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ABSTRACT This work introduces two novel approaches for the selection of active lightpaths that perform
a spectrum defragmentation process in elastic optical networks (EONs). The algorithms, named DF-Ants
and DF-Gen, are based on ant colony optimization and genetic metaheuristics, respectively, and their
objective is to minimize the fragmentation of the entire network, evaluated with two different fragmentation
metrics. In this way, the blocking probability is expected to be minimized with the fewest number of
reconfigured possible connections. Furthermore, a new performance metric for spectrum defragmentation is
also presented, named weighted blocking rate (WBR). Unicast traffic simulations were conducted, showing
the feasibility of the proposal.

INDEX TERMS Ant colony optimization, elastic optical networks, genetic algorithms, metaheuristics,

spectrum defragmentation.

I. INTRODUCTION

Optical networks are experiencing an exponential growth in
terms of bit rates and bandwidth. This growth is caused by
the expansion of cloud-based services, video on demand,
and virtual datacenters [1], [2], and it is expected that in
the near future, the capacity of the current optical networks
will become saturated (a phenomenon known as ‘“‘capacity
crunch”) [3], [4].

Elastic optical networks (EONSs), also known as flex-grid
networks, were proposed by Jinno et al. [5] as an alterna-
tive for facing the capacity crunch through the efficient use
of fiber optic spectrum. This technology provides superior
flexibility in spectrum assignment strategy for heterogeneous
optical connection requirements, in contrast to traditional
WDM (wavelength division multiplexing) optical networks
with fixed-bandwidth channels. EONs operate following the
G.694.1 ITU-T recommendation, using channels with a flex-
ible bandwidth and allocating just the necessary spectrum
composed of an entire number of 12.5 GHz frequency slots
(FSs) [6]. In this way, a better efficiency of spectrum uti-
lization of each optical link is achieved, and it is possible to
accommodate a higher number of optical connections on a
given fiber.
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it for publication was Weipeng Jing.

VOLUME 7, 2019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

The bandwidth fragmentation problem is caused by the
dynamic assigning and releasing of connection demands in
EON:s, and it can have an important impact on the efficient
use of the spectrum [7]. It consists in the appearance of
isolated unused FS blocks in contiguous fiber links. These
blocks may not be used, considering that optical connections,
or lightpaths, must comply with the continuity and contiguity
bandwidth restrictions in EONSs in the absence of wavelength
conversion [8]. As a consequence, bandwidth fragmentation
has a direct influence in the blocking probability of connec-
tion demands.

One way to address the bandwidth fragmentation is by
rerouting or reconfiguring a subset of active lightpaths in
the network for accommodating the spectrum use of active
connections. This process is known as spectrum defragmen-
tation [9].

Spectrum defragmentation can cause disruptions in the use
of existing lightpaths and therefore a decrease in the final
quality of service (QoS). For this reason, it is desirable to
reduce network fragmentation, reconfiguring the fewest num-
ber of active lightpaths as possible. Therefore, the selection
of active lightpaths for a subsequent defragmentation process
is critical for maintaining a high QoS and decreasing the
operational cost of each defragmentation procedure.

In this work, two novel algorithms are presented for the
selection of active lightpaths in a defragmentation process.
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Both algorithms are based on already mature metaheuris-
tics (ant colony optimization and genetic algorithm) that
aim to minimize two different fragmentation metrics for the
entire network. Therefore, subsequent rejections of connec-
tion demands can be expected to be minimized.

In addition, a new performance metric for the defragmenta-
tion process is introduced, named the weighted blocking rate
(WBR). This metric aims to lead with a trade-off between two
important performance metrics in any of the defragmentation
procedures, namely, the blocking probability and the number
of reconfigured connections.

In Section II, the defragmentation problem is presented.
Section IIT discusses aspects of the first algorithm, named
DF-Ants. In Section 1V, a genetic algorithm for the selection
of active lightpaths is presented, named DF-Gen. Section V
shows experimental results using traffic simulation over
two EON topologies. Finally, Section VI concludes this
work.

