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ABSTRACT The increase of network size and sensory data leads to many serious problems to the wireless
sensor networks due to the limited energy. Data prediction method is helpful to reduce network traffic
and increase the network lifetime accordingly, especially by exploring data correlation among the sensory
data. Data prediction can also be used to recover abnormal/lost data in case these sensor nodes fail to
work. The current prediction methods in wireless sensor networks do not make full usage of the spatial-
temporal correlation between wireless sensor nodes, and thus leads to higher prediction error relatively. This
paper proposes a novel model for multi-step sensory data prediction in wireless sensor network. Firstly,
we introduce the artificial neural networks based on 1-D CNN (One-Dimensional Convolutional Neural
Network) andBi-LSTM (Bidirectional Long and Short-TermMemory) to get the abstract features of different
attributes via the pre-processed sensory data. Then, these abstract features are used to obtain one-step
prediction. Finally, the multi-step prediction is introduced by using historical data and the prediction results
of the previous step iteratively. Experiment results show that after selecting suitable node combinations in
which the spatial-temporal correlation is highlighted, the proposed multi-step predictive model can predict
multi-step (short and medium term) sensory data, and its performance is better compared with other related
methods.

INDEX TERMS Neural networks, predictive models, wireless sensor networks.

I. INTRODUCTION
Wireless sensor networks are widely used to collect envi-
ronmental data due to its low energy consumption, low cost
and large-scale deployment [1]–[3]. With the increase of
sensor nodes in wireless sensor networks, many problems
are revealed including increased energy consumption, high
network transmission delay, bad transmission quality due to
data transmission congestion, data transmission is blocked
due to partial node failure, etc. The cheap requirement of
sensor nodes also results in node/link failure, and thus data
lost/abnormal is a common phenomenon in the wireless
sensor networks. Data predictive is helpful to solve these
problems in wireless sensor networks. Some methods use

The associate editor coordinating the review of this article and approving
it for publication was Zhongming Zheng.

prediction to reduce data transmission, while some methods
use it to correct or recover abnormal data [4]–[8]. The former
tries to optimize the data collection process, and the latter
focuses on mining relevant information in the collected data
to improve data quality. First, in wireless sensor networks,
redundant data transmission can be avoided by prediction,
which makes wireless sensor networks improve in energy
efficiency and data transmission quality [9]–[12]. Second,
predicting the state of equipment or area that monitored by
wireless sensor networks can increase the lifetime of the
equipment or avoid unnecessary accidents [13]–[17]. Even-
tually, multi-step data prediction is very important to the
wireless sensor network due to its ability to predict multi-step
(short and medium term) sensory data.

In this paper, various factors are considered for data predic-
tion based on sensory data correlation. These factors can be
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described as following: 1) Quality of sensory data: the outliers
in sensory data that affect the data quality, some of these
outliers are not in the range of normal data, the others are very
abnormal compared with their neighborhoods. 2) Correlation
between sensory data: Wireless sensor networks often collect
redundant sensory data, and each sensory data has a different
trend in time and space dimensions. 3) Correlation utilization:
After analyzing the correlation between the sensory data, this
paper uses the higher correlation to implementmulti-step data
prediction, but it is necessary to select a model that can learn
and utilize the sensory data correlation well.

Some correlations between sensory data are shown in the
periodic change of the sensory data gathered by single sen-
sor node, while others are shown in the trend of different
sensor nodes. Classical data analysis methods have limited
ability to extract such abstract features especially for the data
prediction problem. It is difficult for classical methods to
extract effective features from original data. However, with
the development of deep learning, it is possible to automat-
ically extract relevant features for prediction, which greatly
reduces the difficulty of extracting data correlation features
for prediction.

Deep learning has developed rapidly in recent years. CNN
(Convolutional Neural Networks) and RNN (Recurrent Neu-
ral Networks) have been widely used in image recognition,
natural language processing, climate and traffic flow pre-
diction [18]–[21]. CNN is a feedforward neural network
containing convolution calculations, which is suitable for
processing various types of data with translation invariance,
such as audio data or image data. RNN is a time recurrent
neural network whose internal state can show the dynamic
behavior of data in the time dimension and it is suitable for
processing time series data. The LSTM (Long and Short-
Term Memory) is an RNN with a structure called cell, and
the network relies on three gates in cell to choose useful infor-
mation and discard unwanted information. The cell structure
makes the network more accurate than RNN in processing
and predicting medium and long-term dependencies in time
series. The neural network model based on CNN and LSTM
can be used to extract the correlation in data, which is suitable
for the prediction problem of sensing data in wireless sensor
networks.

After considering the above three factors, this paper builds
a multi-step predictive model based on 1-D CNN and LSTM.
This model uses CNN to extract translation invariance within
data and uses LSTM to deal with medium-term dependence.
Thus, the accuracy of short and medium-term predictions are
improved.

