
groups: the parametric methods, non-parametric methods,
and hybrid methods [25]. The parametric methods assume
an explicit relationship among the parameters. Typically, the
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parametric method expressions can be descripted by the
statistical or physical knowledge of the variable extracted.
The parametric methods include the linear autoregressive
integrated moving average (ARIMA) method [37], [42],
[45], [47], seasonal autoregressive integrated moving aver-
age (SARIMA) method [22], and Kalman filtering method
[13], [40], [48]. Abadi et al. [1] established a short-term traf-
fic flow prediction algorithm using an autoregressive model
of the link flows to predict the traffic flow based on the cur-
rent and historical traffic data in the traffic network. Kumar
and Vanajaksh [14] proposed a prediction scheme using the
SARIMA model that is particularly relevant to model traffic
flow behavior. For discrete-time linear stochastic dynamic
systems, Kalman filtering is one of the most widely used
recursive algorithms and elegant enough for on-line imple-
mentation without complex calculation [51].

Furthermore, the non-parametric method expressions can
be directly determined by the available data without any
assumptions about data distribution or variable interrela-
tions. The non-parametric methods include the support vector
regression (SVR) method [4], [43], [46], Neural network
method [22], [28], [34], [38], and K-nearest neighbor (KNN)
[3]1, [8], [12], [23], [31], [49]. Ke et al. [10] proposed
a two stream multi-channel convolutional neural network
(TM-CNN) model for predicting the multi-lane traffic speed.
Habtemichael and Cetin [9] proposed a non-parametric and
data-driven methodology based on identifying similar traffic
patterns using an enhanced K-nearest neighbor approach.
Liu et al. [24] used the K-nearest neighbor algorithm for
short-term traffic flow prediction by improving the dis-
tance search method and introducing a multivariate statistical
regression model. In contrast with the parametric methods,
no explicit choice has to be made about the relationship
between the parameters or fitting functions. Although the
non-parametric methods have a high accuracy of prediction,
these methods always fall easily into slower convergence
speed and require a large amount of historical data and
time to calibrate the model parameters. Moreover, the hybrid
methods integrate the elements of these two approaches by
combining the flexibility of the parametric methods and com-
putational efficiency of the non-parametric methods [25],
[27], [39]. Although, there are ample reviews on traffic pre-
diction, most of the existing efforts focused on the single
historical data or the current data. However, long-range corre-
lations in the traffic data fluctuation persist in the data series.
In comparison, traffic flow based on the variety dimension
traffic data is hardly predicted [29]. This brings us to the
following main objectives to address: To propose a frame
of traffic prediction and a novel hybrid prediction method
based on the parametric method and non-parametric method
considering the current data and the historical data.

Considering time-variety and complexity of passengers’
flow data and disadvantages of prediction methods based
on the current day data, in this study, a fusion prediction
method is proposed based on the current data and the his-
torical database with KNN approach and Kalman filtering
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method, with the idea of adaptive weights allocation. The
proposed prediction method requires both real time data and
historical data as the input. KNN and Kalman filtering are
used to predict the passengers’ flow using the current data
and historical data, respectively. The two results are assigned
weight coefficients, which can be generated in real time in the
process of prediction.

The main contribution and difference with previous works
are the proposed framework to dynamically adjust the weight
coefficient values according to the real time accuracy of the
KNN and Kalman Filter methods, giving more weight to the
more accurately predicted value. In addition, in this study,
the KNN and Kalman filtering methods were integrated into
one framework, assimilating their advantages and eliminating
their disadvantages, making their respective advantages com-
plementary to each other. Therefore, the proposed prediction
method performs better than only using the KNN or Kalman
filtering method.

This paper is organized as follows. Section 2 presents a
brief general introduction of the Kalman filtering method
and KNN approach used for predicting passengers’ flow.
Section 3 presents the proposed fusion predicted method
based on dynamically adjusting the weight, formulating a
fusion model and designing an algorithm framework to
obtain the weight coefficient dynamically. A case study based
on the real data is described in Section 4 by the KNN
method, Kalman filtering method, Support Vector Machine,
and the proposed predicting method under different scenar-
i0s. Section 5 represents the conclusion and future direction.

