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ABSTRACT As the data becomes bigger and more complex, people tend to process it in a distributed
system implemented on clusters. Due to the power consumption, cost, and differentiated price-performance,
the clusters are evolving into the system with heterogeneous hardware leading to the performance difference
among the nodes. Even in a homogeneous cluster, the performance of the nodes is different due to the resource
competition and the communication cost. Some nodes with poor performance will drag down the efficiency
of the whole system. Existing parallel computing strategies such as bulk synchronous parallel strategy and
stale synchronous parallel strategy are not well suited to this problem. To address it, we proposed a free
stale synchronous parallel (FSSP) strategy to free the system from the negative impact of those nodes.
FSSP is improved from stale synchronous parallel (SSP) strategy, which can effectively and accurately
figure out the slow nodes and eliminate the negative effects of those nodes. We validated the performance
of the FSSP strategy by using some classical machine learning algorithms and datasets. Our experimental
results demonstrated that FSSP was 1.5-12× faster than the bulk synchronous parallel strategy and stale
synchronous parallel strategy, and it used 4× fewer iterations than the asynchronous parallel strategy to
converge.

INDEX TERMS Straggler, parallel strategy, parallel programming.

I. INTRODUCTION
The massive volumes of historical data that already exists
and the sharp data generation speed have brought us more
intractable challenges. The sheer volume of data has led to the
interest in parallel computing and distributed systems. The
leading example is the MapReduce based systems [1]. This
kind of systems works on low-cost unreliable commodity
hardware, and it is an extremely scalable cluster consist of
redundant array of independent nodes [2]. However, the inef-
ficiency in iterative calculations of MapReduce makes it no
longer suitable for many current applications [3], [4].

With the development of distributed computing, many new
solutions have emerged, such as GraphX [5], Hama [6], and
so on [7]–[9]. These frameworks can show their strengths in
most applications. However, due to the limitations of parallel
computing strategies, they are not satisfactory in some cases.

The associate editor coordinating the review of this article and approving
it for publication was Wenbing Zhao.

For example, the bulk synchronous parallel (BSP) strategy
based frameworks, such as Hama, require all nodes to com-
plete the tasks of current stage before proceeding to the next
stage. The strict synchronous limitation of BSP induces the
problem that several stragglers will drag down the efficiency
of the whole system. In order to break the shortcoming of the
strict synchronous restrictions and accelerate the computing
speed, an asynchronous parallel (ASP) strategy has been pro-
posed [10]-[12]. This kind of strategy eliminates the negative
influence of the stragglers in BSP strategy by allowing each
node to work without synchronous restriction and to use local
parameters. The independent local computing makes it easy
for each node to fall into a local optimal solution instead of
a global optimal solution. Hence, the ASP strategy cannot
guarantee calculation convergence. Ho et al. [13] proposes
a stale synchronous parallel (SSP) strategy, which uses a
staleness threshold to control the synchronization of work
process. As long as the process gap between the fastest node
and the slowest node is within the threshold (e.g., the number
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of iterations of each node in an iterative work), the system
switches to the asynchronous parallel computing. When the
gap exceeds this threshold, the fastest node will wait for the
slowest node to catch up. The SSP strategy is considered as
a compromise between asynchronous parallel strategy and
synchronous parallel strategy. Nevertheless, the efficiency
of the SSP based system is still largely impacted by the
stragglers [14]–[16].

Stragglers prevail in both heterogeneous and homogeneous
systems. Due to the differentiated price-performance, cost,
and energy consumption balance [17]–[21], there are often
multiple small clusters combined into a big cluster as a
whole. The heterogeneous environment caused by software
configurations and hardware diversity leads to the different
performance of nodes, and results in the speeds of task com-
pletion to be unequal [22]–[24]. The faster nodes need to
wait for stragglers to complete their tasks before they can
show the final result. The waiting process is a waste of com-
puting resources. In a distributed environment, the commu-
nication latency, overheads, and bandwidth may change the
load balance, the synchronization behavior, and the resource
contention [25]-[28]. Even in a homogeneous environment,
the node calculation speed will be different due to resource
competition and load imbalance. The performance differ-
ences will affect the overall performance of the system.