The remainder of this paper is as follows: Section 2
introduces related works. Section 3 introduces the problem
formulation and basic idea behind this paper. Section 4 dis-
cusses the data correlation formulation between sensory data.
Section 5 introduces the structure of the predictive model
proposed in this paper. Section 6 shows the experimental
results in this paper. Finally, Section 7 shows the conclusions.

II. RELATED WORK
There are many researches on various prediction problems on
wireless sensor networks [13]–[21]. Themain problems in the
related work can be divided into two different types. One is
to improve energy consumption, data transmission, or fault
detection in the sensor network through prediction, while
another is to predict the state of device or environment mon-
itored by wireless sensor network, including predicting the
battery health, energy harvested, or the status of industrial
devices. For the first type mentioned above, most of the
existing solutions use non-deep learning methods because
devices in wireless sensor networks lack sufficient computing
resources to support the computation of artificial neural net-
works. For the second type, there are both non-deep learning
methods and deep learning methods to extract data features
for prediction. This paper investigates these two types of
prediction problems and the according solutions.

Pramod Ganjewar proposed a hierarchical minimum mean
square prediction algorithm for reducing data transmission in
wireless sensor networks [9]. In this paper, a predictive model
based on hierarchical fractional least mean squares (HFLMS)
was proposed, which attempts to predict the sensory data
by error estimation and only sends the required data to the
receiving node by using the proposed adaptive filter to reduce
the energy consumption in the wireless sensor networks.

R AAvinash proposed a data prediction method in wireless
sensor networks using Kalman filter [10]. This method used
predicted data replace the loss data, which makes the sensory
data in the wireless sensor network available. The paper pre-
dicted the temperature data and find that the temperature data
is well predicted and the error range is within an acceptable
range. The author concluded that this predictive model can
be used not only to predict future data, but also to smooth
existing data.

Hamed Nazaktabar used reinforcement learning tech-
niques to establish a dual prediction scheme for reducing the
energy consumption of wireless sensor networks [11]. This
method learned environmental signals and builds predictive
models based on their experience. When the model fails,
it only needed to learn and transmit the environmental data at
the time of failure. The model uses error bounds to discretize
the environmental data, and then used the instantaneous state
of the environmental data signal to train the predictive model.
It is proved by experiments that the proposed method could
significantly reduce the energy consumption of wireless sen-
sor networks through the dual prediction scheme based on
enhanced learning.

Adrien Russo proposed a time series predictive model
based on self-organizing mapping algorithm in wireless sen-
sor networks [12]. This model can be used for anomaly
monitoring or to maintain the integrity of the system. When
a node stops working, its value can be replaced by the value
obtained by the predictive model. The self-organizing map-
ping algorithm is an unsupervised deep learning method that
maps high-dimensional spaces into two-dimensional spaces
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and then forms a grid connected by several adjacent neurons.
This neural grid updates the weights by learning algorithms
and experiments show that it can make stable prediction
results.

Tomoki Kawamura proposed a method for predicting the
power consumption of sensor node in a wireless sensor net-
work for train condition monitoring [13]. The paper intro-
duces some problems in this train monitored networks like
the frequent changes in the train compartment configura-
tion and the environmental changes that often occur dur-
ing train travel. These problems often lead to changes in
the network configuration and communication environment
between wireless sensor, making it difficult to predict their
power consumption. To solve the above problems, the paper
proposes a Monte Carlo method to predict the power con-
sumption in such wireless sensor networks, and proves the
superiority of this method through a series of experiments.

Rafael Lajara proposed a method for predicting battery
health in wireless sensor networks [14]. The related parame-
ters like The number of charge and discharge cycles, internal
resistance of the node, voltage, output current, and temper-
ature are considered to build an analytical model to predict
the battery health. In this paper, the variation trajectory of the
above parameters is collected as a training set during a large
number of discharge cycles, and a battery health predictive
model based on multi-layer perceptron is constructed.

Yinggao Yue proposed a fault predictive model for strip
wireless sensor networks [15]. Based on the theory of kernel
function, this paper proposes a fault prediction method, and
chooses the radial basis function as its kernel function to
predict the fault from two aspects: node hardware fault and
network fault. Experiments show that the prediction accuracy
in this model is higher than GRNN and PNN.

Alves Maicon Melo uses a wireless sensor network to
predict wind turbine damage [16]. The method is based on
a time series predictive model, using ARIMA and fuzzy
systems to consider the effect of temperature on wind turbine
damage prediction. In this paper, the influence of ambient
temperature on the blade is considered and the accuracy of the
prediction is improved. It is proved by experiments that when
the system considers the influence of temperature on the
blade, the prediction performance and energy consumption
performance of the model are excellent.

Alessandro Cammarano proposed a method for energy
harvesting prediction in environmentally powered wireless
sensor networks [17]. This approach uses past energy obser-
vations to predict future energy availability, enabling envi-
ronmentally powered wireless sensor networks to adjust their
energy management strategies as needed. In the article, the
author focuses on solar energy and wind energy, using con-
nected photovoltaic panels, micro wind turbines, and public
solar energy curves to get real energy harvesting curves and
use them to validate the model presented in this paper. The
experiment shows that the proposed method has high predic-
tion accuracy.

