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ABSTRACT In complex processes, various events can happen in different sequences. The prediction of the
next event given an a-priori process state is of importance in such processes. Recent methods have proposed
deep learning techniques such as recurrent neural networks, developed on raw event logs, to predict the next
event from a process state. However, such deep learning models by themselves lack a clear representation
of the process states. At the same time, recent methods have neglected the time feature of event instances.
In this paper, we take advantage of Petri nets as a powerful tool in modeling complex process behaviors
considering time as an elemental variable. We propose an approach which starts from a Petri net process
model constructed by a process mining algorithm.We enhance the Petri net model with time decay functions
to create continuous process state samples. Finally, we use these samples in combination with discrete token
movement counters and Petri net markings to train a deep learning model that predicts the next event.
We demonstrate significant performance improvements and outperform the state-of-the-art methods on nine
real-world benchmark event logs.

INDEX TERMS Business process intelligence, decay functions, deep learning, petri nets, neural networks,
operational runtime support, predictive process management, process mining.

I. INTRODUCTION
With the ongoing development of digitizing and automa-
tizing industries along with the steady increment of inter-
connected devices, we can project more interactions onto
processes [1], [2]. These processes can represent procedures
in different industries such as retail [3], software develop-
ment [4], healthcare [5], network management [6], project
management [7], or manufacturing [8]. One illustrative exam-
ple is the process of a customer loan application in financial
institutes [9]. An applicant can request money for specific
purposes. The application then undergoes several process
steps such as negotiation, request validation, fraud assess-
ment, offer creation and/or application rejection. Each step
of the process utilizes different institutional resources such
as employees, customer records, IT systems, or third-party
resources to check the creditworthiness of applicants. Though
trivial, the process gets complex with an increasing number
of applications and requirements of the institute.

The associate editor coordinating the review of this article and approving
it for publication was Shouguang Wang.

While traditional process mining is primarily concerned
with the discovery, analysis, and monitoring of processes,
predictive process management gains momentum by enhanc-
ing process models. Predictive process management plays an
important role in the areas mentioned earlier. Knowing when
specific situations occur, or in which state a process will
be next, is important to meet qualitative and/or quantitative
requirements of businesses and organizations.

Many businesses deploy Process-Aware Information Sys-
tems such as workflow management systems, case-handling
systems, enterprise information systems, enterprise resource
planning, and customer relationship management systems.
These are software tools which manage and execute opera-
tional processes involving people, applications, and/or infor-
mation sources based on process models [10]. Such systems
record events associated to different process steps along with
time and other related information which can be utilized for
predictive process management. Typical use cases comprise
the prediction of the next event, forecasting of a process’
final state, or time interval prediction of future events [11].
Predicting the next event elicits special attention since it gives
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organizations the ability to forecast process deviations. This
type of early detection is essential for intervenability before
a process enters risky states [12]. Moreover, predictive pro-
cess management assists businesses in resource planning and
allocation, providing insights on the condition of a process to
fulfill for instance service-level agreements [13]–[15].

With this motivation, a range of different methods
have been proposed on predicting the events in pro-
cess sequences. Most recent advances are made in uti-
lizing different deep learning architectures such as Long
Short-Term Memory (LSTM) neural networks and stacked
autoencoders [15]–[18]. However, these techniques do not
discover process models at first, but perform their predictions
on the raw event logs. This makes decision making hard to
understand and difficult to explain, which is crucial to dis-
cover the weaknesses of a process. Furthermore, since neural
networks are not infallible [19], commonsense knowledge
and obvious logical policies are suggested to be introduced
into a deep learning model from the beginning to reduce
potential vulnerability. This knowledge is easy to obtain from
process discovery algorithms. Therefore, modeling processes
from scratch using neural networks is costly and partially
redundant. Thus, one of the research questions is how to retain
process models like Petri nets (PN) [20] with its logic, inter-
pretability, and comprehensibility [21]–[24], and combine it
with the strengths of deep learning towardsmore interpretable
models to improve performance at the same time.

A further research motivation arises due to weaknesses
of recent predictive methods. Some of the state-of-the-art
algorithms do not consider event timestamps as features at
all [12], [16]. However, the duration between two events
and/or sequences of events might be correlated with a future
process outcome. Therefore, we suggest taking event times
into account for predictive modeling.

In the current work, we propose an innovative method
to predict the next event of a running process case which
engages with the issues mentioned above. We first leverage
a state-of-the-art process mining algorithm to discover a PN
based process model from an event log. Then, we enhance the
process model with time decay functions. In this way, we can
create continuous and timed state samples which we finally
couple with process resources to train a neural network for
the prediction of the next event. We call this approach Decay
Replay Mining - Next TrAnsition Prediction (DREAM-NAP).
By taking this approach, we demonstrate significant perfor-
mance improvements. Our method outperforms the state-
of-the-art techniques on all of the popular benchmark
datasets.

This paper is structured as follows. Section II discusses
related work and most recent advances in the next event
prediction of business processes. We introduce preliminaries
in Section III. Section IV focuses on the proposed approach,
especially on the decay function modeling in PNs and the
deep learning architecture. Section V evaluates the approach
against different existing methods. Finally, we conclude the
paper and discuss future work in Section VI.

II. RELATED WORK
The application of deep learning on predictive business pro-
cess mining has grown enormously during recent years.
Researchers have shown the applicability of machine and
deep learning on several target variables such as the remain-
ing time of running cases [25], forecasting time of events [26],
and predicting upcoming events in running processes while
utilizing a-priori knowledge [27]. The prediction of events
can be considered as a classification problem in which the
probability of a next event a given the state s of the process
at time τ , P(a|s(τ )), is to be found.
Early predictive models focused on analytical approaches.

Le et al. [28] introduced a hybrid approach consisting of
a sequence alignment technique to extract similar patterns
and to predict upcoming events based on a combination of
Markov models. The next event of a running process case
is therefore determined by the transition probabilities of the
Markov models.

Becker et al. [29] faced this problem with a simi-
lar approach in which historical event data is used to
create a Probabilistic Finite Automaton. In comparison,
Ceci et al. [30] proposed an approach which can handle
incomplete traces which is robust to noise and deals with
overfitting. This approach leverages sequence mining. Effi-
cient frequent pattern mining is applied to create a tree where
prediction models are associated to each node (also called
nested model learning). These prediction models can be any
traditional machine learning algorithms for classification.

Lakshmanan et al. [31] developed a method which models
a process in a probabilistic and instance-specific way. This
model can predict next events and can be translated into a
Markov chain. Their approach has been implemented on a
simulated automobile insurance claim process.

Similarly, Unuvar et al. [32] proposed a method to predict
the likelihood of future process tasks by modeling parallel
paths which can be either dependent or independent. The
authors applied their methodology to a simulated marketing
campaign business process model.