The ASP strategy and the SSP strategy may be effective
with the nodes caused by temporary slowdowns, but their
performance are not satisfactory with stragglers maintain low
efficiency during the work entirely. The proposed solutions
work efficiently in MapReduce systems, but they are not
applicable for other systems. Thus, we proposed a free stale
synchronous parallel (FSSP) strategy to address this problem.

Based on SSP, we used a penalty times mechanism to
distinguish the stragglers. The node in FSSP will record the
number of times when it is too slow to make the fastest node
to pause, we called it slow times. Once the slow times reach
the preset penalty times, the slow node will be identified as a
straggler and will be excluded from the subsequent process.
After the exclusion, the system will be free from the impact
of the stragglers. The job undertaken by the punished node
will be borne by the other nodes.

In our previous work [29], we implemented FSSP on the
parameter server [30], [31] and compared it with aforemen-
tioned BSP strategy, ASP strategy and SSP strategy on some
classic algorithm models and data sets. The experimental
results demonstrated that FSSP outperformed BSP, ASP, and
SSP strategies altogether. However, our previous implemen-
tation did not simulate the real situation well, and was fragile
in large scale computing situation. In our previous experi-
ments, we set only one straggler, and the actual application
situation may exist several stragglers. The job copy mech-
anism of our previous work was efficient in a small-scale
computing task, but inefficient in large-scale tasks. As the
scale increases, the problem of excessive memory usage will
decrease the performance of the system. Therefore, we make
several main additional contributions in this work

1) Explore the impact of the stragglers on the overall
performance of the system and list the experimental
results.

2) Expand the scale of stragglers to simulate the real
situation.

3) Change the job copy mechanism from neighbor nodes
to the fast node.

The rest of this paper is organized as follows. In Section2,
we introduce the related works. In section3, we evaluate the
influence of stragglers by several experiments. In Section4,
we describe the free stale synchronous parallel (FSSP)
strategy. In Section5, we evaluate FSSP and compare it
with other strategies. In Section 6, we finally sum up our
contributions.

II. RELATED WORK
A. COUNTERMEASURE OF THE STRAGGLERS
IN MAPREDUCE
As an epoch-making pioneering theoretical technology,
MapReduce has greatly promoted the development of big
data, and has spawned many big data processing frameworks.
The most famous one is Hadoop implemented by Yahoo.
Nevertheless, the development of MapReduce and Hadoop
has exposed lots of shortcomings. For example, the defects
of MapReduce limit the efficiency of the performance of
Hadoop on loop operations, and the programming paradigm
of MapReduce limits the implementation of computations
that cannot be converted into this paradigm. Zaharia et al. [32]
points out that some of the implicit assumptions of the sched-
uler of Hadoop make Hadoop inefficient in environments
with stragglers. For example, Hadoop implicitly assumes that
nodes perform work at roughly the same rate, and the tasks
progress at a constant rate throughout time. However, in the
actual application environment, the work performance of
nodes is generally not static. The nodes will exhibit different
working efficiencies with different workloads. When the load
is larger, the efficiency will be relatively lower. The scheduler
of Hadoop treats the time cost for each phase as the same.
For example, in a reduce task, the execution is divided into
three phases, each of which accounts for 1/3 of the total
time. It leads to the inaccurate judgment of the stragglers.
MapReduce systems are overly idealized for homogeneous
operating environments, and they perform inefficiently in
heterogeneous environments. The aforementioned Hadoop,
as well as Twister [33] and ST-Hadoop [34], do not address
this problem satisfactorily.