III. PROBLEM FORMULATION
The data in the wireless sensor network is collected by sensor
nodes. The set of sensor nodes can be defined as V =

(Vn|n = 1, 2, 3, . . . ,N ), where N is the number of sensor
nodes. Assuming in the wireless sensor network, node Vn
collects M kinds of sensing data. The set of sensory data of
the given mth kind collected by node Vn is defined as Dn,m.
The value of thesemth kind of sensory data collected by node
Vn at the timestamp t is defined as dn,m(t), where 0 < n ≤ N ,
0 < m ≤ M , t > 0.
Sometimes, the sensory data of Vn before T timestamp is

known, and the sensory data of Vn after the T timestamp is
unknown. In this case, the unknown data is defined as D′n =
{dn,m(t)|T < t , 0 < m ≤ M}. Especially, in case the data
of node Vn after timestamp T is unknown, let V∗ be the set
of sensor nodes which still have available data, and the data
collected by V∗ is D∗ = {Dn,m|Vn ∈ V∗, 0 < m ≤ M}.
Given Vn, the collected data before timestamp T is known
as (Vn–V ′n). The data prediction problem is to predict the
unknown data of Vn after timestamp T , i.e., D′n,m, by using
(Dn–D′n) and the data set D∗. Note that the set D′n,m contains
different kinds of sensory data collected by node Vn after the
timestamp T .
In this paper, we introduce a neural network based

predictive model to iteratively predict dn,m(T ), dn,m(T +
1), dn,m(T + 2), . . . , dn,m(T + E), in which E is the times
of iterative predictions. NNet(·) represents a well-trained
predictive model, and H the number of timestamps used in
the predictive model. Let S(·) represent the selected nodes
from V∗ whose correlation with Di,j is not only above a
certain threshold but also closest to node Vi. The process of
predicting dn,m(T ) can be formulated as:

dn,m(T ) = NNet(dn,m(T − 1), dn,m(T − 2), dn,m(T − 3),
. . . , dn,m(T − H ), S(V ∗)).

In this paper, the proposed model NNet(·) predicts the
sensory data dn,m(T ) by utilizing the sets from dn,m(T–1) to
dn,m(T–H ) as well as the subset of V ∗. After getting dn,m(T ),
we can iteratively use the predictive model to get dn,m(T+1),
dn,m(T + 2) and so on, and finally we get dn,m(T + E).

In order to comprehensively evaluate the prediction results,
several evaluation indicators are used in this paper, including
RootMean Square Error (RMSE),MeanAbsolute Percentage
Error (MAPE), Mean Absolute Error (MAE), and R-square.
Details of these parameters can be found in Section 6.2.

In order to get accurate prediction results, data correlation
between neighbor sensors and target sensor is helpful to
improve the multi-step prediction process. A series of meth-
ods including quartile method, wavelet denoising, correlation
analysis, CNN and LSTM are used to improve the quality
of sensory data and extract related features for multi-step
prediction. The methods used in this paper can be divided
into four processes: data preprocessing, correlation analysis,
neural network construction and training, and iterative pre-
diction. Details of these four steps are described as follows.

VOLUME 7, 2019 117885



H. Cheng et al.: Multi-Step Data Prediction in Wireless Sensor Networks

Data Preprocessing: Most of the noise in the sensory data
is originated from different factors such as tough environ-
ment, bad sensors, and the network congestion, etc. These
factors may result in abnormal sensory data.

Quartile method and wavelet denoising can be used to
improve the quality of sensory data. The quartile method
removes the abnormal data that deviates from the dataset,
in this way the final data does not have elements that deviates
from the data distribution. To further improve the data quality,
wavelet denoising is used to reduce the noise that quartile
method cannot recognize in the sensory data. This abnormal
data is in the normal distribution, but it might have different
trends compared with their neighborhood.

Correlation analysis: Taking Intel indoor dataset [22] as
an example, this paper quantifies the correlation between
54 sensor nodes in wireless sensor network, including the
correlation between different kinds of sensory data in a single
node and the same kind of sensory data between nodes.
We first adopt the Spearman correlation coefficient to quan-
tify the correlation, then build the predictivemodel by sensory
data with the highest correlation coefficient. In order to verify
that the correlation coefficient of the sensory data has an
impact on the prediction accuracy, multiple sensory data with
different correlation coefficients are introduced to predict the
sensory data of the same node.

Neural Network Construction and Training: To process
time series data, we propose to use the LSTM and CNN
to extract features of sensory data, and all these features
are merged into merge layer of the neural network. After
the structure of the neural network is determined, the MSE
is chosen as the loss function, and we select Adam as the
optimizer in the model.