More recently, Breuker et al. [12] introduced a predic-
tive model based on the theory of grammatical inference.
They have modeled business processes probabilistically with
a method called RegPFA which is based on Probabilistic
Finite Automaton. Grammatical inference is applied on top
of the finite automaton. One of the advantages is that the
methodology is based on weaker biases while maintaining
comprehensibility. This is important because users without
deep technical knowledge can interpret and understand the
models. Breuker et al. evaluated their approach against two
public available real-world logs demonstrating significant
performance improvements. Breuker et al. are able to predict
the next event given a running process case with accuracies
between 69% and 81% according to their reports.

Most recent research studies have shown the applicabil-
ity of deep learning to predict process states and events.
Evermann et al. [16] have shown in 2017 that recurrent
neural networks can be applied to predict next events in
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processes and improve state-of-the-art prediction accuracies.
They create word embeddings from each event instance of
the event log to train an LSTM neural network. Therefore,
the process is modeled implicitly by the neural network itself.
Evermann et al. used the same datasets as Breuker et al. [12]
for comparison.

A comparable approach has been elaborated by
Tax et al. [15] who predict next events including their times-
tamps and remaining case times using LSTMs. This approach
is similar to the one Evermann et al. demonstrated before.
However, according to Khan et al. [17], a major drawback
of LSTMs in this context is their limited memory due to the
predefined size of the memory state representation which is
used to predict next events. They claim that distant event
instances in long-running cases vanish over time from the
memory state vector. Therefore, Khan et al. [17] adapted
to overcome the memory limitations of LSTMs by applying
memory-augmented neural networks. This technique lever-
ages external memory modules for long-term retention to
model complex event processes. The authors demonstrate
the applicability and report slight performance improvements
compared to Tax et al. [15].
A further approach has been elaborated by

Mehdiyev et al. [18]. The authors encode events into
n-gram features using a sliding window approach and lever-
age feature hashing on top. These features, in turn, are used
to train a deep learning model consisting of unsupervised
stacked autoencoders and supervised fine-tuning. This archi-
tecture has shown significant performance improvements
across most of the datasets, yet it is more complex compared
to the methods described earlier. Mehdiyev et al. can predict
the next event given a running process case with accuracies
between 66% and 83% according to their reports.

Since deep learning techniques are difficult to inter-
pret, Lee et al. [33] developed a method based on
matrix factorization and knowledge from business pro-
cess management to create predictive models which are
easier to understand. The authors claim to require fewer
parameters than neural networks while maintaining good
performance.

In this work, we have three major contributions. First,
we propose an approach to represent process model states
in a continuous rather than a discrete format by enhancing
PNs with time decay functions. Second, we show that we
can use this approach to incorporate time as a continuous
feature to predict the next process event since the duration
between two events might be correlated with the type of
subsequent occurring events in real-world processes. At the
same time, we retain a comprehensible process model with its
advantages [21]–[24]. With these advancements, we demon-
strate that our next event prediction algorithm performs sig-
nificantly better than the previously introduced methods.
Third, we contribute a comprehensive evaluation of recent
next event prediction algorithms across nine benchmark
datasets reporting five different classification evaluation
metrics.

III. PRELIMINARIES
In this section, we introduce the preliminaries which are
required throughout the paper. We introduce event logs, fol-
lowed by PNs. We provide a general introduction to Process
Mining in III-C and introduce a state-of-the-art process dis-
covery algorithm in Section III-D. Finally, we define neural
networks in Section III-E.

A. EVENT LOGS
The definitions in this subsections are partially based on the
work of van der Aalst et al. [21] and Guo et al. [34].
An event a ∈ A describes an instantaneous change of

a process’ state. In this definition, A is the finite set of
all possible events. Example events based on the process
steps described in Section I are start negotiation, end fraud
assessment, and start offer creation. A specific event a may
happen more than once in a given process. An event instance
E is a vector with at least two attributes: the name of the
associated event a and the corresponding occurrence times-
tamp. An instance vector may contain further non-mandatory
attributes like costs, people, and resources associated with
that event occurrence. Based on the definition of an event
instance, two event instances cannot have the same times-
tamp, i.e. cannot occur simultaneously. This is because of the
continuous nature of time, and the fact that point probabilities
in continuous probability distributions are zero.

We define N as the set of all possible event instances and
D as the set of all possible attributes. Then for any event
instance E ∈ N and any attribute d ∈ D : υd (E) is the
value of the attribute d for the event instance E . If an event
instance E does not contain an attribute d , then υd (E) = ∅
(empty set). We denote the attribute timestamp by dts.

A case g is a finite and chronological sequence of event
instances. In literature, the term trace is also used to describe
a case, thus we use both terms synonymously. We define G
as the finite set of all possible traces and γ (g) as a function
that returns the number of event instances of a trace g ∈ G,
i.e. the length of g.
An event log is a set of traces L ⊆ G. Moreover,

Li,j refers to the jth event instance in the ith trace of an event
log L. |L| denotes the cardinality of L corresponding to its
number of traces. Similarly, γ (Li) expresses the number of
event instances of the ith trace of the event log L.

B. PETRI NET
A PN is a mathematical model that can represent a process.
It consists of a set of places; these are graphically represented
as circles and transitions represented as rectangles. Transi-
tions correspond to events. Transitions and places are also
referred to as nodes. Additionally, arcs are used to unidirec-
tionally connect places to transitions and vice versa. A labeled
PN is defined as

PN = 〈P, T ,F ,A, π〉 (1)

where P is the set of places, T is the set of transitions, F ⊆
(P × T ) ∪ (T × P) is the set of directed arcs connecting
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places and transitions, and A is the set of events [21], [34],
[35]. The set P ∪ T is called the set of nodes. The first node
of each pair (x, y) ∈ F represents always the source whereas
the second node represents always the sink of the directed arc.
In other words, a node x is the input node to another node y
iff (x, y) ∈ F . Similarly, x is the output node to another node
y iff (y, x) ∈ F . For any x ∈ P ∪ T , •x = {y|(y, x) ∈ F} is
the set of input nodes to x and x• = {y|(x, y) ∈ F} is the set
of output nodes of x. The function π : T → A ∪ {⊥} maps
each transition t ∈ T to either a single event of A or to the
non-observable event ⊥. A labeled PN is defined such that

∀a∈A∃!t∈T π (t) = a. (2)

Each place can hold a non-negative integer number of
tokens. We define σ (p) as the number of tokens in a
place p where p ∈ P .

The state of a PN corresponds to a marking M ∈ M
where M is the set of all possible markings. We define
M ∈ Z |P | as a vector of size |P|whereZ denotes the set of all
non-negative integers and |P| corresponds to the cardinality
of P . Each element Mi = σ (pi), i = 1, . . . , |P| where pi
is the ith place of P . The initial state M init is also called
initial marking, whereas the final state Mfinal is called final
marking [21]. Usually discovered process models in process
mining have a dedicated source and a dedicated sink place
that indicate the start and end of the process. All other process
nodes are on a path between them. Hence, M init and Mfinal

describe the process source and sink states [21].
Moreover, a transition t ∈ T is mathematically defined as

enabled [21] , i.e. can only be fired if

∀p∈•tσ (p) ≥ 1. (3)

Hidden transitions, a special type of transition, are associated
to the non-observable event ⊥. Such transitions can always
fire independent of observed events as long as the introduced
token requirements at incoming places are met. When firing
a transition t , a token is removed from each of the input
places •t , while a token is added to each of the output
places t•.