To address this problem, Zaharia et al. [32] proposes the
Longest Approximate Time to End (LATE) algorithm. This
algorithm relies on the speculative execution mechanism of
Hadoop. When a node is identified as a straggler in a task,
MapReduce runs a speculative copy of its task on another
machine to finish the computation faster. Hadoop uses a
progress score between 0 and 1 to determinewhether a node is
a straggler. In this scoring mechanism, the proportion of each
stage to the total time spent is the same, and it is scored by the
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current stage of the node. When the progress score of a task is
less than the average for its category minus 0.2, and the task
has run for at least one minute, it is marked as a straggler. The
LATE algorithm relies on this scoring mechanism to predict
the longest possible execution time of each node, and always
perform speculative execution on the nodes that may run the
longest. These tasks, which belong to the predicted stragglers,
are fulfilled by other nodes, thus reducing the impact of these
slow nodes on the overall system. However, the LATE algo-
rithm also has some shortcomings. Its forecasting mechanism
relies on the Hadoop scoring mechanism, which is an overly
idealized static mechanism. This static scoring mechanism is
not robust against the various emergencies that may occur in
actual operation.

Since the LATE algorithm still needs many improvements
under dynamic conditions, Fadika et al. [22] designs a new
MapReduce based systemMARLA (MApReduce with adap-
tive Load balancing for heterogeneous and Load imbalAnced
clusters) to deal with dynamic heterogeneous environments.
InMARLA, the traditional task distributionmechanism of the
existing MapReduce system is replaced by active requests of
the work nodes. The master node registers the total number of
tasks available to the nodes, and the work nodes are afforded a
processing identification tag, which is used to request tasks.
When the work node completes its own task, it can request
a new one from the master node, so that the slow node will
process fewer tasks accordingly. In that case, the impact of
the stragglers on the overall system becomes less serious.
Ahmad et al. [23] also designs a new MapReduce system
Tarazu to address this problem. They analyze the reason for
the performance differences in the workflows of MapRe-
duce in detail, and the most important reasons includes the
interaction between loads balancing, network traffic in Map
and the reduce phase imbalance amplified by heterogeneity.
Tarazu improves traditional workflows and performs more
efficiently in the condition with stragglers.

Although these aforementioned solutions performed effi-
ciently in the condition with stragglers, they are over-reliant
on the mechanism of the MapReduce and not applicable for
other systems [35]–[37].

B. EXISTING PARALLEL STRATEGIES
1) BSP STRATEGY
The most widely used parallel strategy is bulk synchronous
parallel (BSP) strategy, which requires strict synchronous
restriction. In BSP, it required all nodes to complete their
jobs of current clock before entering the next clock. Never-
theless, the different performance of the nodes leads to the
awkward situation that some stragglers drag down the overall
efficiency, and this problem is more prominent in heteroge-
neous environments [22]. Another problem is that the strict
synchronization requirements cause massive communication
between nodes leading to large communication overheads.
The time cost by communication may be a lot more than the
calculation time [32], [38].

FIGURE 1. The SSP strategy.

2) ASP STRATEGY
In order to accelerate the computing speed and reduce the
communication overheads in BSP, some improved BSP solu-
tions have been proposed, such as [39], [40], but they are
not sufficiently satisfactory. Thus, more loose strategies than
BSP have been proposed, such as [10], [41], [42]. Take
DistBelief [10] as an example. DistBelief includes a kind of
asynchronous parallel (ASP) strategy called Downpour SGD,
which allows each node updates part of the overall parame-
ters. At the same time, in order to enable the nodes to com-
plete their respective calculations, each node copies the entire
model to local before calculation and updates the parameters
asynchronously. This kind of strategy greatly increases the
computing speed and reduces the communication overheads
to some extent, but the independent local computing results
in the calculated model to be a local optimal result not the
global optimal result. Thus, in ASP, convergence cannot be
guaranteed.

3) SSP STRATEGY
Taking into account the convergence guarantee of BSP and
the calculation speed of ASP, Qirong Ho proposes a stale syn-
chronous parallel (SSP) strategy [13], which is also widely
used in applications [43]–[45]. This strategy contains a syn-
chronous staleness threshold, and the fastest node cannot
exceed the slowest one more than the predefined staleness
threshold. Before the nodes reach this limit, they work asyn-
chronously. Whenever the work process gap between the
fastest node and the slowest node reaches the limit of stale
threshold, the fastest node will pause and wait for the slowest
one to catch up before entering the next work process, like
what is shown in Figure 1.