Iterative prediction: Once the model training process is
finished, the iterative prediction is performed. After getting a
new prediction result from the historical data, the historical
data and the new prediction result are both used to carry out
the next step of data prediction, iteratively. In order to make
multi-step prediction stable in short and medium term, two
sensor nodes which have the strongest relationship with the
target node is chosen in the prediction process.

IV. CORRELATION BETWEEN SENSORY DATA
A. BETWEEN DIFFERENT KINDS OF SENSORY
DATA IN A SINGLE NODE
The Intel Indoor Dataset [22] used in this paper contains
4 kinds of data that are collected by 54 sensors, i.e., temper-
ature, humidity, light, and voltage. These data have different
correlations with each other, and data with strong correlation
can be used to improve the prediction accuracy. In order
to quantify the correlation between sensory data, this paper
picks up node 4 as an example to calculate the correlation
between sensory data. Spearman correlation coefficient is
used to perform the calculation process, the Spearman cor-
relation coefficient is calculated as following:

ρ = 1−

∑
6d2i

n(n2 − 1)
(1)

In which, di is the ith element in the ranking difference set,
that is, the difference between the two variables’ rank from
the correlative two datasets. And n is the number of variables
from the correlative two datasets.

The correlation between the sensory data is calculated by
(1), including the correlation coefficient between the sensory
data such as temperature, humidity, light, and voltage. The
Spearman correlation coefficient between each sensory data
is shown in Table 1.

TABLE 1. Correlation coefficient of sensory data.

As we can see, Table 1 is symmetrical because the cor-
relation calculations are commutative. It is also seen that
correlation is different between different sensory data. For
example, the correlation coefficient between temperature and
humidity is -0.4050, while the correlation coefficient between
temperature and illumination is 0.3516. If the correlation
coefficient is smaller than zero, it means there is a negative
correlation between these two groups of variables. For multi-
step prediction, strong correlation is beneficial to strengthen
the learning process of neural network based models, which
can make the prediction more accurate. However, the correla-
tion between various types of sensory data in a single sensor is
low, and its ability to assist prediction is weak. Therefore, it is
necessary to add other data with stronger correlation when
building the data predictive models.

B. BETWEEN THE SAME KINDS OF SENSORY
DATA AMONG MULTIPLE NODES
The Intel indoor dataset used in this paper contains a variety
of sensory data collected by 54 sensor nodes. These sensor
nodes are deployed in various corners of the room, and there
are obstacles between some nodes. In order to quantify the
correlation between different nodes, this paper calculates
the Spearman correlation coefficient between node 4 and
other sensor nodes, including temperature, humidity, and
light.

The structure of the Intel lab is shown in Fig. 1, in which
furniture in the lab, i.e., chairs and tables, is drawn as circles
and rectangles. The sensor node is marked by a black hexagon
in which the node number is shown. There are two decimals
nearby the sensor node, and the above one is the correlation
coefficient with node 4 calculated by the denoised temper-
ature data, and the one below is the correlation coefficient
calculated by the sensory data without Wavelet denoising
method. It can be seen from Fig. 1 that the correlation
between nodes’ temperature data has a relationship with the
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FIGURE 1. Correlation in temperature between node 4 and other nodes.

distance between nodes. But, by observing the correlation
between node 4 and 42, 41, this kind of relationship is not
so obvious in this dataset. There may be several reasons for
this kind of phenomena.

1) Data noise in some nodes, whichmay affect the accuracy
of correlation coefficient. For example, the correlation coef-
ficients between nodes 45, 43 calculated from original data in
the above figure are 0.7869 and 0.6223, while the correlation
coefficients calculated from denoised data are 0.8437 and
0.8418. It can be seen that the denoising method makes the
correlation coefficients between these nodes at the same level.
Because data denoising can only remove part of the noise,
there is still a lot of noise in the denoised data, which will
have effect on the correlation coefficient.

2) Possible air conditioning system such as a central air
conditioner in the indoor environment. Air conditioning sys-
tems are often deployed in indoor environments. These air
conditioners can significantly adjust the temperature and
humidity in the room, this may lead to a weak correlation
between nodes close with each other, or a strong correlation
between nodes that far from each other.

3) The indoor environment is divided into several rooms,
and the different usage of the room may cause a large dif-
ference in correlation between nodes that deployed in dif-
ferent rooms. The correlation coefficients between node 8,
53 and 4 in the above figure are very different, which are
0.9380 and 0.8216 respectively.

These above reasons may cause the correlation coefficient
to be higher compared with that with far distance. But in

general, the correlation coefficient is gradually reduced as
the distance increases. Therefore, when selecting nodes to
improve data predicting, we should choose those nodes in the
same room and close with the target.