Il. BASIC MODELS

In this study, traffic patterns are predicted by exploiting
similarities. In the proposed fusion method, both the KNN
method and the Kalman filtering method are introduced in
the framework. The KNN method can predict the passengers’
flow using the current day data, and the Kalman filtering
method searches the state vector in the historical data. There-
fore, in this section, the two traditional prediction methods
are introduced, and the related parameters are designed.

A. KALMAN FILTERING METHOD
Kalman filtering, known as a statistically optimal sequen-
tial estimation procedure for linear dynamic systems, is an
efficient algorithm for needing short series of background
information and easily observing any alterations [7]. The
Kalman filtering tries to find relationships between some
explanatory variables and measures traffic flow data [40].
A short algorithmic procedure description of a classical
Kalman filter is provided here.

In Kalman filtering, the state vector X (¢) at the secrete time
t can be described by the system equation.

X(t) = A(t/t — DX(t — 1)+ W(t — 1). (1

In addition, the observation vector Z(¢) connecting to the
unknown process is shown by Eq. (2)

Z(1) = B(1)X (1) + 8(»), @

VOLUME 7, 2019



S. Liang et al.: Short-Term Passenger Flow Prediction in Urban Public Transport

IEEE Access

where A(t/t — 1) and B(¢) are the coefficient matrices;
W(t — 1) is the state noise; and 5(¢) is the observation noise.
The state noise W(¢r — 1) and the observation noise 5(¢) are
the independent random vectors of the Gaussian.

The Karman filtering method calculates the unknown pre-
diction value by the recursive estimation. Based on the previ-
ous time step values, the prediction values are given by

X/t —=1) =A@/t — DX(t — 1) )
E(t/t — 1) =A(t/t — DP(t — DA/t — DT +Q
where X (¢ /t — 1) is the estimated state of the expected states
X(t/t—1)attimer; E(t/t—1)is the filtering error covariance;
and Q is the covariance matrix.
Furthermore, the new observation value Z(¢) is known. The
estimate of X () at time 7 is shown by

X(@t) =X/t — D)+ K O[Z(1) — BOX(t/t — D], (4)

where K, (1) is the Kalman gain given by K,(t) = A(t/t — 1)
BT[B(A(t/t — DB + R(1)]™'; R() is the covariance
matrix of 8(t).

The final filtering error covariance E(¢) is presented by the
following equation.

E@) = [ — Kg)BWMIP(t/t — DI — Ke(B®)]
+ K (DROK() (5)

Moreover, Egs. (1)—(5) update the Kalman filtering algo-
rithm from period ¢ — 1 to ¢. By the process of prediction and
correction, the optimal estimated state is computed based on
the minimum covariance estimation.

B. K-NEAREST NEIGHBOR METHOD

Non-parametric algorithms are optimized with a training
phase based on the existing data. KNN is a popular non-
parametric pattern recognition technique for data mining and
statistics owing to its simple implementation and significant
classification performance. The KNN can carry out the reli-
able parametric estimates based on performing discriminant
analysis and optimal vector selection, including three com-
ponents: state vectors, determinant, and predicting function.
In this study, KNN is used as the basic algorithm to identify
similar traffic profiles.

Suppose there is a database involving traffic flow data.
Each time code of the database is one-time series, which
also is expressed as a state vector. For example, the database
Y (M, D) includes N state vectors consisted by d consecutive
time data. In detail, d is the suitable number of lags. The
higher the value of d, the more time is required to find the
similar vectors. At time ¢, the vector comprising the traffic
flow data in the test database can be written as

Y, i(t) = [Vt = 1), Vi it = 2), -+, Vii(t = d)], (6)

where Y}, ;(t) is the vector from the database Y (M, D) and
Vi,i(t) is the traffic flow data during the sample interval.
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According to the basic principle Eq. (6), the traffic data in
the database Y (M, D) is denoted as

Y(M, D)
Ynid+ 1), Ypi(d+2), -, Yp1(D—1), Y 1(D)
Ypod + 1), Ypo(d +2), -+, Yp2(D — 1), Yy 2(D)

Yimu(d+ 1), You(d+2), -, You(D—1), Yy u(D)
7

where M 1is the horizontal time dimension; D is the end time
of the horizontal time dimension.