Processmodels do not always behave as desired. For exam-
ple, PNs may contain unintended deadlocks or transitions
that can never become enabled. Different criteria have been
specified under the term soundness to prevent process models
from such behavior [36], [37]. It is defined as follows [21].
A labeled PN with dedicated source and sink places is con-
sidered sound iff:
• for any place p ∈ P , p cannot hold multiple tokens at
the same time,

• for any marking M ∈ M that indicates a token in the
dedicated sink place of the PN, M = Mfinal which
implies that there are no remaining tokens in other places
than the dedicated sink one when the final marking is
reached,

• for any marking M ∈ M, the final marking Mfinal is
reachable,

• and for any t ∈ T , a firing sequence of events exists that
enables t .

Furthermore, we define a function δp(g) for all p ∈ P
measuring the average time between a token leaves a place p
until a new token enters p based on an input trace g. Finally,
τp describes the most recent time that a token entered a
place p.

C. PROCESS MINING
Process mining defines the discovery, conformance, and
enhancement of business processes [21], [38]. Process dis-
covery is the algorithmic extraction of process models from
event logs. One can carry out analysis on obtained models
which are usually in the format of PNs, Business Process
Modeling Notations (BPMN), Event Driven Process Chains
(EPCs), or Casual Nets (CN). In this paper, we will focus on
PNs only.

Conformance is defined as the evaluation of the quality of
a discovered process model, i.e. if it is a good representation
of the process recorded by an event log. It is commonly evalu-
ated based on fitness and precision among other metrics [21].
Therefore, each trace of an event log is replayed by executing
the events sequentially on top of the process model. Fitness
metric functions evaluate the quality of a process model by
quantifying deviations between an event log and the replay
response of a processmodel to this event log. A processmodel
should allow replaying the behavior seen in the event log [21].
Precision metric functions represent the alignment between
simulated traces from the obtained process model and true
traces from the event log. Ideally, each generated trace by the
process model should be realistic, thus being present in the
actual event log.

Enhancement considers discovered process models as well
as event logs to improve or extend the models. Examples of
process enhancement include structural corrections to allow
the occurrence of specific behavior or extending a process
model with performance data.

D. SPLIT MINER
Split miner [39] is a process discovery algorithm that creates
sound labeled PNs with dedicated source and sink places
from event logs and that is characterized by recent significant
performance improvements in comparison to existing state-
of-the-art methods [40]. It is currently the best algorithm
to automatically obtain PN process models from event logs
with high fitness and precision. This discovery method has
been developed to engage with the tradeoff between fitness,
precision, and the complexity of the obtained process model.
Split miner consists of the following five steps [39].

First, it discovers a directly-follows dependency graph and
detects short loops. In the second step, the algorithm
searches for concurrency and marks the respective elements
as such. Afterward, split miner applies filtering such that each
node is on a path from a single start node to an end node
to guarantee soundness, the number of edges are minimal to
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reduce complexity, and that every path from start to end has
the highest possible sum of frequencies to maximize fitness.
Fourth, the algorithm adds split gateways to capture choice
and concurrency. As the final step, this discovery method
detects joins.
Split miner encompasses two hyperparameters: a fre-

quency threshold ε to control the filtering process and
η which is a threshold to control parallelism detection. Both
hyperparameters are percentiles, i.e. the numerical range is
between 0 and 1. Moreover, this algorithm considers only the
sequence of events without timestamp or other related infor-
mation during process discovery. The discovery algorithm is
publicly available as a Java application [41].

E. NEURAL NETWORK
A neural network is a computing methodology motivated by
biological nervous systems. Such networks consist of a set of
artificial neurons which receive one or multiple inputs and
produce one output. This set is divided into a predefined
number of disjoint subsets n where n ≥ 2. Each subset
represents a layer ln in the form of amatrix containing outputs
of the corresponding neurons. We refer to layer l1 as the input
and ln as the output layer of the neural network. Multiple so-
called hidden layers can exist in between. In a fully connected
neural network, all neurons of a layer lk are connected to all
neurons of its adjacent layer lk+1 for k ≤ n− 1. A very basic
neural network can be defined in the followingway [42], [43].

A neuron j which belongs to layer lk calculates its output
based on the weighted outputs of each predecessor neuron of
layer lk−1. Each direct connection between two neurons i and
j is associated with a weight wi,j. Each neuron j comprises a
differentiable activation function ρj which is used to calculate
the output of a neuron. Thus, the output of a neuron j belong-
ing to lk based on its predecessor layer lk−1 can be calculated
as

θj(lk−1) = ρj(φj(lk−1)). (4)

It follows that

φj(lk−1) =
∑
i

θi(lk−2) ∗ wi,j + w0,j (5)

where w0,j is a bias term. Such a neural network is commonly
modeled as an optimization problem where a cost function
ξ is to be defined as a function of the difference between
neural network outputs and true values and to be minimized
by adapting theweightsw of the neural network. This is called
a supervised learning problem [43].

IV. APPROACH
The DREAM-NAP approach is a supervised learning algo-
rithm to predict the next event given a partial trace of an event
log. The method consists of three steps. First, we discover
a PN model from an event log and associate each place of
the PN with a decay function. Then, we replay the event
log used for discovery and extract feature arrays incorporat-
ing decay function response values, token movement counts,

and utilized resources. Finally, we train a neural network to
predict the next event based on these feature arrays. A flow
diagram of the training and testing procedure of our approach
is visualized in Figure 1. In this section, we introduce each
component in detail.

The source code of the proposed approach is available in
our GitHub repository.1

A. DECAY FUNCTION ENHANCEMENT
To discover a PN, the corresponding event log has to consist
of at least one non-empty trace. We draw on an existing
PN discovery algorithm called split miner which has been
introduced in Section III-D.

Decay functions are used to model data values that
decrease over time. Such functions are commonly applied to
population trend modeling, financial domains, and physical
systems. The basic form of a decay function is

f (τ ) = β − α ∗ τ (6)

where τ is time, α is the rate of decay, and β is a constant
corresponding to the initial value. The decay function f (τ )
can be easily modified to model more complex behavior such
as exponential or squared declines. However, the linear decay
function presented in Equation 6 is the simplest option.

We leverage the properties of these functions to expand
discovered PN models by decaying the activation of places
over time. A place activation is triggered through token
arrivals during an event log replay, i.e. when the marking of
a PN changes. In this way, we add a continuous time-based
dimension to the discrete state representation of PNs. This
approach overcomes limitations of the state-of-the-art next
event prediction methods. In particular, such a decay mech-
anism leads to the incorporation of time as a continuous
variable and can be used to detect and model event instance
interarrival times through continuous state representations.
At the same time, we preserve all advantages of an inter-
pretable process model [21]–[24] in the form of PNs. Subse-
quently, we introduce the detailed process of decay function
enhancement.