Fig. 2 shows the Spearman correlation coefficient between
node 4 and other nodes in light data. Similar to Fig. 1,
there are two decimals next to the sensor node in Fig. 2,
which shows the correlation between the current node and
node 4 via light data. It is known from the figure that the
correlation between light data is not directly related to the
distance, and the nodes in the edge of the building have a
higher correlation with node 4, such as node 42, 38, 54, 16,
24 and so on. The correlation coefficient of node 2 is 0.8923,
but the correlation of node 35 is 0.9250, higher than node 2,
which have a longer distance with node 4. In Fig. 2, node 2 is
deployed around some obstacles, so the collected light data
may be affected by obstacles. This scenario might be helpful
to explain why the correlation coefficient with node 4 is
lower. Light data is highly susceptible to indoor or outdoor
lighting and obscuration, which leads to lower correlation
compared to temperature data. In this way, we can see that
the light data of neighborhood nodes is not suitable for
prediction.

Fig. 3 shows the Spearman correlation coefficient between
node 4 node and other nodes in humidity data, which is sim-
ilar to Fig. 1 and 2. It decreases with the distance increasing,
but the decreasing speed of humidity is different in different
directions. For example, the speed is slow in the upper right
direction, but it is very fast in the lower right and upper
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FIGURE 2. Correlation in light between node 4 and other nodes.

FIGURE 3. Correlation in humidity between node 4 and other nodes.

left direction. In general, as we can see from Fig. 3, humidity
data and temperature data have a strong correlation and they
are suitable for multi-step predictive models based on spatial
correlation.

V. DATA PREDICTION MODEL
A. 1-D CONVOLUTIONAL NETWORK
With the help of data preprocessing, the quality of the sen-
sory data can be greatly improved. In order to extract data
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features quickly and accurately for data prediction, in this
paper, we introduce to use the one-dimensional convolutional
layer and the one-dimensional pooling layer as the first two
hidden layers of the neural network model. The convolutional
neural network mainly includes three characteristics, local
perception, spatial arrangement, parameter sharing. Details
of these three characteristics can be seen as below.

FIGURE 4. Example for the process of 1-D convolution.

Local perception: The convolutional layer is different from
the fully connected layer, since its hidden unit only connects
with part of the input layer. Fig. 4 shows an example for the
process of 1-D convolution, in which c1 to c4 are feature maps
and x1 to x6 are inputs. The single hidden unit of the one-
dimensional convolution is only connected to three inputs of
the input layer. This kind of connection greatly reduces the
number of parameters and accelerates the training process of
the neural network. The size of the input area that connected
to the hidden unit is called receptive field.

In the above figure, c1 to c4 are calculated by convolution,
where c1 is calculated by convolution with x1, x2, and x3, and
the connections between c1 and x1, x2, x3 all have different
weights. When calculating c2, these three weights are corre-
sponding to x2, x3, and x4, respectively. The connections with
the same line style have the same weight.

Spatial Arrangement: The parameter of convolutional
layer consists of three variables, including size of convolution
kernel, stride, and padding. They determine the size of output
feature map. The size of convolution kernel is the number
of variables used for convolution calculation. In Fig. 4, c1
is calculated by convolution by x1, x2 and x3, so the size of
convolution kernel in the above one-dimensional convolution
is 3. The stride is the distance that the convolution kernel
needs to move when the convolution calculation goes on. c1 is
calculated by x1, x2 and x3. When the convolution kernel
moves by one step, c2 is to be calculated by x2, x3, and x4.
The padding is used to offset the reduction of feature map size
caused by the convolution calculation. As is shown in Fig. 4,
there are 6 variables in the input layer, so the size of calculated
feature map is 4. If an input is added to each side of the input
layer, the feature map size will be 6. The size of the output
feature map is calculated by (2):

wout =
win + 2 ∗ padding− F

stride
+ 1 (2)

In which, wout is the size of input feature map, win is the size
of input feature map, padding is the number of elements filled
at the both ends of the input, F is the size of convolution

kernel, and stride is the stride mentioned above. According
to (2), the size of output feature map is 4.

Parameter sharing: Parameter sharing can greatly reduce
the number of parameters. In the same filter, the calculation
of all feature maps shares the same set of weights, n filters
have n sets of weights. Parameter sharing and sparse connec-
tions greatly reduce the number of free variables, enabling
convolutional neural networks to extract features with fewer
computational resources.

The feature map calculated by the 1-D convolution layer
is down-sampled in the 1-D pooling layer. The pooling layer
selects and filters the feature map output from the convolution
layer. The widely used pooling methods are Max Pooling
and Mean Pooling, and the parameters of pooling methods
are the pool size, the stride and the padding. The pool size
is the number of data used for the pooling calculation, and
the stride and the padding in pooling layer are the same
as convolutional layers. Fig. 5 shows an example for the
process of 1-D pooling. In this example, the feature map is
composed of 6 elements including c1 to c4 and two pd, and
the elements of 1-D pooling p1, p2, and p3 are calculated by
these 6 elements.

In the above figure, c1, c2, c3 and c4 are the feature maps
calculated by the upper layer, pd is the elements of padding,
p1, p2, and p3 are the outputs of pooling layer, wherein the
stride is 2 and the pooling size is 2.