Il. SPECTRUM DEFRAGMENTATION OVER EONS

Fig. 1 shows the spectrum, divided into 10 FSs, of two
adjacent links /1 and /5. Due to dynamic traffic, their spectrum
shows fragmentation and only FSs 2, 3 and 7 are available
for simultaneous use by new lightpaths. If a new lightpath
requires two contiguous FSs, only FSs 2 and 3 may be
assigned. Although only 50% of the total available bandwidth
is used in both links, it cannot be used efficiently because of
bandwidth fragmentation.

2 3 4 5 6 7 8 9 10

1
- Occupied FS I:l Available FS

FIGURE 1. Spectrum fragmentation in two links of an EON.

Spectrum defragmentation seeks to reaccommodate the
used FS blocks in order to leave more FS blocks aligned
in contiguous optical links. A typical classification of the
spectrum defragmentation process is as follows:

o Reactive defragmentation [10], [11]: It is performed
when a blocking of a connection demand appears. Its
main objective is to obtain the establishment of the
blocked demand, and it typically involves only a partial
region of the network.

o Proactive defragmentation [10], [11]: The objective of
this process is to decrease the fragmentation state of
the entire network and therefore to achieve a smaller
blocking probability of subsequent demands. It can be
performed periodically, or it can be triggered by a spe-
cific event, when some previously defined threshold is
reached.
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This work is focused on proactive defragmentation, per-
forming a complete reconfiguration procedure to a subset of
existing lightpaths (i.e., allowing a rerouting and spectrum
reassigning).

Zhang et al. published in [12] a comprehensive analysis
of the defragmentation process in EONs, identifying four
subproblems:

1) How to reconfigure: Which RSA (routing and spectrum
assignment) algorithm to use in the defragmentation
process.

2) How to migrate the traffic: Which strategy should be
used in the migration of reconfigured lightpaths to the
new assigned paths and spectrum in order to minimize
disruptions in existing connections.

3) When to reconfigure: What method should be used for
determining the period of time to perform a defragmen-
tation process.

4) What to reconfigure: To decide which lightpaths must
be included in the reconfiguration process in order to
obtain the best results in decreasing fragmentation.

This work studies the fourth subproblem, i.e., the selection
of the lightpaths set to reconfigure, considering two main
objectives: (i) to minimize the number of blocking demands
in a certain period of time, i.e., the blocking probability;
and (ii) to minimize the number of reconfigured lightpaths
to diminish the probability of disruptions.

The physical EON can be modeled as a nondirected graph
G{N, L} with a set of physical nodes N and a set of physical
links L. The bandwidth of each fiber link / € L is divided
in W frequency slots or FSs. Before the defragmentation
procedure, a set of active lightpaths R are installed in the
network. Each lightpath r; € R is defined by a path of k
physical links, connecting the source and destination nodes,
and a set of contiguous FSs.

The selection of lightpaths for a defragmentation proce-
dure consists in the determination of a subset of active light-
paths RP C R that are to be re-routed.

A complete survey on this problem can be found in [9].
To our best understanding, only Zeng et al. [13] use meta-
heuristics to select connections for the defragmentation pro-
cess. They present a simulated annealing-based “‘multistep”
defragmentation process that consists in reconfiguring one
connection at a time, seeking to decrease the fragmentation
state of the network. However, they do not study how to
determine the rate of reconfigured lightpaths for each defrag-
mentation process. Other works, such as [14], propose an
integer linear programming (ILP)-based method, seeking to
minimize the maximum number of occupied wavelength slots
in the network. The defragmentation problem is classified as
NP-Complete [11], [9], so exact methods are not scalable to
complex instances.

Other works focus on heuristics to solve this problem.
As an example, [15] considers the holding time of connec-
tions to reduce fragmentation, while the authors of [16] pro-
pose a make-before-break (MBB) defragmentation, rejecting
connections that cannot be reconfigured by this strategy.
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Neither of these two strategies considers the complete
universe of possible solutions.

This work performs an evaluation of two different
metaheuristics used for the planning of the defragmentation
process, considering two objectives: the blocking probability
and the number of reconfigured connections. These metrics
are evaluated at the end of a dynamic traffic simulation.

Ill. ANT COLONY OPTIMIZATION DEFRAGMENTATION
ALGORITHM: DF-ANTS

This section presents DF-Ants, an ant colony optimiza-
tion (ACO) algorithm for the selection of lightpaths to
reconfigure. This algorithm is based on the ant system
algorithm [17].

