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ABSTRACT In this paper, a multi-agent deep reinforcement learning method was adopted to realize cooper-
ative spectrum sensing in cognitive radio networks. Each secondary user learns an efficient sensing strategy
from the sensing results of some of the selected spectra to avoid interference to the primary users and to
coordinate with other secondary users. It is necessary to balance exploration and exploitation in the learning
process when using deep reinforcement learning methods, helping explain that upper confidence bound
with Hoeffding-style bonus has been adopted in this paper to improve the efficiency of exploration. The
simulation results verify that the proposed algorithm, when compared with the conventional reinforcement
learning methods with ε-greedy exploration, is much easier to achieve faster convergence speed and better
reward performance.

INDEX TERMS Cooperative spectrum sensing, deep reinforcement learning, cognitive radio, upper bound
confidence.

I. INTRODUCTION
The rapid development of wireless communication has been
accompanied by spectrum resources which are becoming
scarcer. However, some investigations [1], [2] have shown
that most of the licensed spectra are significantly underuti-
lized, demonstrating that the efficient utilization of spectrum
resources has attracted substantial interest of both academic
and industry community, thereby promoting the develop-
ment of cognitive radio (CR) technology [3]. The secondary
users (SUs) in CR networks, under the premise of ensuring
that the primary users (PUs) are not interfered, can access
to the idle spectra for their data transmission. For example,
if the PUs start to use their allocated spectra, the SUs need to
vacate these spectra immediately, therebymaking it necessary
for the SUs to sense the changing idle spectra caused by
the actions of the PUs, suggesting the importance of the
spectrum sensing technology to establish CR networks [4].

The associate editor coordinating the review of this article and approving
it for publication was Emmanouil Pateromichelakis.

The SUs may communicate with each other to improve the
reliability of sensing results [5], [7]. Besides, cooperative
spectrum sensing is often required [8], [12] to schedule the
sensed spectra of each SU to perceive more idle spectra with
limited sensing ability [13], [14]. This paper will study the
aforementioned cooperative spectrum sensing problem.

In 2017, the Defense Advanced Research Projects
Agency (DARPA) launched and carried out the spectrum
collaboration challenge (SC2) essentially in a CR network
scenario, calling for smarter technology in spectrum utiliza-
tion. It is reasonable to apply the rapidly evolving machine
learning technology in CR networks [15]. Reference [16] uses
Q-learning to propose a centralized algorithm to copewith the
spectrum sensing and access problem. Reference [17] imple-
ments a distributed Q-learning based spectrum sensing algo-
rithm in which each SU regards the behavior of other SUs as
parts of the environment. It is essential for Q-learning to store
the estimated values of the cumulative discounted reward
(which are usually called as Q-values) of every state-action
pairs. Additionally, a linear value function approximation
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method is adopted in [18] to approximate the Q-values based
on a linear combination of features, the implementation of
which can contribute to reducing the required storage ability
in large networks but carefully selected features are needed
to ensure the accuracy of approximation.

Neural networks in deep learning have been proven to be
capable of approaching functions. DeepMind proposed the
deep reinforcement learning (DRL) or deep Q-learning net-
work (DQN) using neural networks to approximate Q-values
by combing the deep learning with the reinforcement learn-
ing [19].With sufficient training, neural networks can capture
preciseQ-values to find the optimal policy. Recent years have
witnessed the wide study on DQN in the field of dynamic
spectrum access problems in CR networks [20], [22]. How-
ever, the investigations to apply DQN in cooperative spec-
trum sensing problem are scarce so far. To the best of our
knowledge, this paper serves as the first work to search the
optimal cooperative spectrum sensing policy in CR networks
by applying DQN.

