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ABSTRACT In this article, we introduce the notion of weak Pγ -property and γ -controlled proximal
contraction in the setting of b-metric spaces and prove best proximity results for such mappings.
By restricting these results, we get some new results to study the existence of best proximity points and
fixed points of mappings.

INDEX TERMS Fixed points, best proximity points, γ -controlled proximal contraction, weak Pγ -property.

I. INTRODUCTION AND PRELIMINARIES
Let (X , ds) be a metric space. A mapping ϒ : L ⊂ X →
K ⊂ X has a fixed point β ∈ L, if β = ϒβ, that is,
ds(β,ϒβ) = 0. When ds(β,ϒβ) > 0 for all β ∈ L.
Then one can discuss and find a point β ∈ L for which
ds(β,ϒβ) has least value. Finding of such point is the base
of best proximity theory. The literature of best proximity
and fixed point is very rich and we have many signifi-
cant results some of them are given in [1]–[17]. We could
see from the literature that rich branches of best proxim-
ity theory are based on the concepts of P-property/Weak
P-property, approximately compactness and uniformly con-
vex Banach space. Whereas Almeida et. al. [1] showed that
some best proximity point results proved by using the concept
of Weak P-property can be obtained from their associated
fixed point results. In this paper, we modify and generalized
the concept of Weak P-property to overcome the finding of
Almeida et. al. [1] for best proximity point results. By using
our generalized concept of Weak P-property almost all exist-
ing results of best proximity point could be further extended
and the finding of Almeida et. al. [1] are not applicable.

It is not false to say that the most classical result of this
theory was given by Fan [3].
Theorem 1 ( [3]): Let L be a nonempty convex and

compact subset of normed linear space X and ϒ : L → X
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be a continuous function. Then there exists β ∈ L such that

‖β − ϒβ‖ = inf
a∈L
{‖ϒβ − a‖}.

Abkar and Gbeleh [5] gave best proximity result
for nonself multivalued mappings satisfying P-property.
Kiran et al. [7] generalized the result of [5] by giving the con-
cept of controlled proximal contraction. Jleli and Samet [9]
gave the notion of α-proximal admissible and α-ψ-proximal
contractive type mappings and proved the corresponding
best proximity point theorems. These notions and results
have been extended to multivalued nonself mappings by
Ali et al. [10] and Choudhurya et al. [11], independently.
These results also generalized the result of [5].

The purpose of this paper is to introduce some results in the
setting of b-metric spaces which generalize the results given
in the above articles.

Throughout this section (X , ds) be a metric space, K and
L are nonempty subsets of X . The following notations and
definitions are used in this article.

ds(β,L) = inf{ds(β, l) : l ∈ L}

dist(K ,L) = inf{ds(k, l) : k ∈ K , l ∈ L}

K0 = {k ∈ K : ds(k, l)=dist(K ,L) for some l ∈ L}

L0 = {l ∈ L : ds(k, l)=dist(K ,L) for some k ∈ K }

and

B(β0, r) = {β ∈ X : ds(β0, β) ≤ r}.
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CL (̂L) is used to represent the collection of all nonempty
closed subsets of L̂. For every K ,L ∈ CL (̂L), let

Hs(K ,L) =


max{supβ∈K ds(β,L), supζ∈L ds(ζ,K )}

if maximum exists;
∞ otherwise.

Such a map Hs is known as generalized Hausdorff metric
induced by ds.
Definition 2 ( [6]): A pair (K ,L) has a weak P-property,

if K0 6= ∅, for any β1, β2 ∈ K and ζ1, ζ2 ∈ L with
ds(β1, ζ1) = dist(K ,L) = ds(β2, ζ2), we have ds(β1, β2) ≤
ds(ζ1, ζ2).
Abkar and Gabeleh in [4] showed that every nonempty,

bounded, closed and convex pair in a uniformly convex
Banach spaceX satisfies the above definition with an equality
sign.
Definition 3 ( [5]): An element β∗ ∈ K is called

best proximity point of a multivalued nonself map ϒ ,
if ds(β∗, ϒβ∗) = dist(K ,L).