FIGURE 5. Example for the process of 1-D pooling.

In Fig. 5, p1 is calculated from pooling pd and c1. Max
Pooling or Mean Pooling can be used as the pooling method.
The Max Pooling method is to select the biggest one from pd
and c1 as the value of p1. The Mean Pooling method takes
the average of pd and c1 as the value of p1, and the values
of p2 and p3 is calculated the same way. Through these two
kinds of pooling method, the pooling layer gets its output p1,
p2, an p3.
After passing through the 1-D convolutional layer and the

1-D pooling layer, features are input into the bidirectional
LSTM neural network for further extraction.

B. BIDIRECTIONAL LSTM
LSTMhas great advantages in processing and predicting time
series data. It is a special form of RNN. Both LSTM and
RNN have a network module with chain structure. In RNN,
themodule consists of a single neuron structure, but in LSTM,
this module consists of cells with three gates. The cell relies
on three gates for feature selection, including the input gate,
output gate, and forget gate. The loop body of LSTM is shown
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FIGURE 6. Structure of cell.

in Fig. 6. These symbols in the figure are to be introduced in
the following (3)-(8).

Fig. 6 shows the structure of the cell, which mainly
includes the input gate, the output gate and the forget gate.
The calculation methods for these three types of gates are
illustrated by the following:

i(t) = σ (Wix(t)+ Uih(t − 1)+ bi) (3)

Equation (3) describes the calculation process of the input
gate in the cell, where h(t − 1) is the output of the previous
cell, x(t) is the current cell input, σ is the sigmoid function,
and Wi and Ui are the weights of the input gate.

f (t) = σ (Wf x(t)+ Uf h(t − 1)+ bf ) (4)

Equation (4) describes the calculation process of forget
gate in the cell. This gate determines which information in
the cell needs to be discarded, andWf and Uf in the equation
are forgot gate weights.

C̃(t) = tanh(Wcx(t)+ Uch(t − 1)+ bc) (5)

C(t) = f (t) ∗ C(t − 1)+ i(t) ∗ C̃(t) (6)

Equation (5) and (6) describe the update processes, where
(5) is the candidate memory unit which generates alternative
update information, and (6) is the process of updating the state
of the cell. The information from forgot gate is combined
with the update information to calculate a new state, where
Wc and Uc are the weights of the alternative new state, and ∗
is the Hadamard product.

o(t) = σ (Wox(t)+ Uoh(t − 1)+ bo) (7)

h(t) = o(t) ∗ tanh(C(t)) (8)

Equation (7) and (8) describe the calculation process of
output gate. First, the sigmoid layer is used to get the state of
the cell to be output, then the updated cell state is processed

by tanh function, and updated cell state is multiplied by o(t)
to get h(t). Uo is the output gate weight.
The cell mentioned above is the core of LSTM neural net-

work. Based on this structure, a bidirectional LSTM network
is created to extract features of sensory data.

FIGURE 7. Example for the structure of bidirectional LSTM.

Fig. 7 shows an example for the bidirectional LSTM. The
input data xt−1, xt , xt+1 is processed by both the forward and
backward layer and finally the hidden state ht−1, ht , ht+1 and
h′t−1, h

′
t , h
′

t+1 are obtained respectively. Then these hidden
states are fused to obtain the output, i.e., ht , h′t are fused to
get yt in the output layer. The case is similar to yt+1 and yt−1.

The bidirectional LSTM can extract more context infor-
mation than normal LSTM. The forward and backward time
series are used to get the information of the current times-
tamp in the past and the future, so that the network can
make better time series prediction [23]. There is no direct
connection between the backward and forward layer, which
ensures that the structure is acyclic. In case the input layer
data xt , the results of the forward and backward layers are
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combined at the output layer to make output yt . After each
sensory feature is processed by the bidirectional LSTM and
passes through the fully connected layer, all sensory features
are merged through merge layer.

C. PROPOSED NEURAL NETWORK FOR PREDICTION
The same type of sensory data from several sensor nodes is
used for multi-step prediction in the proposed model. In order
to extract the abstract features of sensory data from multi-
node, parallel multiple networks are used to learn the fea-
tures of each input data. The proposed model uses sensory
data from three nodes for multi-step prediction. Regarding
node 4 as an example, the temperature data of node 4 and
its two neighbors are used for prediction. The selection of
neighbor nodes mainly considers the Spearman correlation
coefficient between the neighboring node and the target node.
In Section 5.2, the correlation coefficient of each type of
sensory data is studied, and the correlation between temper-
ature and humidity is relatively stable, which is suitable for
the proposed prediction method. Fig. 8 shows the network
structure used in this paper, where node 2 and 3 are selected
to assist the prediction for temperature of node 4:

FIGURE 8. Structure of multi-step predictive model.