We associate each place of the PN generated by split
miner on an event log L with a linear decay function fp(τ ).
We denote the time difference between the current time, τ ,
and the most recent time a token has entered place p, τp,
by 1p = τ − τp.

fp(τ ) =

{
β − α ∗ (τ − τp) if τ − τp < β/α,

0 if otherwise.

=

{
β − α ∗1p if 1p < β/α,

0 if otherwise.
(7)

We initially set1p = ∞ for all p ∈ P such that fp(τ ) = 0.
In this way, we reset all decay functions of the PN. A decay
function fp(τ ) will activate as soon as a token enters a cor-
responding place p. The value of this function declines over

1 https://github.com/ProminentLab/DREAM-NAP
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FIGURE 1. This figure illustrates the flow diagram of the proposed DREAM-NAP approach. It also visualizes the training and testing procedures. The
elements of the approach are shown in green, train datasets in blue, test datasets in red, and evaluation datasets in yellow colors. The flows are
color-coded correspondingly.

time τ and reactivates with a response value β immediately
when a token enters this place.

During replay, each event instance of an event log cor-
responds to a transition which fires immediately when a
respective event is observed and token requirements are met.
Instead of focusing on the fired transitions itself, we can
also unambiguously identify the sequence of fired transi-
tions by observing the movement of tokens between places.
By enhancing each place with a decay function described in
Equation 7, we assign a level of importance to recent token
movements compared to past ones. This mechanism scales
event time information into a range from 0 to β without
discretization and loss of generality.

We control the level of importance using the two decay
function parameters β and α. Ideally, α should be set such that
the slope of fp(τ ) covers the whole range from β to 0 based
on the reactivation durations of a place p. In other words,
the slope should not be too steep such that fp(τ ) = 0 for a
small 1p, nor too flat such that fp(τ ) ≈ β for a large 1p.
This cannot be achieved using a single α value for all decay
functions of the PN when applying this mechanism to real-
world processes with varying durations of reactivation. For
this reason, we estimate an individual decay rate αp for each

place p ∈ P . We define the set of all decay rates as R where
the cardinality ofR, |R|, equals to |P|.
We estimate αp by utilizing the event log L and the respec-

tive PN discovered by split miner on L. Each trace g ∈ L
consists of a finite number of event instances. We refer to the
jth event instance of the ith trace of an event log L by Li,j,
as mentioned in Section III-A. The maximum trace duration
observed in L is denoted by 1max(L) and is defined with the
following equation.

1max(L) = max
(
∀1≤i≤|L|

(
υdts (Li,γ (Li))− υdts (Li,1)

))
(8)

For the estimation of αp, it is inevitable to know if a value
for 1p exists, i.e. if a place p gets activated only once or if
reactivations occur. Therefore, we define a function νp(g)
which returns the number of tokens that enter a place p when
replaying a trace g. We estimate αp for two different cases
based on the outcome of the following condition.

max
(
∀g∈Lνp(g)

)
≤ 1 (9)

If Condition 9 holds, αp will be set to a value such that the
response of fp(τ ) will never equal to 0 before the last event
instance of a corresponding trace g ∈ L occurred. By doing
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so, we guarantee to carry information on the occurrence of a
specific event in the response of the decay function until the
end of a trace. Equation 10 defines αp mathematically for this
case.

αp(L) =
β

1max(L)
(10)

If Condition 9 does not hold, we consider the average
reactivation duration of a place p based on all traces of the
respective event log. With this information, we set the decay
rate to a value such that fp(τ ) provides a level of recent token
movement importance for the average duration between reac-
tivations. Consequently, the slope will neither be too steep nor
too flat. Mathematically, we can estimate αp by

αp(L) =
β

mean
(
∀g∈Lδp(g)

) (11)

where mean(·) is the arithmetic mean function.

B. EVENT LOG REPLAY
After estimating all αp ofR for each place p in P , we can use
the corresponding decay functions, fp(τ ), to obtain a decay
function response for all p at a specific time τ . We write
F(τ ) as the vector of decay function response values. Each
element of this vector corresponds to the response value of
one specific place in the PN, i.e. the ith element in F(τ )
corresponds to the response of the decay function at time τ
associated to the ith place in P .
SinceF(τ ) constitutes only the most recent activation ofP ,

we introduce a counting vector C(τ ) of size |P| elements
where the ith element corresponds to the ith place in P .
We initialize the counting vector at time 0, C(τ = 0) by
setting each element to 0. When a token enters a specific
place p at time τ , the corresponding counter element will be
incremented by 1 such thatC(τ ) reflects the number of tokens
which have entered each place from time 0 to τ .

Similarly, we introduce a counting vector R(τ ) which
counts the occurrence of each unique non-mandatory event
instance attribute value from time 0 to τ when replaying an
event log. Continuous attribute values require discretization
in advance.

We replay the event log L on the PN which has been
enhanced using decay functions. F(τ ), C(τ ), R(τ ), and the
PN marking M at time τ , M (τ ), will be reset before a trace
g ∈ L will be replayed. We then obtain vectors and PN states
at each time τ corresponding to the timestamp values of the
replayed event instances in L. We concatenate the vectors of
decay function values, token and resource counts, and the PN
marking at time τ to obtain a single vector that can be used
to train a neural network. This concatenation of F(τ ), C(τ ),
R(τ ), and M (τ ) is called a timed state sample S(τ ),

S(τ ) = F(τ )⊕ C(τ )⊕M (τ )⊕ R(τ ) (12)

where ⊕ represents a vector concatenation. Therefore,
a timed state sample S(τ ) describes a PN process state in a

TABLE 1. Deep learning architecture of the DREAM-NAP model.

TABLE 2. Deep learning architecture of the DREAM-NAPr model with an
activation function hyperparameter.

timed manner through decay function enhancement. It con-
tains information about time-based token movements, i.e.
when a token has entered a place the last time relative to the
current time, token counts per place (loop information), and
the current PN state using the marking. Optionally, if event
instances of the event log contain non-mandatory attributes,
the timed state sample also contains such information.

After replaying the event log L, we obtain a set of timed
state samples, S, such that Condition 13 holds.

∀1≤i≤|L|∀1≤j≤γ (Li) : S
(
υdts (Li,j)

)
∈ S (13)

C. DEEP LEARNING
We use the set of timed state samples, S, to predict the next
event. For each Si ∈ S where 1 ≤ i ≤ |S|, we predict the next
event a of the upcoming instance Ei+1 given that the timed
state sample Si does not contain the final markingMfinal . This
is a supervised classification problem as the event log L and
the set of eventsA are known. An event logL usually consists
of thousands of event instances across multiple traces. Hence,
a deep neural network is a suitable method to conquer this
problem due to a large amount of available data.

