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ABSTRACT Microgrid is an effective way to accommodate distributed renewable energy, and there is a need
for microgrids to participate in electricity market competition to ensure its sustainable development. For this
purpose, a market trading framework is presented where microgrids sell electricity by submitting bids in
the distribution electricity market (DEM) while generators compete by submitting bids in the day-ahead
wholesale market (DAWM). The retailers are considered to submit bids in the two markets to buy electricity
tomeet the demand of customers and an arbitrageur is introduced to buy and sell electricity between the DEM
and the DAWM. Based on the market framework, a joint equilibrium model for the DEM and the DAWM
is proposed. Moreover, the equilibrium problem is converted into a convex optimization problem, and the
existence and uniqueness of Nash equilibrium for the DWAM and the DEM is theoretically demonstrated.
Due to information asymmetry in practice, a distributed algorithm is applied to find equilibrium outcomes.
Finally, numerical examples are presented to verify the effectiveness of the proposed model and algorithm.

INDEX TERMS Microgrid, distribution electricity market, day-ahead wholesale market, equilibriummodel,
distributed algorithm.

I. INTRODUCTION
Microgrids are small-scale power systems that can distribute
energy in small geographic areas flexibly and reliably. They
have become effective supplement to conventional central-
ized power grid because they offer the potential of lower cost,
increased efficiency, reliability and security [1], [2]. A micro-
grid can be viewed as a prosumer because it is generally com-
prised of flexible loads, storage units, micro generation units
and power generation from renewable energy sources [3].
Allowing microgrids to participate in the electricity market
competition can help them make profit with their flexibility,
thus contributing to sustainable development of microgrids.
Direct participation of microgrids in the day-ahead wholesale
market (DAWM) is not applicable for the following rea-
sons: 1) technical limitations on voltage levels, generation,
and demand capacity; 2) lack of technical infrastructure to
provide microgrids with access to open access same-time
information system and open access nondiscriminatory
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transmission services; and 3) large scale of the day-ahead
and real-time scheduling problem and corresponding compu-
tational burden of the independent system operator (ISO) due
to increase in the number of microgrids with diverse capaci-
ties and coverage areas [4]–[6]. As microgrids are deployed
in low or medium voltage distribution networks, they can
participate in the distribution electricity market (DEM) [6].
In addition, if there is a price gap between the DAWM and
the DEM, an arbitrageur can make profits by buying and
selling electricity from the lower-price market to the higher-
price market. The presence of the arbitrageur also leads to an
interaction between the DAWMand the DEM. Therefore, it is
necessary to examine the strategic behaviors of microgrids in
the DEM and their impacts on the DAWM, which is helpful
to the design of electricity market that involves microgrids.

Until now, a considerable amount of research has been
conducted regarding the participation of microgrids in elec-
tricity trading market. Reference [7] proposes a distributed
convex optimization framework for bilateral energy trading
between islanded microgrids, where all microgrids agree to
cooperate with one another in order to minimize the global

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 119823

https://orcid.org/0000-0002-9558-3186
https://orcid.org/0000-0002-6313-0545
https://orcid.org/0000-0002-4691-0160
https://orcid.org/0000-0002-0722-5769


X. Wang et al.: Equilibrium Analysis of Electricity Markets With Microgrids Based on Distributed Algorithm

operation cost. Reference [8] analyzes the pricing games
among interconnected microgrids in a bilateral market, where
the microgrids with deficit power buy electricity from the
microgrids with excess power who quotes the lowest prices.
Reference [9] proposes a bilateral transaction mechanism for
energy trading among microgrids in a competitive market
based on a multileader-multifollower Stackelberg game. The
microgrids as sellers lead the game and the microgrids as
buyers follow the sellers’ actions by submitting a unit price
bid to the sellers. In reference [10], a two-stage stochastic
game approach for the day-ahead and real-time energy trad-
ing strategy is proposed for risk-averse microgrids and aggre-
gator at distribution network level. Reference [11] presents
a multiagent-based energy market for multi-microgrid sys-
tems, where the agents submit their bids in the day-ahead
market aiming at maximizing the social welfare. These stud-
ies mainly deal with the trading and bidding mechanism of
microgrids in the DEM, but the impacts of microgrids’ partic-
ipation in the DEMon the DAWMhave not been investigated.

Recently, some research work has been published regard-
ing the participation of microgrids in the wholesale market.
Reference [12] proposes a hierarchical market framework
in which small-scale microgrids exchange electricity with
the real-time balancing market via a microgrid aggregator.
However, the impact of the microgrids on the prices in the
real-time balancing market was not addressed. Reference [6]
proposes a hierarchical structure for the electricity market
based on dynamic game, where the generation companies
bid in the DAWM and the microgrids bid in a distribution
market. Load aggregators trade electricity between the two
markets. However, the retailers are not considered in the
bidding competition in either market. In addition, the solution
for the equilibrium models proposed in [6] needs to collect a
comprehensive set of information, which is infeasible in real
electricity markets due to the information asymmetry.