DF-Ants seeks to optimize a metric that evaluates the
fragmentation state of the network, measured after a reconfig-
uration process made with a specific set of active lightpaths.
In this way, the rate of future demand blockings is expected
to be minimized.

The considered fragmentation metrics (or FM) are as
follows:

o External Fragmentation Metric (EFM) [18]: EFM, for a

specific optical link /, is calculated as:
MaxBlock
EFM; =1 — ——— 1)
F Sfree
where MaxBlock is the size of the largest FS free block
(in terms of the number of free FSs), and FSg. is the
total number of free FSs in the link.
A value of EFM = 0 indicates a nonfragmented link,
while an EFM value tends to 1 for a very fragmented
link.
o Maximum Slot Index (MSI): MSI, for a specific optical
link /, is defined as the highest FS index unavailable in
the link [19]:

MSI = Max j : FSj =1 2)

where FS; = 1 if it is occupied and FS; = O if it is
available.

A low value of MSI indicates low fragmentation, while
a value of MSI near W indicates a high fragmentation.
It is important to note that this defragmentation metric
can only be used when the RSA algorithm used for rout-
ing the connection demands uses a first-fit [20] criterion
for spectrum assignment.

The values of EFM and MSI for the network will be the
average of the considered metric for all the optical links in a
specific time. Similarly, EFM and MSI for each lightpath will
be equal to the average of the metric for all the component
links in a specific time.

A. DEFINITION OF SUBPROBLEMS.

Initially, FMpy.,, which is the initial value of the FM used in
the algorithm, is calculated for comparison purposes, and the
set of active lightpaths to reconfigure R is empty.
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Algorithm 1 ACO Algorithm: DF-Ants
Require: Physical network G, set of active lightpaths R,
parameter FM,,,

1: Calculate visibility values 7; for each active lightpath r; €
R and FM,,,

2: Initialize pheromone values t;
3: for each artificial ant do
4: RP = Rbe” =0; FMgps = FMprev
5. while FM,,;; < FM,, or |RP| < |R| do
6: Select an active lightpath ; by equation (5)
7 Add ri to RP (RP = RP + 1))
8: Delete physical network lightpaths ; € RP in an
auxiliary graph G, = GF
9: Reroute in G, lightpaths r; in nonascending order
according to the number of required FS
10: if all lightpaths are rerouted then
11: Calculate FM ;5
12: else
13: Block()
14: end if

15:  end while

16:  if [RP| < |[R"*| then

17: Rbest — RD

18:  endif

19:  Perform evaporation process

20:  update pheromone table 7; according to fitness value
IR

21: end for

22: return Best solution R?¢!

Each step of an artificial ant consists in the addi-
tion of one active lightpath to the set of lightpaths to
reconfigure RP. Therefore, the artificial ant will select
consecutively an active lightpath and will include it
in RP.

After each addition, the artificial ant will perform a simu-
lated reconfiguration of the network, with the set of lightpaths
calculated until this step, using an auxiliary graph G,,,. The
objective is to evaluate the value of the fragmentation metric
of the entire network.

If the value of this metric reaches a predetermined
value FM,,,, the artificial ant stops and returns the set of
lightpaths selected at this period of time.

B. FITNESS FUNCTION

The fitness function used to evaluate the solution found by
each artificial ant is the number of active lightpaths to be
rerouted. If R is the set of the total active lightpaths in the
network at the time of the defragmentation procedure, and
RP C R is the set of lightpaths to be rerouted, the fitness
function will be:

fimess = |RP| (3)
where |.| denotes cardinality.

119837



IEEE Access

E. J. Dévalos et al.: Spectrum Defragmentation in EONs: Two Approaches With Metaheuristics

C. PROPOSED ALGORITHM
Two versions of the DF-Ants algorithm are proposed, differ-
ing only in the fragmentation metrics FM used to evaluate the
fragmentation state of the network (EFM or MSI).
Considering that the algorithm tries to minimize the fitness,
the values of pheromone trails 7; associated with each active
lightpath r; will be proportional to the multiplicative inverse
of this value.
The visibility n; of each lightpath r; is calculated once for
all the artificial ants. Its value is the multiplicative inverse of
the fragmentation metric FM; used for each lightpath:

1

= o 4)

Ni

The probability that an active lightpath r; could be selected

to be part of the set of lightpaths to be reconfigured will be
calculated with the well-known ACO probability formula:

B
¥ . 0’
1 I
S ®)
rieR 7j o j

p(ri € RP) =

The parameters @ and B adjust the relative influence of
visibility and pheromones, respectively.