We propose two fully connected neural network archi-
tectures. One which ignores attribute value count vectors
R(τ ) in Si, and another one which considers each Si as is.
With DREAM-NAP, we refer to the first neural network
architecture, whereasDREAM-NAPr refers to the second one
considering event attributes. The details of the architecture for
DREAM-NAP are illustrated in Table 1 whereas the details of
DREAM-NAPr are illustrated in Table 2. Both architectures
have been developed in Python using Keras [44] with a
Tensorflow backend [45].

The DREAM-NAP neural network consists of five layers.
The first layer has the same size as the vector length of 3∗|P|
and correspondingly called input. The second layer has
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1.2 times, the third 0.6 times, and the fourth 0.3 times
the size of the input layer. Each of these layers use Rec-
tified Linear Unit (ReLU) activation functions, which have
proven major performance advantages over sigmoid and
hyperbolic tangent ones in deep learning architectures [46].
Since the proposed architecture is shallow and traditional
neural network activation functions can perform well on such
architectures [47]–[50], we examined the impact of ReLU
and sigmoid activation functions on the predictive accu-
racy. In all our experimental cases, ReLU-based architec-
tures performed with a higher or equal accuracy score com-
pared to sigmoidal ones. Hence, we propose a ReLU-based
DREAM-NAP architecture. The final layer is the output layer
with a size equal to |A|.

The output layer utilizes a softmax activation function
since we are interested in the probability of a specific a ∈ A.
We use dropout [51] for regularization applied between each
hidden layer as well as between the fourth and the output
layer. We decide on the Adam optimizer [52] to train the
neural network. Batch normalization [53] layers are not used
in this architecture since no further regularization is required.
Moreover, batch normalization did not improve the results
of the DREAM-NAP architecture, as we will demonstrate
in Section V.

The DREAM-NAPr architecture is similar to the DREAM-
NAP one. However, in this architecture, we use fixed layer
sizes that are a result of a comprehensive grid search over the
number of layers and number of neurons per layer. For the
architecture search, we considered three, four, and five layers
with each either 50, 100, 150, 200, 300, 400, or 500 neu-
rons per layer. The results of this search have shown that
the DREAM-NAPr model with the architecture described
in Table 2 performs best across all benchmark training
datasets. We specifically propose a fixed number of neurons
per layer since a dynamic assignment based on the size of
R(τ ) could easily result in an unreasonably large number of
neurons.

Since this architecture is most likely confronted with a
higher probability of overfitting due to the number of event
instance attribute values, we increase the dropout rate and
consider batch normalization layers. Furthermore, the type of
neural network activation function is a hyperparameter of this
model. We examined the impact of ReLU over sigmoid acti-
vation functions on this architecture with inconclusive results.
In half of our experimental cases, DREAM-NAPr architec-
tures with sigmoid functions performed better whereas in the
other half ReLU lead to higher accuracy scores. As a conse-
quence, the choice of activation function type is application-
specific and therefore not suggested to be fixed.

V. EVALUATION
In this section, we evaluate our proposed approach using
the DREAM-NAP and DREAM-NAPr models introduced in
Section IV-C on nine popular benchmark datasets and com-
pare to the most recent peer-reviewed methods in the litera-
ture. We contrast our method specifically to the algorithms of

Tax et al. [15], Evermann et al. [16], Breuker et al. [12], and
Lee et al [33]. The source codes of these methods are publicly
available. Hence, we evaluate and perform all experiments
on the same dataset splits. Unfortunately, a fair comparison
to the method of Mehdiyev et al. [18] is not possible since
the authors of that paper did not disclose the correspond-
ing source code and deep learning parameter sets that were
required to reproduce the results. We, therefore, exclude this
method from our statistical comparison.

We first provide an overview of the datasets, followed by
the introduction of metrics we will use. We then report and
comment on the conformance of the discovered PN process
models of all datasets. Afterward, we describe the preprocess-
ing steps of the timed state samples before feeding them to our
proposed deep learning architectures. Finally, we evaluate the
prediction performance of the neural network models.

We perform the discovery of PNs using split miner and
the transformation of event logs to timed state samples using
our DREAM approach on a computer running Windows
10 with an Intel i7-6700 CPU and 16GBRAM. This task took
between 30 minutes and 4 hours depending on the size of the
dataset. The training of theDREAM-NAP andDREAM-NAPr
neural networks were performed on Tesla K80 and NVidia
GeForce RTX 2080 Ti GPUs and took between 15 minutes
and 2 hours per dataset.

A. DATASETS
Our evaluation is based on three real-life benchmark datasets,
specifically the Helpdesk [54], the Business Process Intelli-
gence Challenge 2012 (BPIC12) [9], and the Business Pro-
cess Intelligence Challenge 2013 (BPIC13) [55] dataset.

The Helpdesk dataset comprises events from a ticketing
management process of an Italian software company. Each
event instance contains the mandatory event type and associ-
ated timestamp. No further attributes are used.

The BPIC12 dataset originates from a Dutch finan-
cial institute and represents the process of a loan appli-
cation. It can be split into three subprocesses related to
the work, the application itself, and the offer. All event
instances contain the required attributes as well as further
non-mandatory resource information. Moreover, each event
instance describes a lifecycle status which is either com-
plete, scheduled or start. Finally, the event instances of
this event log carry information about the requested loan
amount. We split the dataset into multiple subprocesses to
be able to compare our results to the results of existing
methods. We consider the complete event log without any
filtering, denoted by BPIC12 - all. BPIC12 - all complete
considers only event instances of lifecycle value complete.
Similarly, we filter the original event log by work related
events only and consider all events, code-named as BPIC12 -
work all, and events with lifecycle attribute value complete as
BPIC12 - work complete. Additionally, we consider the sub-
processes of offers and applications separately as BPIC12 - O
and BPIC12 - A to perform our evaluation on the same
datasets as the state-of-the-art methods [12], [16], [18], [33].
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TABLE 3. Number of event instances, events, traces, and resources for
each of the evaluated datasets.

These subprocess event logs consist of event instances with
complete lifecycle values only.

The third log originates from Volvo IT and describe
events from an incident and problem management sys-
tem. Each event instance contains the required attributes
and non-mandatory information about the lifecycle, group,
responsible employee, resource country, organization coun-
try, involved organizations, impact, and the product. Events
that are associated with a problem rather than an incident
contain a further attribute which describes the role of the
affected organization. We split this dataset into two sepa-
rate event logs handling incidents and problems indepen-
dently. We call these two event logs BPIC13 - Incidents and
BPIC13 - Problems.
An overview of all datasets and their number of event

instances, events, traces, and resource attributes is given
in Table 3.