Ali et al. [10] extended the concept of Jleli and Samet [9]
for multivalued mappings in the following way:
Definition 4 ( [10]): A multivalued map ϒ : K → 2L \ ∅

is γ -proximal admissible if there is a function γ : K × K →
[0,∞) such that

γ (β1, β2) ≥ 1
ds(u1, ζ1) = dist(K ,L)
ds(u2, ζ2) = dist(K ,L)

⇒ γ (u1, u2) ≥ 1

where β1, β2, u1, u2 ∈ K and ζ1 ∈ ϒβ1, ζ2 ∈ ϒβ2.
Czerwik [2] stated the following generalization of metric

space.
Definition 5: A mapping ds : X × X → [0,∞) is known

as b-metric on a nonempty set X, if for every k, l,m ∈ X ,
we have a real number s ≥ 1 holding the following axioms:
(i) ds(k, l) = 0 if and only if k = l;
(ii) ds(k, l) = ds(l, k);
(iii) ds(k,m) ≤ s[ds(k, l)+ ds(l,m)].

Then (X , ds, s) is said to be a b-metric space.
The following famous lemma of the existing literature will

be used in our main results.
Lemma 6: Let (X , ds, s) be a b-metric space, L ∈ CL(X )

and p > 1. Then for each β ∈ X , there exists l ∈ L such that

ds(β, l) ≤ pds(β,L). (1)

II. MAIN RESULT
Here, �s denotes the collection of functions χ : [0,∞) →
[0,∞) having the following properties:

(i) χ is nondecreasing function;
(ii) χ (at) = aχ (t) for all a, t ≥ 0;
(iii)

∑
∞

n=0 s
2nχn(t) <∞, where s ≥ 1;

(iv) χ0(t) = t .
Through out this section: We consider K and L are

nonempty subsets of a b-metric space (X , ds, s), β0 ∈ K0 and
B(β0, r) is a closed ball in X .

Definition 7: A mapping ϒ : K → CL(L) is γ -controlled
proximal contraction onB(β0, r), if for each β, ζ ∈ B(β0, r)∩
K with γ (β, ζ ) ≥ 1, we have

Hs(ϒβ,ϒζ ) ≤ χ (ds(β, ζ )) (2)

where, χ ∈ �s and γ : K × K → [0,∞).
The following definition is a generalization of the [15,

Definition 2.1]
Definition 8: A pair (K ,L) of nonempty subsets of

(X , ds, s) has a weak Pγ -property, if for any β1, β2 ∈ K0,
K0 6= ∅, and ζ1, ζ2 ∈ L, we have

γ (β1, β2) ≥ 1
ds(β1, ζ1) = dist(K ,L)
ds(β2, ζ2) = dist(K ,L)

⇒ ds(β1, β2) ≤ ds(ζ1, ζ2)

where γ : K × K → [0,∞) is a function.
Example 9: LetX = R3 and ds((β1, β2, β3), (ζ1, ζ2, ζ3)) =∑3
i=1 |βi − ζi|. Take the sets K = {(0, 0, β) : β ∈ [3, 4]} ∪
{(1, 0, 0)} and L = {(1, 0, ζ ) : ζ ∈ [3, 4]} ∪ {(1, 0, 1)}.
Define γ : K × K → [0,∞) by

γ ((a, 0, β), (b, 0, ζ ))=

{
1, if β, ζ ∈ [3, 4] and a=b = 0
0, otherwise.