In order to accurately predict the traffic flow data, the real-
time traffic state vector P(¢) can be written as

PO = [V, Va1, Ve —d =D VE-d)], ®
where V(r) is the prediction traffic flow. The traffic flow

data of the real-time traffic state vector P(¢) can be presented
in Fig. (1) that depicts the process with time.

@ Known data (O Unknown data & Prediction data

T V(o) = P(2)

il . B = =

it Pe+1)1 = P(t+1)

+l @ 9 @ @ | —>

e — =
Ss{TTTTTTTTTTT Ple+2)1= P(t+2)
+2 —@— @ —10—@ & ! v

FIGURE 1. Dynamic real-time traffic state vector.

In order to estimate the future traffic flow data, the corre-
lation between the selection vector and the prediction vector
is measured by Euclidean distance. Based on the calculated
distance, the KNN vectors, collected as the KNN vector
group, are achieved.

(Viit = 1) = V(t — 1))’
Loy = |+ (Vaitt =2 = V(@ = 2))* ©
oot (Vailt = d) = V(e = )’
Then, the matched data in the KNN vector group is selected
to further calculate the prediction data. Furthermore, the pre-

diction result of the KNN method can be written by weighting
according to

V()= wiVat) (10)
j

where Vj,j(1) G = 1,2, ---, Ny) belongs to the KNN vector
group; Ny is the number of the KNN vectors; and w; is the
weight coefficient obtained by Eq. (11).

Ni
Z l(ya,p) - l(yj,p)
w = 2= (11)

Ni
(Ne = 1) 3 lya.p)
a=1

where [y, ) 1s a vector of the KNN vector group.
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Ill. THE FUSION PREDICTED METHOD BASED ON
ADJUSTING WEIGHT DYNAMICALLY

In this section, the characteristic of passengers’ flow data is
analyzed based on a typical week, followed by formulating
the fusion model. The main contribution of this study is
designing an algorithm framework to dynamically adjust the
weight coefficient values, as presented in Subsection 3.3.

A. DATA FOUNDATION USED IN THE PROPOSED METHOD
Generally, the characteristics of passengers’ flow in the
urban public transit in weekday and weekend are different.
In weekday, the public transit mainly provides service for
the commuting passengers, and the trips in weekday are
mainly to reach the workplace or for business. In weekend,
more passengers would like to go shopping or for relaxing
by public transit, and the trips in weekend are mainly for
entertainment or relaxation. Therefore, the distribution and
total passengers’ flow are different between weekday and
weekend, as graphically shown in Fig. 2.
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FIGURE 2. Passengers’ flow data in one week.

Fig. 2 shows the passengers’ flow data in one week (from
Monday to Sunday), basically indicating that there are two
peak periods in one day including morning peak period
and evening peak period. Between these two peak periods,
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the passengers’ flow values are relatively small, as shown
in Fig. 2(a). However, the peak hours are not quite obvious
in weekend, and the time of peak flow delays in weekend (at
10:00 am) as shown in Fig. 2(b). Therefore, the distribution
of passengers’ flow in weekday is similar to each other and
in weekend is similar with each other. Based on the analysis
above, one week can be treated as a cycle. Although the
flow data are similar in weekday or in weekend, the pre-
dicted values using the historical data cannot be obtained
on the same day in the last several weeks, because there
may be emergency or activity happened causing exceptional
data. Therefore, in the proposed prediction method, the KNN
method is introduced into the framework to search for the
similar data in the historic database and thus can improve
the accuracy of the predicted method. When the passengers’
flow is predicted, the KNN method can search in the database
avoiding selecting the appropriate data in certain days man-
ually. The Kalman filtering method can predict the values
using the current day data. Therefore, these two predicted
methods can use the whole database including historical and
current day data. The two predicted values were further inte-
grated to obtain the final predicted value using an appropriate
method, and this is the core idea of this study, as discussed in
the next two subsections.