B. METRICS
We utilize 10-fold cross-validation to perform our evaluation.
Therefore, we consider 90% of the actual traces for training
and 10% for testing. The training set is used to discover
multiple process models, as we describe in Section V-C.
We measure the quality of the obtained PNs using a basic
conformance checking function called token-based replay
fitness (Equation 14) [21]. The function calculates the fitness
by replaying each trace of an event log based on the number
of missing, consumed, remaining, and produced tokens. The
higher its score, the higher the alignment between the event
log and the process model. Such fitness functions are com-
mon process mining metrics to evaluate the quality of process
models [56]–[59], as described in Section III-C.

fitness =
(1− missing

consumed )

2
+

(1− remaining
produced )

2
(14)

We select the best fitting process model after process discov-
ery based on the fitness function of Equation 14. This model
is then used for decay function enhancement and estimation
of the corresponding decay function parameters, as described
in Section IV-A.

Afterward, the enhanced PN model is used to replay the
training as well as the test set to obtain timed state samples.
Moreover, we split the training set after replaying into a
90% training and 10% holdout evaluation set. We finally
obtain three disjoint datasets for training, validation, and

testing a deep learning model. We train deep learning mod-
els on the training set only and select the best one based
on the validation set. The best predictive model is cho-
sen at the lowest validation loss which is an effective and
widely used approach to train neural networks called early
stopping [60]–[62]. An overview of this procedure is visual-
ized in Figure 1.

We evaluate the predictive performance of our approach
based on averaged accuracy, precision, and recall, as well
as F-score and the area under the curve (AUC) of the
receiver operating characteristic. All of themetrics are used to
compare against the earlier-introduced next event prediction
techniques. The subsequent definitions of metrics are based
on [18], [63], [64].
Accuracy is defined as

1
|S|

|A|∑
i=1

ni ∗
tpi + tni

tpi + tni + fpi + fni
(15)

where |S| is the total number of timed state samples and ni
the number of timed state samples with a next event equal
to the ith event in A. Moreover, tp, tn, fp, and fn represent
true positive, true negative, false positive, and false negative
respectively.
Precision is defined as

1
|S|

|A|∑
i=1

ni ∗
tpi

tpi + fpi
. (16)

Recall is defined as

1
|S|

|A|∑
i=1

ni ∗
tpi

tpi + fni
. (17)

In addition, we report the F-score for each dataset. This
measure is the harmonic mean of precision and recall and
provides information on how precise and robust an algorithm
is. F-Score is defined as

1
|S|

|A|∑
i=1

ni ∗
precision ∗ recall
precision+ recall

. (18)

Finally, we report the AUC of the receiver operating char-
acteristic. It is a common classification analysis to determine
which model predicts classes best. The closer an AUC value
is to 1, the better the model is. Multiclass AUC is defined as

1
|S|

|A|∑
i=1

ni ∗
∫ 1

0
tprid(fpri) (19)

where tpri and fpri is the true positive and false positive rate
for the ith event.
In a final step, we compare the overall performance of

our approach with the ones of the state-of-the-art algorithms
using a rank test. Also, we perform a sign test to determine
statistical significant improvements. This test method is a
variation of a binomial test and considers the number of times
an algorithm performed best [65].
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FIGURE 2. This figure shows the interpretable PN obtained from the first training set of the Helpdesk dataset.

C. PETRI NET DISCOVERY
We initially utilize split miner to discover multiple PN pro-
cess models for all benchmark event logs. We perform hyper-
parameter optimization to obtain the best combination of ε
and η for each of the 10-fold cross-validation training sets
of each dataset. ε and η are initially set to 0.0 and are
increment in 0.1 steps. A PN is discovered for each of the
100 hyperparameter combinations. Based on Equation 14, for
each fold, we select the process model with the highest fitness
score for decay function enhancement. The closer the value
is to 1, the better the PN represents the logical behavior of an
underlying process. This logic does not have to be learned by
a neural network.

Table 4 illustrates the averaged fitness scores over the
best process models for all 10 folds per each benchmark
training dataset. It can be seen that split miner can detect
PNs with fitness values above 85%. The models obtained on
BPIC12 - work all, BPIC12 - A, and BPIC13 - Incidents even
reach fitness scores above 95%. This shows that process dis-
covery techniques can unveil and model basic logical behav-
ior from event logs which we leverage in our enhancement
approach. However, none of the process model evaluations
result in a perfect fitness score of 1. This is because split miner
filters infrequent behavior, i.e. discards information, which
does not seem to correspond to the main process behavior.

We visualize the best obtained PN from the first fold of
the Helpdesk training set in Figure 2. The white rectangles
represent the 9 events recorded in the event log, whereas black
rectangles correspond to hidden transitions, i.e. transitions
which are mapped to the non-observable event ⊥. The basic
behavior of the underlying process can be observed, inter-
preted, and analyzed in different contexts. This underscores
one of the advantages of process models.

D. DEEP LEARNING PREPROCESSING
After selecting the best process model for each fold of all
benchmark datasets, we enhance these PNs using decay
functions and replay the training and testing traces to cre-
ate timed state samples, as described in Section IV and as
visualized in Figure 1. However, several preprocessing steps
are necessary before feeding the timed state samples to the
proposed DREAM-NAP and DREAM-NAPr deep learning
architectures.

All datasets originating from BPIC12 contain one contin-
uous and one categorical resource attribute. We discretize the

TABLE 4. This table shows the averaged cross validated fitness scores of
the PN models obtained from each dataset. It can be seen that split miner
is able to capture basic logical process behavior for all benchmark
event logs.

continuous attribute by quantizing its values using disjoint
intervals of size 20.

For the event logs originating from the BPIC13 dataset,
we consider only the categorical attributes of resource coun-
try, organization country, involved organization, impact, and,
if applicable, role of the affected organization. The number of
unique values for the excluded resources are too large, hence
these resources do not contribute beneficial and generalizable
information.

We normalize each component of the timed state samples
of the training and validation set separately, i.e. F(τ ), C(τ ),
M (τ ) and R(τ ), to zero mean and unit variance. The mean
and standard deviation of each vector before normalization is
used to normalize the test set.

E. RESULTS
We train the DREAM-NAP and DREAM-NAPrmodels on the
preprocessed training timed state samples of each benchmark
dataset using early stopping, but continue training for in total
100 epochs for visualization purposes. The training batch
size of DREAM-NAP is set to 64 whereas the DREAM-NAPr
batch size is set to 100 to accelerate the training process.
We train the methods of Evermann et al. [16], Tax et al. [15],
Breuker et al. [12], and Lee et al. [33] using the
reported sets of hyperparameters. However, the methods of
Evermann et al., Tax et al., and Lee et al. are not designed
to predict the first event of a sequence. According to the
corresponding authors, the inputs of the methods must be
padded with null/zero events such that the first predictable
event equals the actual first event of the trace. In this way, all
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TABLE 5. This table illustrates the results obtained by the proposed approach and contrasts them to existing state-of-the-art methods. Bold values
designate that the proposed model outperforms state-of-the-art results. ∗ denotes datasets that do not contain resources, therefore DREAM-NAPr is not
applicable. ∗∗ denotes that the source code of Breuker et al. [12] was not able to produce results on this dataset.