Besides, the balance between exploration and exploitation
has also been widely studied to analyze the learning effi-
ciency of diverse reinforcement learning methods. Generally
speaking, exploration means to explore the policy space to
search the optimal policy, whereas exploitation means to
adopt the policy with the best reward based on previous expe-
rience, suggesting that there is a tradeoff between exploration
and exploitation because sufficient exploration is needed to
avoid a suboptimal policy. However, the performance deteri-
orates due to many policies with worse reward are explored.

The heuristic methods, such as ε-greedy methods, are
adopted in most of conventional reinforcement learning
implementations, including [15], [18], [20], [22], which with
probability 1 − ε choose the current best action and with
probability ε choose action randomly, leading to exploration
complexity proportional to experiment time T . A smarter way
is to reduce the value of ε as the learning progresses gradually,
bringing about less chance of exploration after enough infor-
mation has been gained, then it can almost always choose
the current optimal choice. Recently, [23] proved that for an
episodicMarkov decision process (MDP), utilizing the explo-
ration strategy based on the upper confidence bounds with
Hoeffding-style (UCB-H) bonus can contribute to achiev-
ing exploration complexity proportional to

√
T , which the

same as theoretically optimal result. Consequently, the UCB-
H method is adopted to improve the exploration efficiency,
sequentially speeding up the convergence of DQN in this
paper. To the best of our knowledge, this is also the first work
to combine DQN with UCB-H to solve cooperative spectrum
sensing problem in the CR networks.

The rest of this manuscript is organized as follows.
Section II briefly introduces the system model of multi-agent
cooperative spectrum sensing problem and Section III
provides the implementation of cooperative spectrum
sensing strategy based on reinforcement learning with
UCB-H. In Section IV we propose the algorithm based
on DQN with UCB-H. The simulation results and

FIGURE 1. The scene of a CR network. The SUs should access the spectra
without interference to the PUs.

corresponding analysis are given in Section V, and this paper
is concluded in Section VI.

II. MULTI-AGENT COOPERATIVE SPECTRUM
SENSING PROBLEM
In this section, we introduce the systemmodel of the proposed
multi-agent cooperative spectrum sensing problem. There are
Np PUs, Ns SUs and M spectra in a CR network as shown
in Fig. 1. We assume that PUs occupy some spectra with
certain rules so that their actions can be combined together
as an MDP. SUs should ensure that they access spectra
without interference to PUs. For the sake of brevity, we do
not consider the power control strategy of users. Generally,
when a PU occupies the spectra, all SUs cannot occupy these
spectra. Owing to the hardware and power constraints, each
SU can only sense K (K < M ) spectra in each time slot.
SUs do not know the regular patterns that PUs follow to
occupy spectra, hence, they need to predict the idle spectra
based on the previous sensing results. We assume that the
PUs’ occupancy of the spectra is time-slotted, and the clock
synchronization of SUs and PUs is sufficiently accurate. Due
to the limited spectrum sensing technologies including the
energy detection algorithms, false alarm andmissed detection
occur with probability Pf and Pm, respectively.

We will not gather the sensing results of all SUs to a
fusion center to address the cooperative spectrum sensing as
a centralized problem. Instead, we configure a distributed
implementation in a multi-agent fashion. Each SU gathers
information from the environment and other SUs to decide
its own sensing policy.

There may be a collaboration channel like the control
channel for interaction. In contrast, the SUs may not interact
with each other to realize cooperation so that they may con-
tend for the same spectra with collision. Hence, in practical
scenes, the SUs may adopt two different time slot structures
as depicted in Fig. 2.

In the first structure, each time slot is divided into a sensing
minislot, a collaboration minislot, and an access minislot.

VOLUME 7, 2019 118899



Y. Zhang et al.: Multi-Agent DRL-Based Cooperative Spectrum Sensing With Upper Confidence Bound Exploration

FIGURE 2. Two different time slot structures in the proposed multi-agent
cooperative spectrum sensing problem.

In the collaboration minislot, each SU broadcasts its own
sensing results with the serial numbers of its sensing spectra
to other SUs without conflict. At the same time, the control
information required for their spectrum access policy is trans-
mitted in the collaboration minislot.