Recently, distributed algorithms have attracted increasing
attention [13]. Reference [7] presents an iterative distributed
algorithm to reach the minimum cost without collecting local
cost functions and local consumptions of microgrids. A dis-
tributed algorithm is proposed to solve optimal power flow
problem for microgrids in [14], which ensures scalability of
the microgrid size and preserves data privacy and integrity.
References [15] and [16] propose to transform the equilib-
rium problem into an equivalent optimization problem. The
existence and uniqueness of the Nash equilibrium is studied
and distributed algorithms are proposed to determine the
equilibrium. Using distributed algorithms to solve equilib-
rium problems can protect the privacy of market participants,
which also perfectly meets the practical needs of electricity
markets with information asymmetry. In this regard, dis-
tributed algorithms possess valuable potentials to solve the
equilibrium problems in real electricity markets.

Given the background above, the main contributions of this
paper can be listed as follows:

1) A market trading framework is presented in which
microgrids sell electricity by submitting bids in the form of

FIGURE 1. Market trading framework with microgrids.

supply function in the DEM while conventional generators
bid in the form of supply function in the DAWM.Meanwhile,
to reflect real electricity markets, retailers are considered
to bid in the form of demand function in the two markets.
In addition, an arbitrageur is allowed to participate in the
DEM and the DAWM by buying electricity from the lower-
price market and selling to the higher-price market. Based
on this market framework, a joint equilibrium model of
the DAWM and the DEM is proposed and the interactions
between the two markets are studied.

2) The joint equilibrium model is solved by converting
the equilibrium problems into convex optimization prob-
lems. The existence and uniqueness of the Nash equilibrium
is theoretically demonstrated. Considering the information
asymmetry in practical application, a distributed algorithm is
proposed to find the equilibrium outcomes.

The rest of the paper is organized as follows: Section II
presents the market framework. The joint equilibrium model
is characterized in Section III and its solution method is
proposed in section IV. Section V provides the numerical
results. Finally, the paper is concluded in Section VI.

II. MARKET FRAMEWORK
Fig.1 shows the market trading framework with microgrids.
In this framework, there are J generators and K retailers
bidding in the DAWM,M microgrids and N retailers bidding
in the DEM. Here, the retailers represent large customers
or load serving entities buying electricity on behalf of cus-
tomers. In order to address the interaction of the two markets,
an arbitrageur is introduced as an intermediate agent that
participates in both markets. If the price in the DAWM is
higher than that in the DEM, the arbitrageur buys electricity
from the DEM and sells the same volume to the DAWM.
If the price in the DEM is higher than that in the DAWM,
the arbitrageur purchases electricity from the DAWM and
sells the same volume to the DEM. Following reference [15]
and [16], a utility company is introduced to take the role of
the ISO. The main responsibility of the utility company is to
collect the bidding information from all market participants
and update the prices of the twomarkets based on the bids and
market clearing rule, then announce the prices to the market
participants.

III. PROBLEM FORMULATION
A. BASIC ASSUMPTIONS
Assume that there are J strategic generators in the DAWM
at a given time slot. Generator j’s (j = 1, 2, . . . , J ) quadratic
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generation cost function is C1j(Q1j) = a1jQ1j+b1jQ2
1j, where

Q1j represents the quantity of power generated by generator
j, a1j and b1j are cost coefficients which are nonnegative.
Since the supply function equilibrium model offers a more
realistic view of electricity markets, generator j is assumed to
submit a bid in a linear supply function (LSF) form
Q1j = β1j + δ1jP1 [17], [18]. P1 represents the price
in the DAWM. The LSF’s slope δ1j is the bidding vari-
able of generator j. Generator j will bid more aggressively
with increase of δ1j. The LSF’s intercept β1j is assumed
to be the intercept in the inverse function of the genera-
tor’s marginal cost function C ′1j(Q1j) = a1j + 2b1jQ1j, i.e.
β1j = −a1j

/
2b1j.

Assume that there are K strategic retailers in the DAWM at
the given time slot. Retailer k’s (k = 1, 2, . . . ,K ) quadratic
utility function is U2k (Q2k ) = a2kQ2k − b2kQ2

2k , where
Q2k represents the demand of retailer k , a2k and b2k are
coefficients which are nonnegative. Retailer k bids in the
DAWM in a demand function form Q2k = β2k − δ2kP1.
The slope δ2k is the bidding variable of retailer k .
Retailer k will bid more aggressively with decrease
of δ2k . The intercept β2k is assumed to be the inter-
cept in the inverse function of the retailer’s marginal util-
ity function U ′2k (Q2k ) = a2k − 2b2kQ2k , i.e. β2k =
a2k
/
2b2k .