methods can be applied and evaluated on the same datasets.
The detailed results are listed in Table 5.
DREAM-NAP outperforms seven out of nine benchmark

datasets in terms of accuracy and recall, six out of nine in
terms of F-score, and five out of nine in terms of AUC. Espe-
cially on the BPIC12 - work complete dataset, we demon-
strate that the decay mechanism in combination with token
movement counts is extremely beneficial to predict the next

event. We outperform the current state-of-the-art by 3.8% in
accuracy and recall as well as with a 2.5% higher precision.
This leads to an F-Score value of 72%. The state-of-the-art
method with the closest F-Score value is Evermann et al. [16]
with 69.3%. Lee et al. [33] perform the worst on this
dataset with an F-Score of 52.4%. This underscores that
our approach performs significantly better on this dataset
than existing state-of-the-art methods. DREAM-NAP also
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surpasses the existing methods on Helpdesk, BPIC12 - work
all, BPIC12 - O, BPIC13 - Incidents, and BPIC12 - Problems
in terms of accuracy and recall. However, the improvement
is less significant. On the Helpdesk dataset, the F-Score of
DREAM-NAP is only 0.3% greater than the state-of-the-art
obtained by Tax et al. [15]. Furthermore, the method of
Evermann et al. [16] results in the lowest observed F-Score
value with 55% on this dataset, though performing very
well on BPIC12 - work complete. This indicates that not all
state-of-the-art methods perform consistently well across all
datasets. For the BPIC12 - A dataset, we obtain slightly better
scores compared to the state-of-the-art across all observed
metrics. Our proposed DREAM-NAP model does not out-
perform the existing methods when considering all process
events of the BPIC12 dataset, i.e. on BPIC12 - all complete
and BPIC12 - all, though performing with scores close to the
state-of-the-art. We show that our approach achieves a com-
paratively stable performance across the evaluated bench-
mark datasets, whereas other state-of-the-art methods per-
form more unstable, such as the earlier mentioned method
of Evermann et al. [16]. In terms of precision, one observes
that DREAM-NAP only outperforms the state-of-the-art in
one-third of the datasets. It often falls to the LSTM-based
approaches of Tax et al. [15] and Evermann et al. [16]. Future
research is suggested to increase the precision of theDREAM-
NAPmodel to reduce the false positive rate. In five out of nine
cases, our approach outperforms the state-of-the-art in terms
of F-score and AUC. For all BPIC12 datasets, the obtained
F-scores values are in the range of 72% to 87% describing
satisfactory performance, but leaving room for improvement.
Especially when analyzing theBPIC13 datasets, one observes
F-score values of 65.7% and 59.3% which are comparatively
good, but which also leave room for improvements. Accord-
ingly, the AUC values for these datasets leave opportunities
for further enhancements, too.

Ultimately, DREAM-NAP scores consistently average to
high ranks without considering resource information. This
underscores that PNs extended with decay functions and
token movement counters carry important information to pre-
dict the next event in running process cases. However, we also
see that further research should be conducted to improve the
quality of our predictions, especially in terms of precision.

The DREAM-NAPr architecture outperforms the state-of-
the-art in terms of accuracy, precision, recall, F-score, and
AUC on all eight out of eight datasets containing event
resource information. Similar to the DREAM-NAP model,
the slightest improvements are observed on the BPIC12
datasets that consider all types of events. In these two cases,
we outperform the state-of-the-art by 4.6% and 6.3% in
accuracy and recall. At the same time, we improve the preci-
sion on these datasets resulting in higher and more desirable
F-score values. The AUC scores of 94.2% and 92.6% indicate
strong andworthwhile classification results. The results of the
BPIC12 subprocesses show accuracy, precision, and recall
uptakes between 3.8% and 21%. Especially the results on
BPIC12 - work complete and BPIC12 - A show that the

incorporation of event resource information can dramati-
cally increase the predictive performance. As a result, the
F-score and AUC values for these datasets are much higher
than the ones of the state-of-the-art indicating consistent
results with desired well-balanced false positive and false
negative rates. In the same way, the results on the BPIC13
datasets show significant improvements between 12.3% and
18.5% in terms of accuracy, precision, and recall. A large
amount of available resource information contains criti-
cal information to predict the next event. Although we
are improving the overall performance, predicting the next
event for BPIC13 - Problems remains difficult. None of our
reported metric scores are greater than 80% leaving space for
further enhancement.

Overall, it can be seen that the predictive performance of
the proposed approaches is significantly larger compared to
the existing methods. Moreover, our models perform with
well balanced scores across all benchmark datasets result-
ing in comparatively better F-score and AUC values. Solely
DREAM-NAP on Helpdesk, BPIC12 - A, and BPIC13 - Prob-
lems has a 6.1%, 5.7%, and 7.1% lower precision compared
to its accuracy and recall.
Figure 3 shows the training, evaluation, and validation

accuracy and loss over 100 epochs of theDREAM-NAP archi-
tecture for each dataset. It can be seen that none of the models
tend to overfit. This confirms that batch normalization layers
are not required for this neural network architecture. All
models demonstrate a smooth learning curve and converge
after a few training epochs.

Figure 4 visualizes the same metrics scores over train-
ing epochs for the DREAM-NAPr models. In comparison to
the previous figure, all datasets tend to overfit early. Espe-
cially on BPIC12 - work complete, our architecture over-
fits and demonstrates the importance of early stopping. It
can be noted that the models which overfit the earliest and
strongest, are the models that do not improve much com-
pared to the state-of-the-art. Specifically, DREAM-NAPr on
BPIC12 - work complete shows strong overfitting. At the
same time, this model is more than 17% below a perfect
accuracy. Similarly, overfitting can be observed on BPIC13 -
Incidents and BPIC13 - Problems; two further models that
result in low outperforming accuracies in comparison to all
benchmarks.

The diagram shown in Figure 5 indicates the superi-
ority of our proposed architectures in terms of accuracy.
DREAM-NAP scores an average arithmetic rank of 2.1
whereas DREAM-NAPr scores on average first. In compar-
ison, the method proposed by Tax et al. [15], which performs
with competitive scores across all metrics and datasets, and
which beats the DREAM-NAP model in accuracy in two of
the datasets, scores an average rank of 3.

We can further statistically test whether the improvements
in accuracy of our proposed approach are significant by
comparing our architectures against the best state-of-the-art
algorithm on each dataset. We are using a sign test due to the
small number of available samples, i.e. 9 for DREAM-NAP
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FIGURE 3. This figure shows the training, test, and validation accuracy and loss (y-axis) over 100 training epochs (x-axis) for each dataset without
considering non-mandatory event attributes. Each plot shows the first cross-validation run representative for all ten runs.