In the second structure, each time slot only contains a
sensing minislot and an access minislot. The SUs cannot
coordinate their spectrum access due to the lack of collab-
oration minislot. As a result, each SU can only access the
spectra which are sensed as idle based on its own sensing
result in the sensing minislot. If multiple SUs sense the same
spectrum, a collision in the access minislot happens and the
data transmission in this spectrum fails. The SUs can detect
collision by acknowledgment messages and other methods,
sequentially adjust their sensing policy to avoid sensing the
same spectra as other SUs. It can be verified that the above
two structures can achieve similar performance and the first
structure will converge faster because the SUs can also obtain
part of other SUs’ sensing results through collision detection
to realize coordination in the second structure.

III. COOPERATIVE SPECTRUM SENSING ALGORITHM
BASED ON REINFORCEMENT LEARNING WITH UCB-H
In this section, we focus on the first slot structure as
depicted in Section II and propose an algorithm to achieve
superior cooperative spectrum sensing performance in
distributed SUs.

We denote the set of states and actions by S and A whose
size are |S| and |A|, respectively. We use different subscripts
to distinguish s ∈ |S| and a ∈ |A| of different SUs in different
time slot. si,t = [s1i,t , s

2
i,t , · · · , s

M
i,t ] is the state of the ith SU

in time slot t , where smi,t represents its cooperative sensing
result of the mth spectrum. smi,t has four different values.
smi,t = 0 means that the spectrum is sensed as occupied, and
smi,t = 1 means the spectrum is not sensed in this slot. When
the spectrum is sensed as idle, smi,t = 2 means that the ith
SU broadcast the sensing result of this spectrum earlier than
other SUs, and smi,t = 3means that one of other SUs broadcast
the sensing result first. Differentiating the last two cases is
helpful to coordinate the actions of each SU.

The action of an SU can also be composed of its sensing
actions for each spectrum. If the number of sensed spectra of

each SU is fixed in each slot, we can reduce the dimension of
action space by denoting the action of the ith SU in time slot
t by ai,t = [a1i,t , a

2
i,t , · · · , a

K
i,t ], where a

k
i,t ∈ {1, 2, · · · ,M}

represents the serial number of its kth sensed spectrum.
As mentioned in Section II, we assume that the PUs’

actions can be formulated as anMDP.Q-learning is a classical
reinforcement learning algorithm whose iterative formula is
derived from MDP. Consequently, we adopt it as the basis
to seek the optimal policy for dealing with the cooperative
sensing problem.
The value v(s, π) represents the expectation of cumulative

discounted reward begin with state s and choose action using
policy π . Denote the reward of choosing action a in state s
by r(s, a). Following the derivation in [24], according to the
Bellman equation, there is an optimal strategy π∗, which can
achieve the optimal value of the state s, that

v(s, π∗) = max
a

{
r(s, a)+ λ

∑
s′
p(s′|s, a)v(s′, π∗)

}
, (1)

where λ is the discount factor and p(s′|s, a) is the probability
that the state transits from s to s′ when choosing action a.
Define Q∗(s, a) = r(s, a)+ λ

∑
s′ p(s

′
|s, a)v(s′, π∗) as the

cumulative discounted reward begin with state s and action
a, the optimal policy π∗ can be obtained by v(s, π∗) =
maxa Q∗(s, a). Using Q(s, a) to represent the estimated value
of Q∗(s, a), it has proven in [25] that randomly initializing
Q(s, a) and using a learning rate α ∈ [0, 1) which will decay
over time,Q(s, a) can converge toQ∗(s, a) using the observed
reward R to update Q(s, a) every iteration:

Q(s, a) = (1− α)Q(s, a)+ α[R+ λmax
a′∈A

Q(s′, a′)]. (2)