For the above defined γ , K , and L, one can easily verify
that (K ,L) has a weak Pγ -property. But by taking β1 =
(1, 0, 0), β2 = (0, 0, 3) ∈ K0 and ζ1 = (1, 0, 1), ζ2 =
(1, 0, 3) ∈ L, we have ds(β1, ζ1) = 1 = dist(K ,L) and
ds(β2, ζ2) = 1 = dist(K ,L); and ds(β1, β2) = 4 and
ds(ζ1, ζ2) = 2. That is, ds(β1, β2) > ds(ζ1, ζ2). Hence, weak
P-property does not hold for (K ,L).
In the following results, we take (X , ds, s) as a complete

and continuous b-metric space, and K , L are nonempty sub-
sets of X . The following hypotheses may also be used in our
results.

(T-i) For each β ∈ K0, we have ϒβ ⊆ L0 and the
pair (K ,L) satisfies weak Pγ -property.
(T-ii) ϒ is γ -proximal admissible.
(T-iii) ϒ is γ -controlled proximal contraction on
the closed ball B(β0, r), for some β0 ∈ K0 and r >
0, and

∑
∞

n=0 s
2n+2χn(ds(β0, ϒβ0)+ dist(K ,L)) <

r . Further, for β0 ∈ K0, there exist ζ0 ∈ ϒβ0 and
β1 ∈ K0 such that ds(β1, ζ0) = dist(K ,L) and
γ (β0, β1) ≥ 1.
(T-iv) ϒ is continuous.
(T-v) for each sequence {βn} in K with γ (βn, βn+1)
≥ 1 ∀ n ∈ N and βn → β ∈ K , we have γ (βn, β)
≥ 1 ∀ n ∈ N.

where ϒ : K → CL(L) and γ : K × K → [0,∞).
Now, we present the first result of this article.
Theorem 10: Let (X , ds, s) with s > 1, letK0 be nonempty

and ϒ : K → CL(L) be a mapping which satisfies the
hypotheses: (T-i)-(T-iv). Then ϒ has a best proximity point
in B(β0, r) ∩ K0.
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Proof: From (T-iii), there are β0, β1 ∈ K0 and ζ0 ∈ ϒβ0
such that

ds(β1, ζ0) = dist(K ,L) and γ (β0, β1) ≥ 1. (3)

By triangle inequality, (T-iii) and (3), we calculate

ds(β0, β1) ≤ s[ds(β0, ϒβ0)+ ds(ϒβ0, β1)]

≤ s[ds(β0, ϒβ0)+ ds(ζ0, β1)]

= s3 < r (4)

where 3 = ds(β0, ϒβ0) + dist(K ,L). This implies β1 ∈
B(β0, r) ∩ K , since β1 ∈ K0 ⊆ K . From (2), we get

ds(ζ0, ϒβ1) ≤ Hs(ϒβ0, ϒβ1) ≤ χ (ds(β0, β1)). (5)

As s > 1, by Lemma 6, there exists ζ1 ∈ ϒβ1 such that

ds(ζ0, ζ1) ≤ sds(ζ0, ϒβ1) ≤ sχ (ds(β0, β1)). (6)

As ζ1 ∈ ϒβ1 ⊆ L0 then we get β2 ∈ K0 such that

ds(β2, ζ1) = dist(K ,L). (7)

It is given that ϒ is γ -proximal admissible, then (3) and (7)
yield, γ (β1, β2) ≥ 1. By hypothesis (T-i), from γ (β1, β2)
≥ 1, (3) and (7), we get

ds(β1, β2) ≤ ds(ζ0, ζ1). (8)

From (6) and (8), we have

ds(β1, β2) ≤ sχ (ds(β0, β1)). (9)

By applying χ in (9), we have

χ (ds(β1, β2)) ≤ sχ2(ds(β0, β1)). (10)

The triangle inequality, (4) and (9), yield

ds(β0, β2) ≤ sds(β0, β1)+ s2ds(β1, β2)

≤ sds(β0, β1)+ s3χ (ds(β0, β1))

≤ s23+ s4χ (3) < r .