In their work [13], the experimental results demonstrate
that the larger the staleness threshold value is, the less time
is used for communication consumption, and the closer to
the asynchronous parallel strategy. The existence of syn-
chronous boundary guarantees the convergence of SSP.
Zhang et al. [46] proposes amethod to dynamically adjust this
staleness threshold in the calculation task. However, whether
it is the original fixed synchronous boundary or the dynamic
one, the stragglers will still drag down the efficiency of the
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whole system, especially with the existence of the stragglers
mentioned above. In order to address the problem that the
slow nodes drag the system, we proposed the free stale syn-
chronous parallel (FSSP) strategy.

III. THE STRAGGLERS
In this section, we discuss the causes of stragglers and demon-
strate the effects of these stragglers through experiments.

A. THE CAUSE OF STRAGGLERS
The twomain reasons for the performance difference between
the nodes are heterogeneity and competition. Many practical
applications are now built on virtual digital centers or cloud
servers. For example, the New York Times rented 100 virtual
machines for a day to convert 11 million scanned articles
to PDFs [32]. These virtual machines may run on different
physical hosts, and their performance differences are subject
to aging and configuration. Some physical hosts will be in
different computer rooms that are geographically far apart,
which not only brings hardware differences, but also huge
communication overheads.

Even in a cluster, virtual machines also compete for hard
disk and network bandwidth. With clusters such as those
established on Amazon Elastic Compute Cloud, their nodes
may be distributed on different physical hosts, and the virtual
machines of other users are also running on top of these
physical hosts. Since the clusters of different users generally
operate different tasks, the competition intensity of resources
between the cluster of the same users and the different users
are generally different. Differences in the level of compe-
tition lead to different resources available and performance
differences.

Of course, in addition to these two main factors, there are
many situations that can cause different node performance,
such as system failures, program errors, load problems, and
so on [47]–[49]. Since there are so many factors that cause
stragglers, some reasonable methods are required to deal with
this problem.

B. THE IMPACT OF STRAGGLERS
Jiang et al. [14] explore the extent of impact of stragglers
on BSP systems, ASP systems, and SSP systems. In their
experiments, they activate the sleep() function in 20% nodes
to simulate the environment with stragglers, and they increase
the sleep time to increase heterogeneity. Their experimental
results show that when stragglers exist, the performance of
the three types of systems decreases correspondingly. In the
BSP system, the overall performance of the system is greatly
affected by stragglers due to strict synchronization restric-
tions. When the running time of stragglers is twice that of
other nodes, the time for the system to complete tasks is
doubled correspondingly. In ASP system and SSP system,
the calculation speed of stragglers is slow, which makes the
speed of parameter updating different. The overall parameters
do not conform to the objective function and the performance
of the system is also decreased.

FIGURE 2. Performance of existing parallel strategies with different scale
of stragglers.

In order to explore the impact of the stragglers more ade-
quately, we supplemented the impact of different numbers of
stragglers on the performance of the three types of systems.
In this section, the dataset we used is Netflix prize data,
and the benchmark algorithm is matrix decomposition. The
experiment was implemented on MPI, which used 64 proces-
sors to perform the task. The specific hardware environment
was given in Section 5. We refered to the experiment in [14],
and artificially set some stragglers through the sleep() func-
tion. The experimental results were demonstrated in Figure 2.

1) RESULT
As shown in Figure 2, when the scale of stragglers increases,
the execution time of the task using the three parallel
strategies increases correspondingly. Thus the performance
decreases. When execution time of the stragglers is set to be
2× more of the normal node duration, the execution time
under the BSP and SSP strategies is roughly 2× more than
before. And the execution time slightly increases when the
scale of the stragglers becomes larger. The execution time
under the ASP strategy has increased correspondingly with
the increase in the scale of stragglers, but the change in
execution time is not as obvious as BSP and SSP.