FIGURE 4. This figure shows the training, test, and validation accuracy and loss (y-axis) over 100 training epochs (x-axis) for each dataset with utilized
non-mandatory event attributes. BPIC12 - work complete, BPIC12 - O, BPIC13 - Incidents and BPIC13 - Problems start overfitting comparatively early.
Each plot shows the first cross-validation run representative for all ten runs.

and 8 for DREAM-NAPr. We set the level of significance to
α = 0.05 and adjust it using the Dunn-Sidak correction [66]
to control the type I error. Therefore, the level of significance

for DREAM-NAP is

αnap = 1− (1− 0.05)1/9 = 0.0057 (20)
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FIGURE 5. Arithmetic means of ranks of the state-of-the-art and
proposed approaches.

and for DREAM-NAPr is

αnapr = 1− (1− 0.05)1/8 = 0.0064. (21)

The sign test for DREAM-NAP results in a p-value of 0.0898
whereas it results in a value smaller than 0.00001 for
DREAM-NAPr. We can see that 0.00001 ≤ 0.0064, thus
DREAM-NAPr shows significant improvements in accuracy
over the state-of-the-art. This further underscores the superi-
ority of our proposed method.

The results show that the DREAM-NAP model performs
with consistently high metric scores across a diverse set
of event logs without considering event resource informa-
tion. The performance is further improved when incorporat-
ing available non-mandatory attributes using DREAM-NAPr.
Hence, we can deduce that the proposed DREAM approach
adds significant value to the deep learning predictor. Overall,
we demonstrate statistical superiority over the state-of-the-art
methods, therefore presenting major improvements.

VI. CONCLUSION
In this paper, we introduced a novel approach to predict
next events in running process cases called DREAM-NAP.
Specifically, we extended the places of PN process models
with decay functions to obtain timed state samples when
replaying an event log. These timed samples are used to train a
deep neural network which accurately predicts the next event
in a running process case. Our results surpass many state-
of-the-art techniques. We obtain cross-validated accuracies
above 90% and show robust, precise performances across
a diverse set of real-world event logs. This underscores the
feasibility and usefulness of our proposed approach.

We have shown that decay functions are a suitable tool
to express a traditionally discrete PN state as a continuous
representation during process runtime. In this way, we can
incorporate timing information of processes directly into the
process model. This is important for predictive tasks such as
predicting the next event since the duration between two event
instances might be correlated with a subsequent occurring
event.

While most recent techniques model processes implicitly,
our approach is based on explicit process models. Therefore,
our method is easier to interpret than algorithms which are
based exclusively on deep learning. While decision mak-
ing of neural networks is naturally hard to understand and
explain [67]–[69], we are retaining an interpretable process
model in combination with a simple deep learning architec-
ture. Therefore, organizations will still be able to debug their
processes using graphical representations of PNswhile taking

advantage of the predictive capabilities. A sensitivity analysis
can be performed to interpret the decision making of the
neural network which performs on top of the decay function
extended PN process model.

This paper introduced a promising novel approach with
many potential real-world applications. High quality next
event predictions are beneficial for the efficient control of
real-time processes. Predicting future events helps organi-
zations to improve scheduling, model flexible demand, and
reduce system waste which are high impact problems to
tackle issues like climate change [70]. Other applications can
be found in atypical process mining disciplines such as in
black box controller logic estimation [71] that has the poten-
tial to release huge amounts of engineers from heavy-duty
of repeated controller design work. The proposed approach
can further be applied in the novel process mining discipline
of Human-Computer Interaction [72]. Predicting upcoming
user interactions with a given computer system might unveil
error-prone or inefficient interfaces and can be used to cre-
ate accessible and interactive devices to overcome e.g. user
impairments [73]. Finally, DREAM-NAP might have poten-
tial applications in Healthcare to understand patient’s medical
records with the ultimate goal to optimize treatments and
diagnoses.

Further research can be conducted in the following three
directions. First, the predictive quality might be able to be
improved by incorporating quality performance measures of
process discovery algorithms apart from fitness scores to
investigate the impact of the process model quality on the pro-
posed approach. Additionally, repair methods might be bene-
ficial to increase the process quality and may have a positive
impact on the predictive performance [74]–[76]. The outcome
of such studies might further increase the metric scores on the
next event prediction that we have reported. Second, we have
applied the simplest kind of decay function. A comprehensive
study of different decay function typesmight improve the pre-
dictive performance of our approach. Moreover, we proposed
two deep learning architectures that have shown satisfying
results on the evaluated benchmark datasets. Further opti-
mized architectures might exist that increase the quality of
predicting next events and that might overcome the low pre-
cision scores reported in Section V-E. Finally, the presented
approach has been applied to next event prediction only, but
might apply to further predictive process management tasks
such as remaining case time prediction, next event timestamp
prediction, or anomalous process state predictions.

APPENDIX: NOTATIONS
∅ empty set
⊥ non-observable event
a event
A finite set of all events
α decay rate
αp decay rate for a specific place p
β constant parameter of a decay function
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C(τ ) token counting vector from time 0 to τ , each
element represents the number of tokens which
entered a specific place

d attribute
dts timestamp attribute
D finite set of all possible attributes
δp(g) function of average time between a token is con-

sumed in place p until a new token is produced
in p based on an input trace g

1p time difference between current time and most
recent time a token has entered place p

1max(L) Maximum observed trace duration in an event
log L

E event instance vector
ε split miner filtering threshhold hyperparameter
η split miner parallelism threshhold hyperparam-

eter
F set of all arcs of a PN
fp(τ ) decay function of place p
F(τ ) decay function response vector
fn false negative
fp false positive
fpr false positive rate
g case or trace
G finite set of all possible traces
γ (g) function returning the number of event instances

of a trace g
l denotes a neural network layer in form of a

matrix
L event log which is a set of traces
|L| number of traces of an event log L
|Li| number of event instances of the ith trace of an

event log L
Li,j jth event instance in the ith trace of an event log

L
M vector representing the marking of a PN
Mfinal final marking
M init initial marking
Mi ith element of marking M
M (τ ) vector representing the marking of a PN at time

τ

M set of all markings
mean(·) arithmetic mean function
N set of all possible event instances
νp(g) number of tokens a place p produces when

replaying a trace g
p place
P set of all places
|P| cardinality of set of places
PN mathematical definition of a labeled PN
φj(lk ) weighted input of neuron j from previous

layer lk
π function which maps a transition to either a

single observable event or to the non-observable
event

R(τ ) attribute value counting vector from time 0 to τ

R set of all αp of a PN
|R| cardinality of the setR
ρj(lk ) activation function based on input layer lk
S(τ ) timed state sample at time τ
S set of timed state samples
σ (p) function returning number of tokens of a

place p
t transition
tn true negative
tp true positive
tpr true positive rate
T set of all transitions
τ time
τp most recent time that a token entered place

p
θj(lk ) output function of a neuron based on input

layer lk
υd (E) function returning value of attribute d of

event instance E
wi,j weight of direct connection between two

neurons i and j
•x set of input nodes of a node x
x• set of output nodes of a node x
ξ cost function
Z set of all non-negative integers
i, j, k, n, x, y indices, integers, and variables used in dif-

ferent contexts
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