This inequality and the fact β2 ∈ K0 ⊆ K implies that β2 ∈
B(β0, r)∩K . Since γ (β1, β2) ≥ 1 and β1, β2 ∈ B(β0, r)∩K ,
then from (2), we get

ds(ζ1, ϒβ2) ≤ Hs(ϒβ1, ϒβ2) ≤ χ (ds(β1, β2)). (11)

Lemma 6 ensures there is ζ2 ∈ ϒβ2 such that ds(ζ1, ζ2) ≤
sds(ζ1, ϒβ2). Thus by (11), we get

ds(ζ1, ζ2) ≤ sχ (ds(β1, β2)). (12)

As ζ2 ∈ ϒβ2 ⊆ L0, there is β3 ∈ K0 such that

ds(β3, ζ2) = dist(K ,L). (13)

As γ (β1, β2) ≥ 1 then by using hypothesis (T-ii) we get
γ (β2, β3) ≥ 1, since (7) and (13) hold. From hypothesis (T-i),
by using the facts of (7), (13) and γ (β2, β3) ≥ 1, we get

ds(β2, β3) ≤ ds(ζ1, ζ2). (14)

From (14), (12) and (10), we get

ds(β2, β3) ≤ sχ (ds(β1, β2)) ≤ s2χ2(ds(β0, β1)). (15)

The triangle inequality, (9) and (15), yield

ds(β0, β3) ≤ sds(β0, β1)+ s2ds(β1, β2)+ s3ds(β2, β3)

≤ sds(β0, β1)+ s3χ (ds(β0, β1))

+ s5χ2(ds(β0, β1))

≤ s23+ s4χ (3)+ s6χ2(3) < r .

This inequality and the fact β3 ∈ K0 ⊆ K implies that β3 ∈
B(β0, r)∩K . Proceeding in the same way, we get {βn} ⊆ K0
with βn ∈ B(β0, r) ∩ K and {ζn} ⊆ L0 with ζn ∈ ϒβn such
that

γ (βn−1, βn)≥1 and ds(βn, ζn−1)=dist(K ,L) ∀ n ∈ N. (16)

Moreover,

ds(βn, βn+1) ≤ ds(ζn−1, ζn) ≤ snχn(ds(β0, β1)) ∀ n ∈ N.

For n,m ∈ N, n > m, we get

ds(βn, βm) ≤
m−1∑
j=n

sjds(βj, βj+1)

≤

m−1∑
j=n

s2jχ j(ds(β0, β1))

<

∞∑
j=n

s2jχ j(ds(β0, β1)) <∞.

This proves that {βn} is Cauchy in B(β0, r) ∩ K ⊆ K .
Similarly one can also prove that {ζn} is Cauchy in L. Since
K and L are closed in the complete space X and B(β0, r)∩K
is closed in K . Thus, we get β∗ ∈ B(β0, r) ∩ K and ζ ∗ ∈ L
such that βn → β∗ and ζn → ζ ∗. By the continuity of d and
(16), we get ds(β∗, ζ ∗) = dist(K ,L) as n → ∞. Clearly,
ζ ∗ ∈ ϒβ∗, since, ϒ is continuous. Thus, dist(K ,L) ≤
ds(β∗, ϒβ∗) ≤ ds(β∗, ζ ∗) = dist(K ,L). Hence, β∗ is a best
proximity point of ϒ . �
Theorem 11: Let (X , ds, s) with s > 1, letK0 be nonempty

and ϒ : K → CL(L) be a mapping which satisfies
the hypotheses: (T-i)-(T-iii) and (T-v). Then ϒ has a best
proximity point in B(β0, r) ∩ K0.

Proof: Following the proof of the last theorem, we have
{βn} as Cauchy in B(β0, r)∩K ⊆ K and {ζn} as Cauchy in L
satisfying

γ (βn−1, βn)≥1 and ds(βn, ζn−1)=dist(K ,L) ∀n ∈ N,
(17)

and

ds(βn, βn+1) ≤ ds(ζn−1, ζn) ≤ snχn(ds(β0, β1)) ∀n ∈ N.