And the set of Q(s, a) of all state-action pairs is called
Q-values as mentioned in Section I.
When a SU successfully accessed a spectrum, it got the

reward from this spectrum. For simplicity, we assume that
each spectrum gives the same reward and the spectrum access
can be well scheduled through collaboration minislot in the
context of the first slot structure. Besides, to avoid the reward
of one idle spectrum being counted by multiple SUs, only
the SU which broadcasted the sensing result earlier than
other SUs in the collaboration minislot got the reward from
this spectrum. Fig. 3 shows the schematic of the cooperative
spectrum sensing algorithm based on Q-learning. In slot t ,
each SU sense the spectra according to ai,t to observe si,t+1,
and the observed reward Ri,t of the ith SU in slot t can be
obtained directly from ai,t and si,t+1 that

Ri,t =
∑
m∈ai,t

I
[
smi,t+1 = 2

]
, (3)

where I
[
smi,t+1 = 2

]
is the indicator function having value

1 if smi,t+1 = 2 and 0 otherwise. Ri,t will be used to update
the Q-values, and then the ith SU choose the action ai,t+1
for the next slot based on smi,t+1 according to the updated
Q-values.
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FIGURE 3. The schematic of cooperative spectrum sensing algorithm
based on Q-learning.

To accelerate the convergence of Q-values in Q-learning,
the tradeoff between exploration and exploitation must be
taken into account when selecting the actions. While explor-
ing the unknown environment, it is necessary to try to max-
imize the received reward. Solely choosing the action with
the currentmaximumQ-values. Generally, the greedymethod
will fall into the local suboptimal solution due to insuf-
ficient exploration. However, if too many explorations are
done, the learning process will select a number of actions
with poor rewards, rendering the low reward obtained at
the outset.

The regret of policy, namely the difference of cumulative
reward between this policy and the optimal policy, is usually
used as the evaluation standard of the exploration efficiency.
As mentioned in Section I, ε-greedy method has proven to
have regret which is proportional to the experiment time T .
Some methods gradually reduce the value of ε in the process
of exploration, so that the probability of exploration decreases
with the learning process to obtain a smaller regret. However,
such heuristic methods fail to give a clear lower bound of
regret to guarantee their performance. Recently, Chi Jin et al.
have been inspired by the multi-armed bandit problems to
propose the UCB-H algorithm [23]. They used powerful
mathematical tools to prove the following theorem that their
algorithm achieves better regret performance (proportional
to
√
T ) than conventional algorithms.

Theorem 1: For experiment time T in an episodic-MDP
with H steps in each episodic, for any p ∈ (0, 1), there exists
an absolute constant c > 0, let bτ = c

√
H3ι/τ , where ι :=

log(|S||A|T/p) and τ is the times the state-action pair (s, a)
has been visited, the regret of Q-learning with UCB-H bonus
is at most O(

√
H4|S||A|T ι) with probability 1− p.

The Q-learning with UCB-H bonus in [23] is essentially
using the UCB of Q-values in value iteration. We adjust
the conclusion in the episodic-MDP to the general MDP,
i.e., H = 1, which corresponds to the cooperative spectrum
sensing scene aforementioned, then we can update the UCB
of the Q-values as

Q(s, a)← (1− α′)Q(s, a)+ α′[R+ V (s′)+ bτ ], (4)

where V (s′) = maxa′∈A Q(s′, a′) and α′ = 2/(1+ τ ).
We implemented the algorithm based on multi-agent

Q-learning with UCB-H for the proposed cooperative sensing
problem, and the details of the proposed algorithm is illus-
trated in Algorithm 1.