B. FUSION MODEL FOR THE PROPOSED METHOD

The two predicted values of passengers’ flow gir(¢) and
Qinn(t) are obtained by the Kalman filtering method and
KNN method, respectively. A fusion model was formulated
to conveniently calculate the fusion result finally. There are
two requirements for the formulation of fusion model. First,
the fusion function should be elegant enough to be obtained in
real time. Because the Kalman filtering method does not work
very well when the data fluctuate greatly, the second require-
ment is that the weight coefficient parameter w(k) in the
fusion model should be predicted using the Kalman filtering
with satisfactory accuracy. Based on these two requirements,
the proposed fusion function is as follows.

As mentioned above, the fusion model has two predicted
values including @kf (1) and Gy (t). The common concept is to
give two weight coefficient values to the two predicted values,
which can be written as Eq. (12).

gl(t) = ",{’kf(t)é\]kf(t) + V’{/knnéknn(t) (12)

In this fusion model, the two weight coefficients should
be calculated. However, the value of passenger flow in the
next time g(t + 1) should be predicted and the real value
q(t) in current time has been known. The values of weight
coefficient wys(¢) and wyy,(f) cannot be calculated by one
formula. Therefore, a single weight coefficient fusion model
can be formulated, as presented by Eq. (13).

q(t) = W(t)qig (1) + Gin(1). (13)

If the real passengers’ flow value at time ¢ is known, and
the real value of the weight coefficient can be calculated by
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the inverse function of Eq. (13), written as Eq. (14).

w(t) = M (14)

iy (1)
In addition, the weight coefficient value for c}kf(k) can
be set as 1. Therefore, the relationship of Eq. (12) can be
expressed by

q(t) = g (1) + W) Ginn (1). (15)
The weight coefficient of w(t) can be calculated by Eq. (16)

q(t) — g (1)
&knn(t )
Because the time interval of passengers’ flow collection on

a public transit is generally set as 5 min, 10 min or 15 min,
and the passengers’ flow is not quite small even during the
flat peak periods, zero flow value unlikely occurs. Using the
fusion model proposed in this section, no values or pretreat-
ment should be set in advance, indicating convenience in
applications.

w(t) = (16)

C. ALGORITHM FRAMEWORK TO ADJUST

WEIGHT DYNAMICALLY

As mentioned in Subsection 2.2, the KNN approach can
search for the similar values in the database. The Kalman
filtering method can predict the value of passenger flow in
the next time interval based on the current day data. Using the
KNN approach and Kalman filtering method, two predicted
values can be obtained. Therefore, in Section 3.2, the fusion
model is proposed to integrate the two values obtained by
these two methods into a more accurate predicted value.
However, as shown in Eq. (12), The fusion model has a weight
coefficient. In general, the weight coefficient can be cali-
brated with the historical data as the mean value. However,
this type of calibration method is not quite sensitive to the
changing of real time data.

For example, if the data in current day are not impacted by
a great disturbance, passengers flow fluctuation is relatively
smooth, and both the KNN and Kalman Filter methods can
obtain the predicted values with similar accuracy. However,
if a non-recurrent social activity is held in the city, his-
toric passengers flow data have less reference value than the
current day data. Therefore, the weight coefficient should
be calibrated or obtained dynamically, instead of a constant
value.

According to the analysis mentioned above, in this study,
we propose a dynamic calibration algorithm framework,
which can dynamically adjust the weight coefficients to pre-
dict the fusion model more accurately. The core concept of
the framework is to predict the weight coefficient using the
Kalman filtering method again.

As shown in Fig. 3, using the Kalman filtering method
based on the passengers’ flow data in the current day, the flow
data gir(¢) was predicted. Meanwhile, the other predicted
flow value G,,(t) was obtained by the KNN method based
on the historical database. The final predicted flow data g(¢)
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FIGURE 3. The mechanism to dynamically obtain weight coefficient.

can be calculated based on Eq. (12). However, the weight
coefficient is unknown. Here, the Kalman filtering method
is used again to obtain the w(¢) based on the historical data
of the weight coefficient w(t — 1), w(t — 2), w(t — 3).
According to this type of recurrence formula, the predicted
weight coefficient value w(r) can be obtained continuously.