In Fig. 8, T(4), T(2), and T(3) are the temperature
sequences of nodes 4, 2, and 3, respectively. Each sequence
has an independent length, and the length is the time step
of each sequence. The Conv layer in the above figure is a
one-dimensional convolution layer. The Pool layer is a one-
dimensional pooling layer that down-samples the abstract
features to prevent overfitting. The LSTM layer is a bidirec-
tional LSTM that uses cells to extract long-term dependencies
in abstract features, which helps extract temporally related
features in the sensory data. FC1 layer is a fully connected

layer for unifying abstract features of different shapes into
one shape. Merge layer incorporates multiple sensory fea-
tures for data prediction. In this paper, three kinds of pre-
diction features are chosen by using three parallel network
structures. The purpose of this parallel structure is to adjust
the time step of each sensory data separately.

Experiments in Section 6.1 have shown that a reason-
able combination of time steps can achieve better prediction
results. The output dimensions of each layer in the predictive
model are shown in Table 2:

TABLE 2. Output dimensions of layers in the proposed model.

In Table 2, the output dimensions of each sensory data in
Input layer are (Ts(4), 1), (Ts(2), 1), (Ts(3), 1), respectively,
where Ts(4), Ts(2), Ts(3) is the timestamp used for each
sensory data, and the second dimension is 1, indicating that
only one type of sensory data is used. In the Conv layer, C1,
C2, and C3 are the feature map shapes of sensory data, and
the size of output feature map can be calculated by (2) from
the size of convolution kernel, padding, stride and the input
feature shape. F1 is the number of filters. P1, P2, and P3 in
the Pool layer are the shapes of the feature maps after the
pooling operation. N1 is the number of neurons in the LSTM
layer. Since the bidirectional LSTM neural network is used in
this paper, it has both forward and backward directions, so the
output shape is twice the N1. The output shapes of remaining
layer FC1, FC2, and M1 is the number of neurons.
Since the loss function used in this paper is the error of

single-step prediction, it is necessary to adjust the param-
eters to reduce the average error of multiple iterative pre-
diction. In order to get better multi-step prediction results,
several parameters and node selection experiments are
carried out.

VI. SIMULATION RESULT
A. PARAMETERS SELECTION
The parameters that need to be adjusted in this paper
include the time step in the Input layer, the size of convolution
kernel, the number of filters in the Conv layer, the pooling size
in the Pool layer, and the number of neurons in the LSTM
layer. Taking the examples of using historical temperature
data of node 4, 7 and 10 to predict unknown temperature
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TABLE 3. Output dimensions of layers in the proposed model.

data of node 4, a variety of parameter combinations can be
used to verify the prediction performance. Table 3 shows
the experiment results under various parameter combinations.
The error in the table is the average error of 1000 predic-
tion processes, in which the batch size is set to 200, and
epoch is 15.

The first and second rows in the table are the layers and
their adjustable parameters. When time step = (40, 10, 10),
convolution kernel = 5, filter = 4, pooling size = 5,
stride = 1 and the number of neurons in LSTM layer is 32,
the most accurate prediction is with RMSE = 0.627. The
size of convolution kernel in convolutional layer has a great
influence on the prediction, as can be seen from Table 3.

B. NODE SELECTION
The proposed multi-step predictive model needs to use the
sensory data of neighboring nodes. Multiple groups of nodes
are selected to iteratively predict the trend of sensory data
of node 4. The experiment results show that the multi-step
predictive model based on the correlation between nodes can
make a good prediction when good neighboring nodes are
selected.

Fig. 8 describes the data predict result for the temperature
of node 4, which uses the temperature data of node 3 and 6 as
assistance. The position of node 4, 3 and 6 is shown in Fig. 1,
and it is clear that the distance between node 4 and 3, 6 is
very close. The Spearman correlation coefficient of temper-
ature data between node 4 and 3 is 0.9405, the correlation
coefficient between node 4 and 6 is 0.9484.

FIGURE 9. Using node 3 and 6 to predict temperature of node 4.

In Fig. 9, the blue dotted line is the prediction result, and the
red solid line is the original data.With the help of temperature
data of nodes 3 and 6, the temperature data of node 4 is used
to iteratively predict 1000 temperature data.

Fig. 10 shows the prediction for humidity of node 4, which
chooses the humidity data of node 3, 6 as assistance. In Fig. 3,
there is a strong correlation between the humidity data of
node 4 and 3, 6, which are 0.9522 and 0.9778, respectively.
With the strong correlation of humidity data between node
3, 6 and 4, the proposed model has made a good prediction.
In order to further study the relationship between error of
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FIGURE 10. Using node 3 and 6 to predict humidity of node 4.

FIGURE 11. Using node 7 and 10 to predict temperature of node 4.

prediction and correlation coefficient, node 7 and 10 are used
for prediction. The results of predicting the temperature of
node 4 with node 7 and 10 are shown in Fig. 11.