Algorithm 1 Cooperative Spectrum Sensing Algo-
rithm Based on Multi-Agent Q-Learning With UCB-H

Initial Qi(s, a) for each i ∈ Ns;
for t = 1 : T do

# Time slot t:
# Sensing minislot:
for i ∈ Ns do

# The ith SU:
Sense the spectra according to ai,t , get the
sensing result;

end
# Collaboration minislot:
for i ∈ Ns do

Send the local sensing result to other SUs and
receive the sensing results from other SUs,
obtain Ri,t and si,t+1;

end
# Access minislot:
for i ∈ Ns do

Use some access policy to access the spectrum;
end
# Learning the sensing policy:
for i ∈ Ns do

# Calculate UCB-H:
Ni(si,t , ai,t ) = Ni(si,t , ai,t )+ 1;
τ = Ni(si,t , ai,t );
bτ = c

√
ι/τ ;

# Update Q(s, a) of the ith SU:
Qi(si,t , ai,t ) =
(1− α′)Qi(si,t , ai,t )+ α′[Ri,t + Vi(si,t+1)+ bτ ];
Vi(si,t ) = maxa′ Qi(si,t , a′);
# Choose action ai,t+1:
ai,t+1 = argmaxa′ Qi(si,t+1, a′);

end
end

IV. COOPERATIVE SPECTRUM SENSING ALGORITHM
BASED ON DQN WITH UCB-H
There may be numerous spectra in practical CR networks.
As a result, state space and action space are tremendous.
In these cases, the number of Q-values which need to be
stored may be very large, which will take up a number of
storage resources. Besides, to converge Q-values, it is neces-
sary to go through each state-action pair (s, a) at least once.
Thereupon, the training time required for convergence is too
long to be practical. Q(s, a) is essentially a value function
with input (s, a). Accordingly, some value function approx-
imation methods can be executed at extracting features from
the experienced state-action pairs to estimate Q-values, mak-
ing the amount of required datamuch smaller than the number
of state-action pairs. The linear value function approximation
which is conducted in [18] represents Q-values with a linear
combination of features, therefore the amount of data to be
stored can be greatly reduced. However, the approximation
accuracy is limited by the selected features for different spec-
tra changing pattern.
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FIGURE 4. The schematic of DQN to be used in the cooperative spectrum
sensing problem.

In this section, taking advantage of both deep learning
and reinforcement learning, we adopted DQN to realize the
superior performance of value function approximation in
estimating Q-values using neural networks. Using UCB-H
exploration in the learning process of DQN is favorable.
It is illustrated in [23] that the initial state s in each episode
should be randomly selected by the opponent to disrupt
the correlation between data from each episode when using
UCB-H exploration. When we applied the conclusion in
episodic-MDP to the scene where H = 1, using continuous
training data results in the correlation of data between each
episode, leading to a large variance in the convergence speed
of the training process. The objective of eliminating corre-
lation in DQN is consistent with the requirement of UCB-H
exploration. The samples obtained by Q-Learning are corre-
lated, whereas the neural network is a supervised learning
model that requires data with the independent and identical
distribution. Thanks to the characteristics of Q-learning that
it is an off-policy learning method which can use the previ-
ous experience to learn, DQN utilizes the experience replay
method to store the past data in an experience replay memory
and randomly samples them for follow-up learning, which
can eliminate the correlation and non-stationary distribution
of data. This also makes data utilization higher because a
sample can be used multiple times. Besides, DQN builds two
networks (the Current network and the Target network) with
the same structure to estimate the target value and current
value of Q-values, respectively. The slower parameter update
of the Target network can avoid optimistic value estimation
and can also cut off the correlation between training data.
Thence, DQN is conducive to implementing the coopera-
tive spectrum sensing algorithm which implants the UCB-H
method to explore. The schematic of DQN is illustrated
in Fig. 4 and the detailed process of the cooperative sens-
ing based on multi-agent DQN with UCB-H is described
in Algorithm 2.