2) DISCUSSION
Due to the synchronization restrictions, when running under
BSP and SSP strategies, the execution time will be seriously
dragged when stragglers occurs, because synchronization
requires all threads to keep their progress consistent or within
a certain range. The slow computing speed of stragglers
will drag down the efficiency of others. With the scale of
stragglers increasing, the impact of the running speed is not
as severe as the time when the first straggler occurs, for the
synchronization overheads is more related to the execution
time of the stragglers rather than the amount of the stragglers.

When running under the ASP strategy, the overall runtime
did not change drastically because there is no synchronization
limit. Nevertheless, the appearance of stragglers affects the
convergence of the overall model, so that the model can-
not meet the objective function, and the overall execution
time is also extended. As the number of stragglers increases,
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this problem becomes more severe and the corresponding
execution time costs more.

IV. THE FREE STALE SYNCHRONOUS
PARALLEL STRATEGY
A. DESIGN OF THE FSSP STRATEGY
As the amount of data grows larger and the calculations
become more complicated, a cluster of multiple machines is
generally used to accomplish the calculation task. Assume
that we want to train a machine learning model with multiple
parameters P = {p1, p2,. . . , pn}. In an iteratively optimized
model, the parameter P is updated by iterations, and the
objective function is used to evaluate the model. If the target
requirement is not met, then the next iteration is performed
to update the parameters, until the entire model gradually
converges to the object. In the iterative process, each node
or thread follows a certain parallel strategy to control the
progress of the task. The whole process is represented by
algorithm 1.

Algorithm 1 Typical Parallel Machine Learning Function
1: Init_Model(P);
2: for i = 0 to Max_iteration do
3: Synchronization_Strategy();
4: Read_Data(data);
5: Param_Update(P, data);
6: if Object_Func(P) <= Object then
7: Break;
8: end if
9: end for
10: return Model(P).

As the existing parallel strategies perform inefficiently
with the presence of the stragglers, we designed the free
stale synchronous parallel (FSSP) strategy to distinguish the
stragglers and reduce their damage to overall performance.
FSSP contains two part of aspects: the mechanism of strag-
gler detecting, and the mechanism of computing integrity
protection.

1) STRAGGLER DETECTIVE MECHANISM OF FSSP
In this section, some important names and their definitions
are listed below:
slow times: The times when a node is too slow to make the

fastest node pause in SSP.
penalty times: This is a preset factor as the condition to

judge the stragglers and trigger the punishment. When the
slow times of one node reach the penalty times, it will be
identified as a straggler.

SSP uses the staleness threshold to control the overall
working process, and we used this mechanism to detect the
stragglers. We found that a temporary slowdown is normal
in actual application due to the work load and network delay,
and performance fluctuation will lead to the misjudgement of
the stragglers [50]. To avoid the misjudgement, we used the
penalty times to control the strictness of evaluation criteria.

FIGURE 3. Straggler detective mechanism of the FSSP strategy.

FIGURE 4. Traditional distributed task executing scenario.

A proper penalty timeswill improve the accuracy of straggler
judgement.

In Figure 3, if we set the penalty times are 2, when the slow
times of worker 2 reach the penalty times, worker 2 will be
excluded from the subsequent calculation process.

2) COMPUTING INTEGRITY PROTECTION
MECHANISM OF FSSP
Nevertheless, in the process of distributed computing tasks,
each node is responsible for updating part of the parameters.
If one node is stopped, this part of parameters will not be
updated. Thus, a computing integrity protection mechanism
is needed after stragglers being excluded.

In a traditional distributed task, the parameters updating
scenario is like Figure 4. For the parameters P={p1, p2,...,
pn}, the update process in worker group W={w1, w2,..., wn}
is as follows:

p(t+1)i = p(t)i +1(wi, p
(t)
i ) (1)

In that case, once a machine stops working, some param-
eters will not be updated, and the model will not meet the
requirement.

In our previous work [29], we copy the job from one node
to its neighbour node like Figure 5 at the beginning of the task.
In that case, once a node is excluded from the worker group,
its job will not lost and finished by the neighbouring node.
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FIGURE 5. Job copy on neighboring node.