In Fig. 11, the red solid line is the original data, the blue
dotted line is the predicted data, abscissa of Fig. 11 is the
number of iterations, and the ordinate is the temperature in
degrees Celsius. the prediction error is small at the beginning
of the iteration, but the error increases significantly in the
last 200 iterations. There are two main reasons for this phe-
nomenon. First, there is continuous accumulation of errors in
the iteration. Second, some nodes may meet unusual situa-
tions. Fig. 12 below shows the prediction for humidity data
in node 4, which uses node 7 and 10 to assist the predicting
process.

In this paper, several node combinations are used to
test the predictive model. The prediction error is quantified
by 4 evaluation indicators including RMSE (Root Mean
Square Error), MAPE (Mean Absolute Percentage Error),

FIGURE 12. Using node 7 and 10 to predict humidity of node 4.

MAE (Mean Absolute Error), and R-square. RMSE is sensi-
tive to few outliers and it is suitable for measuring the stability
of prediction. MAPE calculates the ratio of the prediction
error to the true value and it is suitable for measuring the
relative error of prediction. MAE calculates the average pre-
diction errors, which is insensitive to few outliers compared to
RMSE. R-square measures the fitness of the predicted value
to the original value.

TABLE 4. Prediction error with temperature.

TABLE 5. Prediction error with humidity.

Table 4 shows the prediction error for the temperature data,
and Table 5 shows the errors of predicting humidity, the above
four evaluation indicators are used to quantify the error in
different aspects.

According to the prediction errors in the above two tables
and the correlation between these nodes, it is known that
when the correlation of chosen nodes are high, the prediction
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TABLE 6. Prediction error with low correlation.

errors becomes low. In order to further study the relation-
ship between prediction error and correlation coefficient,
we choose temperature as the example to carry out the pre-
diction experiment under low correlation. The experimental
results are shown in Table 6.

We study two factors that affect the prediction result, i.e.,
distance and correlation. From the above prediction exper-
iment of various node combinations, Fig. 13 is shown to
explain the relationship between prediction error and the
correlation. The two connected points are the nodes of a
combination, the node with low correlation is drawn left with
red, and the node with high correlation is drawn right with
blue, as we can see in Fig. 13.

FIGURE 13. Relationship between correlation coefficient and error.

The above experiments show that there is a relationship
between node correlation and prediction error, and the predic-
tion is more sensitive to the node with lower correlation. The
distance between nodes is another factor that may affect the
prediction. Based on the combinations in Table 4. The rela-
tion between the distance and the prediction error is shown
in Fig. 14.

As we can see, the two nodes connected by dashed line
have the highest and lowest correlation coefficients among
all the selected nodes separately. The correlation coefficients
between node correlations and prediction error are calcu-
lated to quantify their relationship. The correlation coefficient
between node with lower correlation and the prediction error

FIGURE 14. Relationship between correlation distance and error.

is−0.8198, and the correlation coefficient between node with
higher correlation and the prediction error is−0.7291, so the
node with lower correlation has a stronger impact on the
prediction error.When selecting nodes to predict the lost data,
we shall try to avoid the cask effect.

C. PERFORMANCE COMPARISION
In this section, Convolutional Neural Networks, Bidirectional
LSTM, and Gated Recurrent Unit Network are used to com-
pare the performance.

1) Convolutional neural network (CNN): A feedforward
neural network that uses convolution calculations. Its one-
dimensional form has a lot of applications in natural language
processing or regression of time series data.

2) Bidirectional LSTM (Bi-LSTM): A neural network
that has many applications in natural language processing
and temporal data prediction, including sentiment analysis,
speech recognition, traffic flow prediction, and so on.

3) Gated Recurrent Unit Network (GRU): A neural net-
work based on RNN, which is similar to the LSTM and has
some great applications in processing time series data.

In order to make a comprehensive evaluation on the
prediction, multiple evaluation indicators are used, which
are RMSE, MAPE, MAE, R-square. The calculated eval-
uation indicators of comparative experiment are shown
in Table 7:

TABLE 7. Prediction evaluation of compared models.

Table 7 shows the prediction of the proposed model, CNN,
Bi-LSTM, and GRU under the same data set. Taking an
iterative prediction of 1000 time steps as an example, the
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FIGURE 15. Prediction results of compared models.

prediction of proposed model, CNN, Bi-LSTM, and GRU are
shown in Fig. 15.

VII. CONCLUSION
In wireless sensor networks, sensor nodes collect a large
number of sensory data, some of these data have similar
variations that can be used to build a multi-step predic-
tive model. Three parallel structures base on 1-D CNN and
Bi-LSTM are used to extract abstract features in sensory data,
and they are combined into the merge layer for data predic-
tion. Once the model is well trained, we use the predictive
model iteratively to get the result ofmulti-step prediction. The
experiments show that the relationships between prediction
error and correlation coefficient, distance are exist, and the
proposed model can make a stable and accurate prediction on
temperature and humidity data in short and medium-term.
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