Further, βn → β∗ and ζn → ζ ∗. By using (17) and the
continuity of d , we get ds(β∗, ζ ∗) = dist(K ,L) as n → ∞.
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Since βn, β∗ ∈ B(β0, r) ∩ K and γ (βn, β∗) ≥ 1. Thus from
(2), we get

Hs(ϒβn, ϒβ∗) ≤ χ (ds(βn, β∗)) for each n ∈ N.

When n tends to infinity in the last inequality, we getϒβn→
ϒβ∗. As ζn ∈ ϒβn, ζn → ζ ∗ and ϒβn → ϒβ∗. Then,
ζ ∗ ∈ ϒβ∗. Thus, dist(K ,L) ≤ ds(β∗, ϒβ∗) ≤ ds(β∗, ζ ∗) =
dist(K ,L). Hence, β∗ is a best proximity point of ϒ . �
For s = 1 we have the following result, which can be

proved on the same lines as the proof of Theorem 10 and 11
done.
Theorem 12: Let K and L be nonempty closed subsets of

a complete metric space (X , ds) and K0 be nonempty. Let γ :
K×K → [0,∞) andϒ : K → CL(L) be mappings such that
for each β, ζ ∈ B(β0, r) ∩ K , for some β0 ∈ K0 and r > 0,
with γ (β, ζ ) ≥ 1 we have

Hs(ϒβ,ϒζ ) ≤ χ (ds(β, ζ ))

with a strict inequality, if β 6= ζ . Where, χ ∈ �1 and∑
∞

n=0 χ
n(ds(β0, ϒβ0) + dist(K ,L)) < r . Further, for β0 ∈

K0, there exist ζ0 ∈ ϒβ0 and β1 ∈ K0 such that ds(β1, ζ0) =
dist(K ,L) and γ (β0, β1) ≥ 1. Moreover, the hypotheses: (T-
i), (T-ii), (T-iv) or (T-v) are also hold. Then ϒ has a best
proximity point in B(β0, r) ∩ K0.
Example 13: Let X = R2 and ds((β1, ζ1), (β2, ζ2)) =
|β1 − β2| + |ζ1 − ζ2| be a metric on X . Take K = {(1, β) :
β ∈ R} and L = {(0, β) : β ∈ R}. Define ϒ : K → CL(L)
by

ϒ(1, β) =


{(0, β)}, β ≤ 0
{(0, 0), (0, β/8)}, 0 < β ≤ 4
{(0, b) : b ≥ β}, β > 4

and γ : K × K → [0,∞) by

γ ((1, β), (1, ζ )) =

{
1, β, ζ ∈ [0, 4]
0, otherwise.

One can see that ϒ is γ -controlled proximal contraction on
closed ball B(β0 = (1, 0.4), r = 4) with χ (t) = 1

4 t , and∑
∞

n=0 χ
n(ds(β0, ϒβ0) + dist(K ,L)) < 4. Also, note that

K0 = K , L0 = L; for each β ∈ K0 we have ϒβ ⊆ L0
and the pair (K ,L) satisfies the weak Pγ -property. For β0 =
(1, 0.4) ∈ K0, we have ζ1 = (0, 0.48 ) ∈ ϒβ0 in L0 and
β1 = (1, 0.48 ) ∈ K0 such that ds(β1, ζ1) = dist(K ,L) and
γ (β0, β1) = 1. If β0, β1 ∈ {(1, β) : 0 ≤ β ≤ 4}, then
ϒβ0, ϒβ1 ⊆ {(0,

β
8 ) : 0 ≤ β ≤ 4}. Take ζ1 ∈ ϒβ0,

ζ2 ∈ ϒβ1 and u1, u2 ∈ K such that ds(u1, ζ1) = dist(K ,L)
and ds(u2, ζ2) = dist(K ,L). Then we have u1, u2 ∈ {(1, β) :
0 ≤ β ≤ 1

2 }. Hence ϒ is an γ -proximal admissible. Also, for
each sequence {βn} in K with γ (βn, βn+1) ≥ 1 for all n ∈ N
and βn → β ∈ K , by definition of γ , we have γ (βn, β) ≥ 1
for all n ∈ N. Therefore, all the conditions of Theorem 12
hold and ϒ has a best proximity point.