FIGURE 6. Job copy on the fastest node.

Although the neighbor-copy is efficient in a small scale task,
it occupies too much memory, and the neighbouring nodes
may not be the best choice for job copy. Thus, when the task
scale becomes larger, the former implementation becomes
more inefficiently than other parallel strategies.

To improve the performance under larger scale task,
we changed the job copymechanism from neighbouring node
to the fastest node. SSP maintains the work process (more
explicitly, their iterations) of the work nodes on server node
to control their process synchronization, and FSSP also use
the process information to judge the straggler. Once a node
is identified as a straggler and be excluded from the worker
group, its job will be copied to the fastest node according
to their work process maintained by the server node. If the
fastest node has been occupied, the job of the straggler will
be copied to another unoccupied fastest node.

The overall flow of FSSP is represented by algorithm 2
and 3.

Algorithm 2 Parallel Machine Learning Function in FSSP on
Workers
1: Init_Model(P);
2: slow_times = 0;
3: penalty_times = n;

// Set penalty_times.
4: for i = 0 to Max_iteration do
5: SSP_Control(&slow_times);

// If the node reaches the threshold, its slow_timeswill
increase.

6: if slow_times >= penalty_times then
7: Request_Job_Copy();

// Send job copy request to server node, server node
will assign the job.

8: Stop();
//When slow_times reaches the penalty_times, this
node/process will be excluded from the subsequent
process.

9: else
10: if Check_Occupied() then
11: Allocation_Receive();

// If this node is occupied, it will copy the job
from the straggler according to the allocation.

12: end if
13: Read_Data(data);
14: Param_Update(P, data);
15: if Object_Func(P) <= Object then
16: Break;
17: end if
18: end if
19: end for
20: return Model(P).

Algorithm 3 Job Copy Allocation on Server
1: job_copy_request = Receive_Job_Copy_Request();

// Receive the job copy request from the straggler.
2: iteration_info = Gather_Iteration_Info();

// Gather the iteration information of all the nodes.
3: target = Find_Unoccupied_Worker(iteration_info);

// Find the fastest unoccupied node.
4: Occupy_Worker(target);

// Occupy the target node.
5: Allocation_Request(target, job_copy_request);

// Allocate the job copy from the request node to the
target node.

B. THEORETICAL ANALYSIS OF THE FSSP STRATEGY
In a distributed computing task, assume that we want to train
a model M with an initial state of M0, and node w is one of
the nodes affected by the aforementioned stragglers in a SSP
system. It can read the global model as the formula below in
iteration i according to [13].

Mi = M0 + U10∼(i−s) + U2(i−s)∼i + U3i∼(i+s−1) (2)
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In (2), U represents for the update operation, and s denotes
the stale threshold. This equation consists of three major
parts:

1) U10∼(i−s) represents for the update accomplished by
all nodes before iteration (i-s). In the SSP strategy, this
part can be read by all the nodes.

2) U2(i−s)∼i represents for the update finished by node w
from iteration (i-s) to i.

3) U3i∼(i+s−1) represents for the update operation of all
the nodes except node w range from iteration (i-s)
to (i+s-1). This part of update from other nodes can be
read by node w because of the stale threshold.

Due to the synchronous restriction, node w will wait for
the stragglers several times. In FSSP, the work is different
before the time, when the slowest node being excluded, from
the work after this time point. Suppose that the average time
to complete an iteration for node w is cw.

1) BEFORE THE NODE BEING EXCLUDED
In this period, the FSSP strategy runs in the SSP way. We use
twait to denote the time node w costs on waiting. At time t,
the number of iterations finished by node w is:

iterw = (t − twait )/cw (3)

And the update operations finished by node w are:

Uw =
iterw∑
i=0

u(w,i) (4)

2) AFTER THE NODE BEING EXCLUDED
The cluster has been free from the impact of the slowest node
since the exclusion time. t ,wait denotes the time node w costs
on waiting. At time t, the number of iterations node w has
finished is:

iter ,
w = (t − t ,wait )/cw (5)

And the update node finished by w is:

U ,
w =

iter ,w∑
i=0

u(w,i) (6)

The stragglers has been excluded from the subsequent
process, hence the time cost on waiting in this period is less
than the same work in SSP. In that case, we get the formula
as follows:

twait > t ,wait (7)

iterw > iter ,
w (8)

Uw ∈ U ,
w (9)

Compared with the SSP strategy, the FSSP strategy frees
the fast nodes from the impact of the stragglers, and lets
them spend more time on computing rather than waiting.
Hence, the nodes accomplished more iterations than that in
SSP strategy at the same time.