The cooperative spectrum sensing algorithms based on
DQN and Q-learning are the same in terms of their oper-
ation in each minislot. However, different from Q-learning
which stores Q-values for all state-action pairs and using

Algorithm 2 Cooperative Spectrum Sensing Algo-
rithm Based on Multi-Agent DQN With UCB-H

Initial Current network and Target network for i ∈ Ns;
for t = 1 : T do

for i ∈ Ns do
Sense the spectra according to ai,t , get the
sensing result;

end
for i ∈ Ns do

Send the local sensing result to other SUs and
receive the sensing results from other SUs,
obtain Ri,t and si,t+1;

end
for i ∈ Ns do

Use some access policy to access the spectrum;
end
# Store the training samples:
for i ∈ Ns do

Store (si,t , ai,t ,Ri,t , si,t+1) to the relay memory;
end
# Training when samples are enough:
for i ∈ Ns do

if t > Ts then
Sample a training sample (s, a,R, s′) from
the experience relay memory arbitrarily;
Input training sample to neural networks to
obtain QTarget

i (s′, a) and QCurrent
i (s, a);

Ni(s, a) = Ni(s, a)+ 1, τ = Ni(s, a),
bτ = c

√
ι/τ ;

Conducting gradient descent to the loss
function (5);
Update the Current network;
# Update Target network every Tu slots:
if mod (t,Tu) == 0 then

Target network← Current network;
end
ai,t+1 = argmaxa′ QCurrent

i (si,t+1, a′);
else

Select ai,t+1 randomly;
end

end
end

the formula in Algorithm 1 to update Q-values, DQN uses
the neural network to estimate Q-values. It stores a training
sample to the experience relay memory each slot and begin
to randomly sample training data (s, a, r, s′) from experience
relay memory after the samples are sufficient in Ts slots.
Hereafter, the training sample is input into the Target network
and Current network to obtain QTarget(s′, a) and QCurrent(s, a)
as the estimation of Q(s′, a) and Q(s, a), respectively. They
are entered into the loss function together with the reward R
and the calculated UCB-H bonus bτ for gradient descent to
update the parameters of the Current network, where the loss
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function can be expressed as follows:

L = (R+ bτ + λQTarget(s′, a)− QCurrent(s, a))2. (5)

And the value of the Current network will be directly copied
to the Target network every Tu slots. In the first Ts slots,
because the neural networks had not been trained, the actions
are selected randomly. The action with the largest Q-value is
selected after Ts slots.

V. SIMULATION AND ANALYSIS
Without loss of generality, we assume that each SU can
sense one spectrum each time slot in the simulations, namely,
K = 1, and the proposed algorithm also works in scenarios
where the SUs can sense multiple spectra. The channel mod-
els have significant impact on the false alarm and missed
detection probability of the energy detection algorithm.
For the sake of simplicity, we consider the effects of channel
models, signal-to-noise ratio and energy detection algorithm
comprehensively to assume that the probability of missed
detection can be controlled at a very low level with a suffi-
ciently long detection time, i.e., Pm ≈ 0, and the probability
of false alarm is set as Pf = 0.1 in the first simulation exper-
iment. Since the probability of missed detection is negligi-
ble, the decision of cooperative spectrum sensing results can
adopt the OR-rule. As long as some SUs sensed the spectrum
as idle, the cooperative sensing result of this spectrum is idle
in this slot.

In simulations to verify the performance of the proposed
algorithm in Fig. 5, we first set the number of SUs NS = 5
and the number of spectra M = 6 in the CR network. The
size of action space is |A| = 6 owing to K = 1. Besides,
according to this assumption, smi,t = 3 is equivalent to smi,t = 0
because each SU will try to avoid sensing the same spectrum
with other SUs. There is a PU which occupies one spectrum
per time slot for its own data transmission (so the number of
idle spectra in each time slot is 5). For intuitive understanding,
we assume that the PU adopts a type of scanning method.
At the beginning of each time slot, the PU selects another
spectrum to occupy with an 80% probability, and stays in
the previous spectrum with a 20% probability. The proposed
method also works when the PU occupies spectra with other
patterns. As mentioned above, the false alarm probability
and missed detection probability of the sensing result are
Pf = 0.1 and Pm = 0, respectively. The SUs adopt the
first time slot structure. We conducted 100 simulation exper-
iments and averaged the results to verify the performance of
the algorithms based on Q-learning with UCB-H, based on
Q-learning with ε-greedy, based on DQN with UCB-H and
based on DQN with ε-greedy, respectively. Each simulation
experiment runs T = 5000 time slots and the rewards of
each SU is recorded to calculate the average reward. The
discount factor λ = 0.9 in above algorithms. In the algorithms
with ε-greedy, ε = 0.1 and α decades with time t as α =
T/(T + 10t). In the algorithms with UCB-H, p = 0.01,
c = 0.5