Note that, one can check in this example for assumed ball
and γ function the [7, Theorem 3] and [10, Theorem 15] are
not applicable.

Following result is obtained by take γ (β, ζ ) = 1 for each
β, ζ ∈ K in Theorem 10 and 11.
Theorem 14: Let (X , ds, s) with s > 1, letK0 be nonempty

and ϒ : K → CL(L) be a mapping satisfying (T-i) and the
following inequality

Hs(ϒβ,ϒζ ) ≤ χ (ds(β, ζ ))

for all β, ζ ∈ B(β0, r) ∩ K , for some β0 ∈ K0, with∑
∞

n=0 s
2n+2χn(ds(β0, ϒβ0) + dist(K ,L)) < r and χ ∈ �s.

Then ϒ has a best proximity point in B(β0, r) ∩ K0.
In case ϒ : K → L, we get the following result, obtained

by our main results:
Corollary 15: Let (X , ds, s) with s > 1 and let K0 be

nonempty. Let γ : K × K → [0,∞) and ϒ : K → L be
mappings such that

ds(ϒβ,ϒζ ) ≤ χ (ds(β, ζ )),

for each β, ζ ∈ B(β0, r) ∩ K , for some β0 ∈

K0, with γ (β, ζ ) ≥ 1, where, χ ∈ �s and∑
∞

n=0 s
2n+2χn(ds(β0, ϒβ0)+ dist(K ,L)) < r . Also assume,

for β0 ∈ K0, there are ϒβ0 ∈ L0 and β1 ∈ K0 satisfying
ds(β1, ϒβ0) = dist(K ,L) and γ (β0, β1) ≥ 1. Moreover,
the hypotheses: (T-i), (T-ii), (T-iv) or (T-v) are also hold. Then
ϒ has a best proximity point in B(β0, r) ∩ K0.
By taking K = L = X , we have the following fixed point

theorem. Note that this is a new result in b-metric spaces,
as far as we know.
Corollary 16: Let (K , ds, s) be a complete and continuous

b-metric space with s > 1. Let γ : K × K → [0,∞)
and ϒ : K → CL(K ) be mappings satisfying the following
hypotheses:

(i)ϒ is γ -admissible, that is, for each β, ζ ∈ K with
γ (β, ζ ) ≥ 1, we have infa∈ϒβ,b∈ϒζ γ (a, b) ≥ 1;
(ii) ϒ is γ -controlled contraction on the closed ball
B(β0, r), for some β0 ∈ K0 and r > 0, that is, for
each β, ζ ∈ B(β0, r) with γ (β, ζ ) ≥ 1, we get

Hs(ϒβ,ϒζ ) ≤ χ (ds(β, ζ ))

where, χ ∈ �s and
∑
∞

n=0 s
2n+2χn(ds(β0, ϒβ0)) <

r . Further, for β0 ∈ K , there exists β1 ∈ ϒβ0 such
that γ (β0, β1) ≥ 1;
(iii) ϒ is continuous, or, for each {βn} in K with
γ (βn, βn+1) ≥ 1 ∀n ∈ N andβn→ β ∈ K , we have
γ (βn, β) ≥ 1 ∀n ∈ N.

Then ϒ has a fixed point in B(β0, r).

III. CONCLUSION
This article provides a tool to study the existence of best
proximity point of the nonself mappings satisfying certain
conditions, like γ -controlled proximal contraction and weak
Pγ -property. Further the notion of weak Pγ -property gen-
eralizes the notion of weak P-property and removes all
those limitations which may occur due to the use of weak
P-property.
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