Algorithm 1 presents the proposed process. Given a phys-
ical network G and the objective value of the fragmentation
metric FM,,,, visibility values are calculated and pheromone
values are initialized for each active lightpath in the network.

Then, each artificial ant selects an active lightpath at each
step, and adds it to set RP (lines 6 and 7). Subsequently,
a reconfiguration of RP is performed over an auxiliary net-
work graph Gy .

This process is carried out while the fragmentation metric
FM,,, is larger than the objective value FM,, (line 5). Other-
wise, the artificial ant ends its trip. Finally, the fitness function
is evaluated, the best solution is updated, and the evaporation
(a gradual reduction of all pheromone values considering an
evaporation parameter p) and pheromone update processes
are performed.

IV. GENETIC ALGORITHM DF-GEN

This section describes the genetic algorithm DF-Gen, which
selects a set of active lightpaths to reconfigure with a prede-
fined number of components.

Similar to DF-Ants, each version of DF-Gen uses one of
the fragmentation metrics to characterize the fragmentation
state of each optical link, each lightpath or the entire network.

However, DF-Gen performs the rerouting of a fixed ratio
of active lightpaths y, which is defined a priori.

A. REPRESENTATION OF A CHROMOSOME

A feasible solution (or chromosome) is represented by a
vector RP with size |[RP| = y - R, where R is the set of active
lightpaths at the moment of the defragmentation. This vector
consists of natural numbers i, each one representing an active
lightpath in the network r; € R.
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FIGURE 2. An individual chromosome of the DF-Gen algorithm.

Figure 2 represents a chromosome in which lightpaths rs1,
13, 143, '16, 32 and rs were selected for rerouting. In this case
IRP| = 6.

B. GENERATION OF THE INITIAL POPULATION
The initial population set, with Pob elements or different
solutions, is generated as follows:
o for 30% of the elements, the roulette selection
method [21] is used, assigning to each active lightpath
a probability proportional to the value of the fragmenta-
tion metric used. In this way, the worse lightpaths (con-
sidering the fragmentation of their links) have higher
priority to be included in the chromosomes;
« the remaining 70% is generated randomly, with a uni-
form probability distribution for all the lightpaths (all the
connections have the same probability to be selected).

C. GENETIC OPERATORS

1) MUTATION

Mutation consists in randomly selecting one lightpath r; € RP
and its replacement by another lightpath r; ¢ RP.

2) CROSSOVER
For the crossover operation, the -point crossover method is
used [22].

First, two parents (solutions) are selected using the roulette
selection method, giving to each lightpath a probability pro-
portional to its fragmentation metric. Then, a point of cross-
ing is selected in the vector solution. Both fragments are
combined to generate two different solutions. Figure 3 shows
the implemented crossover method.

i 1 2 3 4 5 6
Parentl 190 2 | 5 |78 45| 1
e —
i 1 2 3 4 5 6 ‘

Parent2 . 133127 155| 8 | 4 [ 1

i 1 2 3 4 5 6 ‘
Childl . 1ot 2 |55 8| 4 | 1

i 1 2 3 4 5 6
Child 2

133 (27| 5|78 [45( 1

FIGURE 3. The crossover operation.
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D. FITNESS FUNCTION

The fitness function of each solution is equal to the frag-
mentation metric used, after performing rerouting of all the
lightpath components of the solution:

fitness = FMpoy 6)

Algorithm 2 illustrates the process. The first step is to
calculate the initial population (lines 1 to 8). Then, the fitness
function of each solution (each chromosome) is calculated.
The parent chromosomes are selected on line 12.