The more detailed procedure of the proposed predicting
method is shown as follows.

Step 1: Using the Kalman filtering method to predict the
passenger flow gir() at time t based on the passengers flow
data in current day.

Step 2: Using the KNN method to predict the value of
passenger flow gy (¢) at time t based on the historical database
of passengers’ flow.

Step 3: Calculate the historical values of the weight coeffi-
cient in the current day by the inverse function of the fusion
model Eq. (14), based on the predicted values.

Grr(t — 1), qur (t = 2), Gip(t — 3), - - and

aknn(t -1, @knn(t -2), @knn(t —=3),---.

Step 4: Predict the weight coefficient w(¢) in the fusion
model of Eq. (14) by the Kalman filtering method based on
the historical values of the weight coefficient in the current
day w(t — 1), w(t — 2), w(t — 3), - - - calculated in Step 3.

Step 5: Calculate the final predicted value of passenger
flow ¢(r) at time t using Eq. (12), based on the three pre-
dicted values including Gir (), Gknn(), and W(t) obtained in
Steps 1, 2, and 4, respectively.

The more indicative flow chart of the proposed predicting
method is shown in Fig. 4. According to Fig. 4, the predicted
value of passenger flow value can be obtained at time t. Using
this method framework continuously, the real time passenger
flow values can be predicted in current day.

IV. CASE STUDY
There are four subsections in the case study including the
performance indexes selection, experimental design for the
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FIGURE 4. The flow chart to predict the passenger flow value at time ¢.

case study, comparison of the results of different predicting
methods, and the analysis of the test results.

A. PERFORMANCE EVALUATION
The efficiency of the fusion prediction method for passen-
gers’ flow of public transit is evaluated by the mean relative
error (MRE) and root mean square error (RMSE). MRE
expressed by Eq. (17) indicates the expected error as a frac-
tion of the measurement, providing the error in terms of the
percentage of the difference between the real and predicted
data values.

n

1
MRE=;Z

=1

q(t) — q(1)

x 100%,
q(®)

an

where ¢(t) is the real value at time t; g(¢) is the predicted value
at time t; and # is the number of predicted values.

RMSE, expressed by Eq. (18), is the arithmetic mean of
the squares of a set of difference between the real values and
the predicted values, penalizing large prediction errors.

1 n
— _ 2
RMSE = . n E (q(®) — g(1))-, (18)

=1

B. EXPERIMENTAL DESIGN

Field data are required for the parametric and non-parametric
methods to be trained and calibrated, resulting in a fusion
predicted method. This study selects Line 3 of the Light
Rail Transit in the city of Changchun, China, as an example
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FIGURE 5. The selected stations on Line 3 of light rail transit in city of
Changchun.

to test the performance of the proposed predictive method
for the passengers’ flow at the stations in public transit.
The passengers’ flow at the five stations, shown in Fig. 5,
is collected based on the IC (Integrated Circuit Card) for both
getting on and getting off passengers. These five stations are
different in terms of average passenger volume and temporal
distribution. Changchun Station is located at the Changchun
railway station, and the other four stations are mainly for
commuting of the dwells.

The passengers’ flow data of both getting on and getting
off passengers at the five selected stations in March 2017
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were collected. In the test, the passengers’ flow data on
March 31, 2017 are assumed unknown. Therefore, the pre-
dicted values of passengers’ flow can be compared to the real
data values. The time interval of the test is set as 15 min. The
operating time of Line 3 is from to 6:00 to 23:00, 17 h in
one day. Therefore, there are 68 data values in the test. There
are four predictive methods implemented in the test involving
Kalman filtering method used only (KF), K-Nearest Neigh-
bor Approach used only (KNN), Support Vector Machine
(SVM), and the proposed integrated predicting method (KK)
with KF and KNN.

—@—Dbus stop 1
bus stop 3
—@—Dbus stop 5

—@— bus stop 2
—@—bus stop 4
avergae

10.0%

9.5%

9.0%

8.5%
8.0% 3:‘—’\\
7.5% )'\f

7.0%

Relative error

6.5%

6.0%
1 2 3 4 5 6 7 8 9 10

Values of K

FIGURE 6. Effects of the k-values on the prediction accuracy.