TABLE 1. The experiment datasets.

Assume that we want to train a model M with an initial
state of M0 under the FSSP strategy. For node w, it can read
the model as the formula below at time t:

Mt = M0 + U1,
0∼(i−s) + U2,

(i−s)∼i + U3,
i∼(i+s−1) (10)

According to the inferencementioned above, the fast nodes
spend more time on computing and accomplish more itera-
tions than those in the SSP strategy. Hence, by comparing
formula 2 with formula 1, we get the conclusions as follows:

U1 ∈ U
,
1 (11)

In period U ,
2 and U ,

3, the nodes are working on the later
iteration than the period in U2 and U3.
Therefore, compared with the SSP strategy, the FSSP strat-

egy reduces the overheads on synchronization and takes full
advantage of the computing resource.

V. EVALUATION
In this section, we evaluated the effectiveness of the FSSP
strategy against the stragglers, and compared it with existing
parallel strategies. The experimental results demonstrated
that the FSSP strategy outperformed the other parallel
strategies.

A. EXPERIMENTAL SETUP
1) EXPERIMENT ENVIRONMENT
The computing platform is consist of 140 IBM PureFlex
x240 blade nodes. Each node is configured with 64GB of
RAM and two 2.9GHz Intel E5-2690 CPUs with 8 cores,
running on Ubuntu 16.04. It is a public computing plat-
form carrying many computing tasks from different users.
The resource competition among nodes is unpredictable and
makes the experimental environment more closer to the
reality.

2) BENCHMARKING APPLICATION AND DATASET
We chose matrix factorization and PageRank as the
benchmarking applications to evaluate the FSSP strategy. The
information of the datasets are shown in Table 1. For matrix
factorization, we used the method of stochastic gradient
descent to find the optimal model by iterations. And we used
full batch of ego-Twitter and Netflix dataset. For PageRank,
we implemented it by the method of power iteration, and used
10% minibatch on LiveJournal social network per iteration.
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TABLE 2. The information of the experiment groups.

3) EXPERIMENT DESIGN
We implemented the benchmark applications by MPI on
the aforementioned computing platform. The unpredictable
resource competitionmay lead to the differential performance
of the processors, but it cannot guarantee the appearance of
the stragglers. Following [14], we random picked 5% of the
processors to be stragglers by using sleep() function, and
we chose one of the processors to be the root processor to
maintain the iteration information of all the processors. Every
processor compare its work process with the overall work
process to evaluate its performance. When it is too slow to
make the fastest node to pause, its slow times will increase
until reaching the penalty times. When the processor reaching
the penalty times, it will send a request to the root processor
and prepare to be excluded. The root processor will appoint
an unoccupied fastest processor to inherit the job of the
straggler.

We implemented four experiment groups to evaluate the
performance of the FSSP strategy.

B. EXPERIMENT RESULT AND DISCUSSION
1) EXECUTION TIME
In figure 7 and 8, we compared the execution time of all
the parallel strategies. The experimental result demonstrated
that the ASP strategy and the FSSP strategy finished the
task faster than the BSP strategy and the SSP strategy in
all of the experiment groups. The fast processors in ASP
did not have the synchronous overheads as the processors
in BSP and SSP. The FSSP strategy reduced the critical
synchronous overheads caused by the stragglers through its
straggler exclusion, and free the system from the impact
from the stragglers. The performance of ASP and FSSP was
different in figure 7 and 8. Relating to figure 10, in exper-
iment group 3 and 4, the ASP strategy cannot converge the
loss and finished the work until reaching the max iteration,
thus the performance of ASP was unstable. Nevertheless,
the FSSP strategy was designed on the basis of the SSP strat-
egy, thus the parallel synchronization happened throughout
the entire task. The parallel synchronization made the
performance of FSSP to be stable.