Algorithm 2 Genetic Algorithm: DF-Gen

Require: Physical network G', set of active lightpaths R,
parameters y and Pop

1: Calculate values of FM; for each lightpath r; € R

2: Calculate size of chromosome |RP| = y - |R]

3: for each chromosome R’,? € Pob do

4.  ifk < 0.7 - Pob then

5: Select randomly |R| lightpaths and add them to RkD

6: else

7: Select RP lightpaths using the roulette selection
method, considering values of FM;

8: endif

9: end for

10: while not given stop condition do

11:  Evaluate fitness function of each chromosome in Pob

12:  Select chromosomes parents using the roulette selec-
tion method considering values of FM

13:  Perform crossover y mutation operations

14:  Select best chromosomes for new generation popula-
tion Pop

15: end while

16: return Best chromosome of last generation’s Pop

The operations of crossover and mutation are performed in
line 13. The best solutions are chosen for the next generation,
using elitism. The stop condition is the number of genera-
tions.

V. EXPERIMENTAL RESULTS
Experimental simulations have been conducted with the
objective of determining the feasibility of the proposed algo-
rithms in decreasing demand blockings. A dynamic uni-
cast traffic simulator was implemented over two different
EON topologies: NSFNET (with 14 nodes and 22 optical
links) [23] and USNET (with 24 nodes and 43 links) [24].
As a baseline, we have also implemented the Defrag-
mentation with Fixed Timing and Fixed Ratio (DF-FT-FR)
algorithm, proposed by Zhang et al. [12]. This algorithm
also calculates the value of the FM; for each active light-
path and then selects a number (y - |R|) of them with
the worst values to reroute. For the presented simulations,
y = 0.3 was employed, which appeared to achieve the best
results [12].
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A. PARAMETERS OF DF-ANTS ALGORITHM

Two versions of this algorithm were implemented, each one
trying to minimize a different FM (EFM or MSI). The param-
eters applied to this algorithm for the experiments were
defined after preliminary executions, and they are as follows:

o Number of artificial ants = 30

o Parameter o = 1

o Parameter § =1

o Evaporation parameter p = 0.1

« Objective improvement in the value of FM for the entire
network FMyqr = 0.75 - FM ey

B. PARAMETERS OF DF-GEN ALGORITHM
Similar to the previous case, two different fragment metrics
were used in different versions of the DF-Gen algorithm.

In addition, the values of the y parameter were taken
from the set {0.2; 0.3; 0.4; 0.5; 0.6; 0.7} in order to analyze
the effect of y in the blocking ratio. Hence, experimental
testing was performed with 12 different versions of DF-Gen.
As an example, DF-Gen-40-MSI is the DF-Gen algorithm
that considers the fragmentation metric MSI with y = 0.4
in the considered period of time.

Other parameters applied to this algorithm are as follows:

o Size of population Pop = 50 (each generation works
with 50 different solutions)

« Mutation probability p(mt) = 0.05

« Cross over probability p(cr) = 0.5

« Stop criterion: Number of generations = 50.

It is important to note that these parameters were chosen
with the objective of having the same execution times for
both algorithms (a few seconds for each defragmentation
procedure).

C. PARAMETERS OF THE OPTICAL NETWORK SIMULATOR
The parameters for the generation of testing instances were:

« Total number of FSs for each optical link: 300

o Selection of source and final nodes for each demand
connection: randomly, with a uniform distribution of
probabilities

o Each demand requires a random number of FSs
between 1 and 8

« Each test instance is executed in 1000 periods of discrete
time.

The FA-RSA (Fragmentation Aware-Routing and Spec-
trum Assignment) algorithm, presented in [25], was used
twice: (i) for the initial routing of each demand and (ii) in
the defragmentation process.

Instances of testing with fixed values of traffic vol-
ume were considered, taking values of 400, 500, 550 and
600 Erlangs for NSFNET and 400, 450, 550, 650 and
700 Erlangs for the USNET network.

The arrival of each demand follows a Poisson distribution
with A = 5. The holding time HT of each lightpath follows
an exponential distribution.
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TABLE 1. Experimental values of blocking probability and reconfigurations - NSFNET network.