Fig. 6 shows the effects of the k-values on the forecasting
accuracy according to the different k-values (from 1 to 10) at
the five bus stops using the data in current month. The MAPE
decreases to the minimum, and then gradually increases with
slight variation between k-values 3 and 6. According to the
orange line in Fig. 6, representing the average relative error,
the optimal k-value was identified as 5 for this case study.

C. COMPARISON OF RESULTS
The predicted results for boarding and alighting passengers
in the test are presented separately. As two typical stations
representing the station with high passenger volume at traffic
hinge and providing services for the commuting passengers,
the predicted values based on the KF, KNN, SVM, and KK
methods at Changchun Station and Furong Bridge Station are
presented in Figs. 7 and 9. In order to better illustrate the
performance of these four predicting methods, the absolute
error for these two bus stops is presented in Figs. 8 and 10.
In Fig. 7, the x-axis means the time where one point
refers to 15 min. The y-axis represents the number of arrived
passengers or left passengers in 15 min. As shown in Fig. 7,
the arrived passengers’ flow and the left passengers’ flow
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FIGURE 7. Comparison of predicted passengers’ flow at Changchun
station.

fluctuate at a high level. The phenomenon of peak hours
shown in Fig. 7(a) is not very obvious. In addition, as shown
in Fig. 7(b), the boarding passengers’ flow during evening
peak hours is higher than alighting passengers’ flow shown
in Fig. 7(a), because the passengers tend to leave the city by
train in the morning instead of the afternoon.

The blue line in Fig. 7 indicates the real values of passen-
gers’ flow data; the red line refers to the predicted values of
passengers’ flow data by the KNN method; the green line
means values of passengers’ flow data by the KF method,
the purple line represents the predicted values of passengers’
flow by the proposed fusion method combined with the KNN
with KF and the other line represents the predicted passen-
gers’ flow by the SVM method.
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FIGURE 8. Performance comparison of absolute errors by the predicted
method at Changchun station.

Fig. 7 shows that the variation tendency of purple line is
more similar with the blue line, indicating that the KK method
has more accuracy than the other three methods, especially
during the period flow data fluctuating significantly, as shown
in Fig. 7(a) from period 25 to 35.

Fig. 8 provides more details about the performance of the
four predictive methods in terms of absolute errors. Accord-
ing to Fig. 8, the KF and SVM methods perform worst
during the peak hours, while the KNN method cannot deal
with the off-peak hours very well; however, the proposed
KK method maintains a low error level, less than 20 pax.
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FIGURE 9. Comparison of the predicted passengers’ flow at the Furong
Bridge station.

Therefore, according to the preliminary impression, the KK
method performs better than the other three methods.

Fig. 9 shows the passengers’ flow at the Furong Bridge
Station. During the morning peak hours, the flow of alighting
passengers is relatively high with about 300 passengers for
per 15 min, while the number of boarding passengers during
the morning peak hours is less than 200. In contrast, the flow
of boarding passengers is larger than the number of alighting
passengers, because the dwellers should return to their home
after getting off the work. During the off-peak period, the pas-
sengers’ flow data fluctuate at a relatively low level.
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FIGURE 10. Performance comparison of absolute errors for predicted
method at Changchun station.

The five colored lines in Fig. 9 represent the same as
those in Fig. 7. As shown in Fig. 9(a), during the morning
peak hours, the flow data values increased greatly in a short
period. The green line does not match the blue line very
well, indicating that the KF method performs worse than
the other predicted methods when the data changes greatly,
and the SVM method has the same inadequacy during the
peak hours. In addition, during the off-peak hours, the red
line cannot match the blue line very well, indicating that the
KNN method performs worse than the other three predicted
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methods when the data fluctuate frequently. The proposed
KK method performs better than the other three methods.

Fig. 10 further shows the characteristics of the four pre-
diction methods when the data have different features. The
KF and SVM methods have high absolute errors when the
passengers’ flow values are large and change greatly, while
the other two methods perform better, and this conclusion is
similar to that obtained by Fig. 8.