FIGURE 7. The comparison of the execution time on matrix factorization
(experiment group 1 and 2).

FIGURE 8. The comparison of the execution time on pagerank
(experiment group 3 and 4).

FIGURE 9. The comparison of the iteration quantity on matrix
factorization (experiment group 1 and 2).

2) ITERATION QUANTITY AND QUANTITY
In figure 9 and 10, we compared the iteration quantity
(lower the better) when the task finishing of all the par-
allel strategies. Figure 9 and 10 revealed that the itera-
tion quantity of the ASP strategy was the most among all
of the strategies due to its poor convergence performance.
The ASP strategy cannot guarantee the convergence of the
object, thus ASP needmore iterations of calculations to finish
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FIGURE 10. The comparison of the iteration quantity on pagerank
(experiment group 3 and 4).

FIGURE 11. The comparison of the convergence on iteration quantity of
experiment group 1.

FIGURE 12. The comparison of the convergence on iteration quantity of
experiment group 2.

the task. Figure 11-14 demonstrated that the convergence
quality of the ASP strategy was unsatisfactory in detail. The
strategies with synchronization restriction converged better
than the ASP strategy. The FSSP strategy inherited the syn-
chronous mechanism of the SSP strategy, thus the conver-
gence quality of FSSP was much more satisfactory than ASP.
And the straggler exclusion reduced the negative effect of
the stragglers and speeded up the computing, thus iteration
quality of the FSSP strategy was better than the BSP strategy
and the SSP strategy.

FIGURE 13. The comparison of the convergence on iteration quantity of
experiment group 3.

FIGURE 14. The comparison of the convergence on iteration quantity of
experiment group 4.

FIGURE 15. The comparison of the convergence on execution time of
experiment group 1.

3) CONVERGENCE PERFORMANCE
Figure 11-18 demonstrated that performance comparison
of the convergence of all the strategies. In figure 11-14,
from the iteration dimension, the ASP strategy performed
worst, and the strategies with synchronization restriction per-
formed better. The convergence performance of ASP was
the worst, because it increased the computational speed
at the expense of convergence guarantee. From the time
dimension, in figure 15 and 16, the ASP strategy converged
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FIGURE 16. The comparison of the convergence on execution time of
experiment group 2.

FIGURE 17. The comparison of the convergence on execution time of
experiment group 3.

FIGURE 18. The comparison of the convergence on execution time of
experiment group 4.

fastest due to its independent computing mode and no
synchronization restriction, but its performance was the worst
in figure 17 and 18. Figure 15-18 demonstrated that a strategy
without synchronization restriction like ASP was fragile on a
task optimized by iteration. The FSSP strategy reduced the
negative effect of the stragglers but still keep the synchro-
nization mechanism, thus FSSP converged faster than BSP
and SSP. And the synchronization mechanism inherited from

SSP made the convergence quality of FSSP much better than
ASP. FSSP both take care of the convergence quality and
computing speed, thus the comprehensive performance was
the best among the strategies.

VI. CONCLUSION
The existing parallel strategies work well in normal scenario,
but they are inefficient with the existence of the stragglers.
To address this problem, we proposed the free stale syn-
chronous parallel (FSSP) strategy. Based on the SSP strat-
egy, the FSSP strategy combines the staleness threshold
with the penalty times mechanism to detect the stragglers,
and excludes the stragglers from the subsequent work. The
job copy mechanism of FSSP can protect the integrity of
the task after the stragglers being excluded. The experi-
mental results demonstrated that, with the existence of the
stragglers, the FSSP strategy was 1.5-12× faster than the
bulk synchronous parallel strategy and stale synchronous
parallel strategy, and it used 4× fewer iterations than the
asynchronous parallel strategy to converge.
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