Fragmentation 400 Erlangs 450 Erlangs 500 Erlangs 550 Erlangs 600 Erlangs

Metric Blocking ¥ Blocking 5 Blocking ¥ Blocking ¥ Blocking ¥
Prob. (%) (%) Prob.(%) (%) Prob.(%) (%) Prob.(%) (%) Prob.(%) (%)

EFM 1.4 30 44 30 49 30 8.4 30 11.4 30

DF-FT-FR MSI 15 30 3.8 30 4.8 30 7.6 30 11.1 30
EFM 0.9 66 3.6 66 4.6 62 7.8 70 10.6 67

DF-Ants MSI 1.0 47 4.1 65 5.1 30 8.5 16 11.8 36
EFM 1.4 20 43 20 5.0 20 8.4 20 11.9 20

DF-Gen-20 MSI 1.3 20 4.0 20 4.8 20 8.1 20 1.2 20
EFM 14 30 4.1 30 49 30 8.3 30 11.1 30

DF-Gen-30 MSI 1.1 30 3.7 30 45 30 7.8 30 10.6 30
EFM 12 40 3.9 40 47 40 7.9 40 11.2 40

DF-Gen-40 MSI 1.0 40 34 40 43 40 7.4 40 10.6 40
EFM 1.3 50 3.9 50 4.6 50 7.7 50 10.9 50

DF-Gen-50 MSI 0.9 50 33 50 42 50 72 50 10.2 50
EFM 12 60 3.7 60 4.6 60 7.6 60 10.7 60

DF-Gen-60 MSI 1.1 60 33 60 4.0 60 72 60 10.6 60
EFM 0.9 70 3.4 70 4.6 70 75 70 10.6 70

DF-Gen-70 MSI 0.9 70 33 70 4.1 70 7.0 70 10.2 70

With no Defragmentation 1.6 4.4 52 8.7 12.3

The defragmentation processes were performed periodi-
cally each 100 time slots, i.e., nine defragmentation processes
were performed with each instance.

For each testing instance (with a fixed value of Erlangs and
in a determined network topology), three different executions
were considered, taking the average value of the results as a
representative value of the testing instance.

In addition, one testing instance with no defragmentation
was also considered for comparison purposes.

D. PERFORMANCE METRICS

The most representative performance metric used to evaluate
the efficiency of a defragmentation process is the blocking
rate, which is equal to the number of blocking number of
demands over the total number of demands in a test instance.

Another important performance metric is the rate of recon-
figured lightpaths over the total active lightpaths y, which
evaluates the complexity of the defragmentation process
operation.

Clearly, the defragmentation algorithm obtains a great
decrease of blocking demands as the value of y increases,
which is undesirable since it means an increase in the oper-
ative cost of each defragmentation process. Furthermore,
it generates an increase in the probability of disruptions in
the service of lightpaths.

Therefore, it is important to find a balance between these
two metrics in trade-off. This work proposes a new defrag-
mentation performance metric, named Wavelength blocking
ratio (WBR), defined as:

WBR = ABIl - (1 —y) @)

where ABI is the difference between the number of blocking
demands that occurs in the testing instance without per-
forming any defragmentation process, and the number of
blocking demands obtained performing the defragmentation
processes. In this sense, ABI evaluates the obtained benefit
(number of avoided blocking demands) achieved due to the
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defragmentation process. This value is weighted by (1 — y),
which indicates the rate of nonconfigured demands connec-
tions. Clearly, this value indicates the simplicity of defrag-
mentation in operative terms, and moreover, it describes
the number of disruptions that could be generated in each
process.

E. OBTAINED RESULTS

Tables 1 and 2 show values of the blocking probability and
y for each testing instance, obtained by DF-Ants, DF-Gen
and the reference DF-FT-FR algorithms, with NSFNET
and USNET network topologies respectively. The values of
blocking probability without performing any defragmenta-
tion process, for the same set of connection demands, are also
presented.

As can be observed, the value of y is fixed for all the exper-
iments except for the DF-Ants algorithm, which performs a
variable number of reconfigurations.

It can also be noted that the best results for blocking
probability (in bold) are reached with higher values of y,
especially for DF-Gen, as expected.

We can also observe that the DF-Ants algorithm seems to
reach good results only for low rates of traffic. Its experimen-
tal results are comparable to other values of DF-Gen only for
300 Erlangs.