In order to further reflect the detailed performance of the
four predicting methods, the index values are calculated and
presented in the following subsection.

D. ANALYSIS OF THE TEST RESULTS

The core of the proposed predicting method is to obtain
the weight coefficient values dynamically. Fig. 11 shows
the weight coefficients for alighting passengers’ flows at the
Changchun Station and Furong Bridge Station.

As shown in Fig. 11, the weight coefficient can change
dynamically according to the real time accuracy of the KNN
and KF methods. The real values of weight coefficient fluc-
tuate slightly from —0.1 to 0.1, except for several extreme
points. The predicted weight coefficient values using the KF
method can match the real values very well, indicating that the
fusion model is formulated appropriately avoiding significant
change in the weight coefficient values, and the KF method
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FIGURE 12. Distributions of MRE by the three predicted methods.
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TABLE 1. MRE index values by the four prediction methods.

bus stop | busstop | busstop | busstop | bus stop
MRE
1 2 3 4 5
KNN 9.0% 7.9% 7.7% 8.3% 7.3%
'_%D KF | 77% | 118% | 109% | 13.5% | 118%
%ﬂ SVM 6.5% 8.8% 8.8% 12.3% 7.8%
KK 3.6% 4.0% 4.2% 3.3% 3.4%
KNN 6.7% 8.2% 9.9% 8.1% 6.6%
,_éo KF 9.9% 13.9% 14.7% 13.2% 15.5%
5]
2 SVM 12.0% 9.9% 9.8% 11.8% 12.5%
KK 7.6% 4.6% 4.7% 3.7% 2.9%

is competent to predict the weight coefficient in the fusion
model. To further reflect the performance of the four predic-
tion methods, the MRE index is presented in Table 1.

In Table 1, the bus stops 1, 2, 3, 4, and 5 refer to
Changchun Station, Liaoning Station, Furong Bridge Station,
Xi’an Station and Nanchang Station, respectively. The values
in Table 1 indicate the MRE of the predicted passengers’ flow
at the bus stops by different predicting methods. The first, sec-
ond, third, and fourth row represent the errors for predicting
alighting passengers’ flow by the KNN, KF, SVM, and KK
methods, respectively, while the last four rows correspond to
the boarding passengers’ flow.

In Table 1, the values in fourth and eighth rows are smaller
than the error values in other rows, indicating that the pro-
posed KK predicted method performs better than the other
three methods. Most MRE values obtained by the KK method
fluctuate around less than 5%, whereas the values by the
KNN, KF, and SVM methods fluctuate around 8%, 12%, and
11%, respectively. Furthermore, the distributions of MRE by
the KNN, KF, SVM, and KK predicted methods are presented
in Fig. 12.

In Fig. 12, the x-and y-axes represent the range of error and
the frequency located in the error range, respectively. Note
that the relative error calculated here is not an absolute value.
Comparing Figs. 12(a), (b), (c), and (d), the hit rates, in terms
of MRE, are 72.2, 51.8, 65.3, and 92.1 within 10% and 92.4,
81.2, 85.0, and 98.2 within 20%, respectively. Thus, the pro-
posed KK method more accurately predicted the values of
passengers’ flow, with 10% errors, which is quite better than
the other three methods.

The bus stop numbers in Table 2 are the same as listed
in Table 1. The values in Table 2 refer to the RMSE of the
predicted values by the four predicting methods. According
to Table 2, the RMSE values at bus stop 1 are larger than
those at the other four bus stops, because the passengers’ flow
at bus stop 1 is the largest. In addition, the obtained RMSE
values by the proposed KK method are the smallest among
the four prediction methods. The KNN method performs
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TABLE 2. RMSE index for passengers’ flow prediction by different
methods.