√
log(|S||A|T/p) and α′ decades with the times τ

the state-action pair (s, a) has been visited as α′ = 2/(1+ τ )

FIGURE 5. The average reward performance of different algorithms
(NS = 5, M = 6).

(carefully adjust c may further improve the performance of
the algorithms with UCB-H). In the two algorithms based
on DQN, Ts = 50, Tu = 100 and the neural networks
adopt the structure of convolutional neural networks. In our
simulations, we only build up two convolution layers, each
with 10 neurons, and the activation function is the ReLu
function. The implementation of the convolutional layers is
simple, and the sparsity of the inter-layer connection reduces
the total amount of weight parameters, which is beneficial
to the rapid convergence speed of the neural network and
reduces the memory overhead in the calculation. When the
problem dimension is larger, small neural networks may also
fail to meet the approximation accuracy requirements, and it
will require more layers in the neural network structures.

It can be seen from Fig. 5 that the two algorithms with
UCB-H can obtain a higher average reward than the two
algorithms with ε-greedy, which confirm the better explor-
ing efficiency of UCB-H exploration. When the exploration
method is fixed, the algorithms based on DQN can achieve
better performance than those based on Q-learning. This
is because the DQN can reduce the correlation between
the training data, sequentially reduce the probability that
the learning result converged to the local optimal solution.
Especially when using UCB-H exploration, the algorithm
based on DQN can achieve faster convergence speed, for
example under our simulation settings, the algorithm based
on DQN almost converges within 2000 slots, and the algo-
rithm based on Q-learning needs more than 3000 slots to
converge.

In Fig. 6, we show the performance of different algorithms
in the early stage of learning. The two algorithms based on
DQN need to collect some training samples to form the expe-
rience relay memory in the first few time slots, so they start
slower than the two algorithms based on Q-learning. Besides,
the two algorithms with UCB-H will first explore a part of
state-action pairs, resulting in their selections of many worse
actions at the outset. Nevertheless, the algorithms ε-greedy
using small ε (such as ε = 0.1) prefer to choose actions with
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FIGURE 6. The convergency of different algorithms with small number of
training samples (NS = 5, M = 6).

FIGURE 7. The average reward performance of different methods with
different NS and M.

the highest expected reward based on currentQ-values, hence
their average reward will be higher than the algorithms with
UCB-H in the early stage of simulation experiments.

For different NS and M , we reveal the simulation results
in Fig. 7. For the algorithms based on Q-learning, the number
of state-action pairs increase exponentially with the number
of spectrums. For example, when NS = 20 with M = 21,
the number of state-action pairs is 321 × 21 ≈ 1011, and the
size of the Q-table will exceed the memory of the general
computers, so the simulation experiments of the algorithms
based on Q-learning can hardly be performed when M is
large. This is also the main purpose we need to use DQN
to implement the cooperative spectrum sensing algorithm.
Therefore, we only give the comparison results of the per-
formance of these algorithms in the cases that NS = 5
with M = 6, NS = 7 with M = 8 and NS = 10 with

FIGURE 8. The performance of the proposed algorithm with different
numbers of SUs and spectra (Pf = 0.1).