The concept of Pareto dominance [26] is explained as
follows: In a multiobjective optimization problem, a solution
A dominates another solution B if A is better than B in at least
one objective and is not worse in any other objective.

Using this concept, we can ascertain that no solution exists
that in the Pareto sense, dominates the rest of the solutions,
considering each instance separately. That is, no algorithm
is the best in blocking probability and y simultaneously.
To compare both proposals, we then use the WBR metric.

Tables 3 and 4 show experimental values of WBR for each
instance and a column with average values of each algorithm.
The best results are shown in bold.
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TABLE 2. Experimental values of blocking probability and reconfigurations - USNET network.

Fragmentation 400 Erlangs 450 Erlangs 550 Erlangs 650 Erlangs 700 Erlangs
Metric Blocking ¥ Blocking 5 Blocking ¥ Blocking ¥ Blocking ¥
Prob. (%) (%) Prob.(%) (%) Prob.(%) (%) Prob.(%) (%) Prob.(%) (%)
EFM 1.1 30 2.6 30 5.8 30 6.6 30 8.7 30
DF-FT-FR MSI 1.0 30 2.8 30 5.7 30 6.3 30 8.7 30
EFM 1.1 63 3.0 69 5.6 69 5.9 88 8.4 84
DF-Ants MSI 0.7 44 2.6 42 5.8 11 6.3 26 9.0 22
EFM 1.0 20 3.3 20 5.9 20 7.1 20 9.2 20
DF-Gen-20 MSI 0.9 20 2.7 20 5.6 20 6.5 20 8.9 20
EFM 1.0 30 3.0 30 5.9 30 6.8 30 9.1 30
DF-Gen-30 MSI 0.8 30 2.6 30 5.4 30 6.5 30 8.6 30
EFM 1.0 40 29 40 5.9 40 6.6 40 8.9 40
DF-Gen-40 MSI 0.8 40 24 40 5.3 40 6.0 40 8.5 40
EFM 1.0 50 2.7 50 5.5 50 6.4 50 8.7 50
DF-Gen-50 MSI 0.7 50 2.3 50 5.0 50 5.9 50 8.4 50
EFM 0.9 60 2.6 60 5.6 60 6.3 60 8.5 60
DF-Gen-60 MSI 0.7 60 22 60 5.0 60 5.9 60 8.1 60
EFM 0.7 70 2.6 70 5.4 70 6.2 70 8.5 70
DF-Gen-70 MSI 0.7 70 23 70 5.0 70 57 70 7.8 70
With no Defragmentation 1.3 3.5 6.1 8.2 9.5
TABLE 3. Values of WBR metric - NSFNET network.
400 Erlangs 450 Erlangs 500 Erlangs 550 Erlangs 600 Erlangs  Average
EFM 7,0 0,0 10,5 13,3 29,4 12,0
DF-FT-FR  MSI 4,9 18,9 13,3 39,9 41,3 23,7
EFM 11,9 13,6 11,0 14,7 27,7 15,8
DF-Ants MSI 15,9 5,3 49 11,8 14,7 10,5
EFM 6,4 438 8,8 12,0 16,0 9,6
DF-Gen-20  MSI 10,4 144 16,0 27,2 44,0 224
EFM 6,3 11,2 10,5 14,7 39,9 16,5
DF-Gen-30  MSI 18,9 23,8 26,6 322 58,1 31,9
EFM 10,8 13,2 15,0 25,8 33,6 19,7
DF-Gen-40  mMSI 19,2 28,8 28,8 39,6 51,0 335
EFM 8,0 11,0 15,0 26,0 34,0 18,8
DF-Gen-50  MSI 17,0 27,0 24,5 38,0 51,0 31,5
EFM 8,0 14,4 12,4 22,0 31,6 17,7
DF-Gen-60  MSI 10,8 21,6 24,0 31,2 34,0 243
EFM 9.9 153 8,7 18,3 25,5 15,5
DF-Gen-70  MSI 9,9 16,8 16,5 26,4 31,8 20,3
TABLE 4. Values of WBR metric - USNET network.
400 Erlangs 450 Erlangs 550 Erlangs 650 Erlangs 700 Erlangs  Average
EFM 7,0 30,8 11,2 18,2 29,4 19,3
DF-FT-FR  MsI 9.8 23,8 11,9 28,7 30,8 21,0
EFM 3,0 7.4 7.8 7,6 9,1 7,0
DF-Ants MSI 16,8 26,1 11,6 31,8 21,8 21,6
EFM 9,6 10,4 6,4 32 15,2 9,0
DF-Gen-20  MSI 15,2 32,0 20,8 27,2 24,8 24,0
EFM 9,1 19,6 5,6 14,0 154 12,7
DF-Gen-30  MSI 17,5 32,9 24,5 23,8 32,2 26,2
EFM 7.8 19,2 6,6 17,4 20,4 143
DF-Gen-40  MSI 15,0 324 234 34,2 324 27,5
EFM 6,0 21,0 15,5 20,0 21,5 16,8
DF-Gen-50  MSI 15,5 30,5 26,0 30,5 29,5 26,4
EFM 72 17,6 10,0 17,6 20,8 14,6
DF-Gen-60  mMSI 12,4 26,8 21,2 24,8 28,4 22,7
EFM 8.4 13,8 10,8 14,4 15,6 12,6
DF-Gen-70  MSI 93 18,6 15,9 21,6 26,4 18,4