RMSE bus bus bus bus bus
(pax) stop 1 stop 2 stop 3 stop 4 stop 5
KNN | 2731 339 2.52 5.81 222

21 KkF | 2584 6.49 532 16.97 7.13
g“ SVM | 22.39 497 3.92 1684 | 465
KK | 12.79 1.54 1.19 2.83 1.10

KNN | 21.06 3.43 334 5.51 2.62

2 KE | 3038 | 914 5.81 1324 | 725
§ SVM | 333 5.09 4.01 16.11 730
KK 1§29 171 1.38 2.40 1.52

slightly better than the KF and SVM methods. The conclusion
achieved based on Table 2 is consistent with that indicated by
Fig. 12 and Table 1.

In order to further prove the significance of the proposed
predictive method performing better than other three tradi-
tional methods, the F-test is introduced into the test. In the

F-test, the F values can be calculated by Slzarg or / Sszma”er.

Because the S? calculated using the data obtained by the
KK method is always smaller than the other three methods,
they are the denominators in the formula. Table 3 shows the
calculated F values.

TABLE 3. F values.

Value of F bus stop | bus stop 2 bus stop 3 bus stop 4 bus stop 5

KNN/KK 4.56 484 452 420 4.03

KF/KK 4.08 1772 20.03 35.88 41.61

Alighting

SVM/KK 307 1041 10.87 35.34 17.69

KNN/KK 645 4.00 584 525 299

KF/KK 1343 2845 17.70 30.38 22.84

Boarding

SVM/KK 16.16 8.82 844 44.96 23.18

All the F values listed in Table 3 are more than 2.99, which
is larger than 1.37 (according to the F Distribution Table
fl = 2 = 68). Therefore, the KK method is significantly
better than the other three methods.

More detailed error distribution of the three predicted
method is shown in Fig. 13, illustrating that the KK method
performs stably and accurately to predict the passengers’
flow under variable scenarios in terms of average absolute
errors and mid-value. Therefore, the above analysis clearly
shows that the proposed KK method has better performance
in predicting passengers’ flow in public transit.

The program was run for several times. The KNN method
requires less than 14 s; the KF method needs less than 4 s.
Because in the proposed predictive framework, the KNN
method is used once and the KF method is used twice,
the efficiency of the proposed method is inevitably slightly
less by approximately 20 s. However, it still can meet with
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the requirement of real time prediction. In addition, other
languages (C, JAVA, etc.) can still improve the efficiency of
the method. The computer used is a laptop with Intel® Core
i3-3120M CPU @2.50GHz processor and installed memory
(RAM) of 4.00GB (2.32GB usable).

V. CONCLUSION

A novel concept was proposed to predict the passengers’ flow
of the public transit based on the historical data and data in
current day. This research integrated the KNN method and KF
method into a framework to make fusion of the predicted val-
ues predicted by these two methods. In the fusion framework,
the weight coefficients can be calculated dynamically by the
KF method again. The KF method performs badly when the
data change greatly, and the KNN method cannot handle
the fluctuating data very well; however, the proposed fusion
model can handle these two cases based on dynamically
adjusting the weight coefficient values. Based on the real data
collected at the five stations on Line 3 in Changchun City,
a case study was conducted by the KNN, KF, SVM, and pro-
posed KK methods. In order to test the predicting method in
different scenes, two types of stations are selected including a
station located at the near railway station as a transportation
junction and four normal stations for providing services for
the commuting passengers. According to the test results and
analysis, the proposed KK method can improve the accuracy
of the predicted values for passengers’ flow of both alighting
passengers and boarding passengers. In addition, the KK
method performs best among these four predicting methods,
while the KNN is better than the KF method in predicting
the values of passengers’ flow. In addition, at the Changchun
Station, the index of MRE is smaller than at the other four
stations, while the RMSE index at the Changchun Station is
much larger than at the other four stations. In addition, the hit
rate, in terms of MRE by the KK method, is 92.1 within 10%,
significantly larger than that obtained by the KNN, KF, and
SVM methods with 72.2, 51.8 and 65.3, respectively. There-
fore, the proposed KK method more accurately predicted
the values of passengers’ flow by dynamically obtaining the
weight coefficient values. Theoretically, the fusion prediction
method can predict other traffic parameters including traffic
flow, travel time, and travel speed. More tests for the KK
method in other scenarios will be conducted in the near future.
In addition, we will explore how the accuracy of the method
varies with the length of prediction time in the future work.
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