M = 11, respectively. We set ε = 0.2 in the ε-greedy to
enhance exploration in the early phase of learning. Fig. 7
showed the trend that the proposed algorithm based on
DQN with UCB-H outperforms the conventional algorithms
based on Q-learning. The convergence of the two algorithms
based on Q-learning significantly decreases whenM is large,
whereas the convergence of the proposed algorithm is less
affected by the increase of M . This is because DQN esti-
mates the Q-values of different state-action pairs by extract-
ing features using neural networks, so that the estimated
value of Q-values for any (s, a) can be obtained after the
neural networks are trained with a certain amount of training
samples. The two algorithms based on Q-learning still need
to explore the Q-values of most state-action pairs to achieve
better performance, which cannot achieve convergence in a
short time and become more easily to converge to the local
optimal solutions when M is large, causing the significant
degradation of their overall performance. In addition, the PU
only occupies one spectrum each slot in the simulation, so the
larger M , the smaller the probability that the SUs sensed a
spectrum which is occupied by the PU. Thereupon, the SUs
obtain a larger average reward after convergence.

We carry out simulation experiments with 10000 time slots
to show the performance of the proposed algorithm with
largerM in Fig. 8. It can be seen that superior reward perfor-
mance can be exhibited even when M is large. However, for
a network with many SUs and spectra, the large state-action
space also results in the difficulty for the proposed algorithm
to converge. Each SU regards other SUs as parts of the
environment, and each SU learns its optimal strategy from its
observation of the environment. In the proposed algorithm,
when the collision happened that two SUs sense the same
spectrum, the later SU changes its strategy to avoid collision
with the former SU, so the strategy of the later SU converges
after the former one converged. As a result, the convergence
speed of the overall reward performance decreases when the
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FIGURE 9. The performance of the proposed algorithm with different
false alarm probabilities (NS = 10, M = 11).

number of SUs increases. For example, when NS = 20 with
M = 21, the proposed algorithm needs about 8000 time slots
to converge.

Besides, in practical scenarios, the channel condition may
be poor and the signal-to-noise ratio is low, causing the high
false alarm probability. In Fig. 9, we show the performance
of the proposed algorithm with different false alarm proba-
bilities. It can be seen from the simulation results that the
larger false alarm probability leads to the performance degra-
dation of the proposed algorithm. Because the SUs cannot
confirm the correctness of their observation of the environ-
ment, the more wrong sensing results were used for training,
the larger probability that the proposed algorithm converged
to a sub-optimal strategy. So the average reward performance
decreases and the stability of the learning process is weakened
with larger false alarm probability, but the proposed algo-
rithm still outperforms the conventional algorithms based on
Q-learning in the same situation.

In the aforementioned simulations, each SU can only sense
one spectrum each slot and the total number of spectra sensed
by the SUs is not more than the number of spectra in the
network. Consequently, the main purpose of the cooperative
spectrum sensing problem is to find more idle spectra and the
SUs will avoid sensing the same spectra as other SUs. If the
total number of spectra that the SUs can sense is greater than
the number of spectra in the network when Pm > 0, then
each spectrum can be sensed by more than one SUs. As a
result, a tradeoff should be made on the number of sensed
spectra and the reliability of the sensing result. The optimal
number of SUs to sense each spectrumwill be analyzed in our
future work.

VI. CONCLUSION
In this paper, we proposed a novel cooperative spectrum sens-
ing algorithm for CR networks. By implementing DQN with
UCB-H to improve the exploration efficiency, the proposed
algorithm can achieve better reward performance with faster

convergence speed than the conventional algorithms based
on Q-learning with ε-greedy, especially in large networks.
The simulation results verify the superior performance of the
proposed algorithm, which can promote the development of
smarter CR network technology to achieve more efficient
utilization of spectra. We will study the cooperative sens-
ing strategy to deal with the relevant sensing results due to
correlated shadow, sequentially making the fusion of sensing
results more reliable based on multi-agent deep reinforce-
ment learning in future work.
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