For both network topologies, the best average results were
obtained by DF-Gen-40-MSI. Furthermore, this algorithm
reaches the best results for 80% of the instances in NSFNET
and 40% of instances for USNET. Clearly, the optimum value
of y seems to be 0.4. Higher values can obtain better results of
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blocking probability, but they are penalized with higher rates
of reconfigurations.

The findings also draw attention to the low values reached
by the DF-Ants algorithm, which performs similar to or
even worse than the reference heuristic algorithm. This result
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suggests that this metaheuristic is not efficient for the studied
problem.

F. FRAGMENTATION METRICS PERFORMANCE

It is also interesting to compare the results by each FM to
observe which metric is more efficient in avoiding demand
blockings.

Figures 4 and 5 show the average values of the WBR
metric for each defragmentation algorithm, considering the
FM used and the network topology. It is evident that MSI
is the FM that reaches the best results, overcoming EFM in
almost all cases. However, this result must be taken with care,
considering that it may be specifically related to the RSA
algorithm used to allocate each demand or to reconfiguring
the active lightpaths.
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FIGURE 5. Average values of WBR - USNET network.

VI. CONCLUSION

This work presents two algorithms based on well known
metaheuristics to select active connections to be reconfig-
ured in a bandwidth defragmentation procedure for elastic
optical networks. The studied defragmentation process is
proactive, i.e., the fragmentation state of the entire network
is considered. Moreover, this work analyzed the effect of two
fragmentation metrics in avoiding future blockings: EFM and
MSIL
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The two chosen metaheuristics are a genetic algorithm,
DF-Gen, and an ant colony optimization algorithm named
DF-Ants, considering the maturity of those strategies. The
efficiency of both algorithms in minimizing the blocking
probability was analyzed through unicast traffic simulations
over two different EON topologies. In addition, the increase
in the number of reconfigured lightpaths necessary for each
case was analyzed, which is a negative effect since it makes
the operative process of each defragmentation procedure dif-
ficult and increases the probability of service disruptions.

A new performance metric for the defragmentation pro-
cess evaluation was also proposed, named weighted blocking
rate (WBR), to address both mentioned metrics (a trade-off
between the blocking probability and number of reconfigured
lightpaths).

According to the experimental results, the genetic algo-
rithm DF-Gen, with a fixed rate of reconfigured lightpaths
of 40%, obtained the best performance.

In the experiments, each algorithm tried to minimize a
different fragmentation metric, namely, EFM and MSI. The
best results were reached when MSI is considered. However,
this result might be closely linked to the routing and spectrum
assignment (RSA) algorithm used in the simulations, which
will be further studied by the authors.

Ultimately, considering the low values of execution times,
these experiments show the feasibility of using metaheuristics
for selecting active lightpaths in defragmentation processes.

As future work, the authors propose a comparison to other
metaheuristics as swarm particle optimization and bee colony
optimization, using the same metrics or alternatively, propos-
ing new metrics, and also considering execution time and
convergence.
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