Assume that there are M strategic microgrids in the DEM
at the given time slot. Microgrid m’s (m = 1, 2, . . . ,M )
quadratic generation cost function is C3m(Q3m) = a3mQ3m+

b3mQ2
3m [6], where Q3m represents the quantity of power

generated by microgrid m, a3m and b3m are cost coefficients
which are nonnegative.Microgridm bids in theDEM in a LSF
formQ3m = β3m+δ3mP2.P2 represents the price in theDEM.
Similar to the generators, the slope δ3m is the bidding variable
of microgrid m. Microgrid m will bid more aggressively with
increase of δ3m, and the intercept β3m = −a3m

/
2b3m is

constant.
Assume that there are N strategic retailers in the DEM at

the given time slot. Retailer n’s (n = 1, 2, . . . ,N ) quadratic
utility function is U4n(Q4n) = a4nQ4n − b4nQ2

4n, where
Q4n represents the demand of retailer n, a4n and b4n are
coefficients which are nonnegative. Retailer n bids in the
DEM in a demand function form Q4n = β4n − δ4nP2. The
slope δ4n is the bidding variable of retailer n. Retailer n will
bid more aggressively with decrease of δ4n, and the intercept
β4n = a4n

/
2b4n is constant.

The arbitrageur is considered as an intermediate agent
playing two different roles at the given time slot.
If P1 > P2, the arbitrageur will bid in the DAWM with a
LSF of Qout

I = δI1P1. The slope δI1 is the bidding variable
of the arbitrageur in the DAWM. Qout

I represents the quan-
tity of electricity bought from the DEM by the arbitrageur.
If P1 < P2, the arbitrageur will bid in the DEM with
a LSF of Qin

I = δI2P2. The slope δI2 is the bidding
variable of the arbitrageur in the DEM. Qin

I represents
the quantity of electricity bought from the DAWM by the
arbitrageur.

B. JOINT EQUILIBRIUM MODEL
The joint equilibrium model is formed by combining equi-
librium problems for strategic bidding games in the DAWM
and the DEM. The equilibrium problem of the DAWM game
is formed by combining the optimization problems for J
generators and K retailers’ bidding in the DAWM. The equi-
librium problem of the DEM game is formed by combining
the optimization problems forM microgrids and N retailers’
bidding in the DEM. In addition, if the price in the DAWM
is higher than that in the DEM, the equilibrium problem of
the DAWM game should include the optimization problem
for the arbitrageur’s bidding. If the price in the DAWM is
lower than that in the DEM, the equilibrium problem of the
DEM game should include the optimization problem for the
arbitrageur’s bidding.

1) OPTIMIZATION PROBLEMS FOR GENERATORS’
BIDDING IN THE DAWM
According to the assumptions, the optimization model for
generator j’s (j = 1, 2, . . . , J ) bidding in the DAWM can be
formulated as follows:

max
δ1j

R1j = P1 · Q1j − C1j
(
Q1j
)

(1)

s.t. Q1j = δ1jP1 + β1j (2)
J∑
j=1

Q1j + Qout
I =

K∑
k=1

Q2k + Qin
I , (3)

where R1j is the profit of generator j. The demand is balanced
by the total power output in the DAWM as shown in (3).

2) OPTIMIZATION PROBLEMS FOR RETAILERS’
BIDDING IN THE DAWM
Retailer k’s (k = 1, 2, . . . ,K ) optimization problem in the
DAWM is described as follows:

max
δ2k

R2k = −P1 · Q2k + U2k (Q2k) (4)

s.t. Q2k = −δ2kP1 + β2k (5)
J∑
j=1

Q1j + Qout
I =

K∑
k=1

Q2k + Qin
I , (6)

where R2k is the profit of retailer k in the DAWM.

3) OPTIMIZATION PROBLEMS FOR MICROGRIDS’
BIDDING IN THE DEM
The optimization problem for microgrid m’s (m = 1, 2,
. . . ,M ) bidding in the DEM can be expressed as the follow-
ing quadratic program:

max
δ3m

R3m = P2 · Q3m − C3m (Q3m) (7)

s.t. Q3m = δ3mP2 + β3m (8)
M∑
m=1

Q3m + Qin
I =

N∑
n=1

Q4n + Qout
I , (9)

where R3m is the profit of microgrid m. The demand is bal-
anced by the total power output in the DEM as shown in (9).
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4) OPTIMIZATION PROBLEMS FOR RETAILERS’
BIDDING IN THE DEM
The optimization problem for retailer k’s (k = 1, 2, . . . ,K )
bidding in the DEM can be formulated as follows:

max
δ4n

R4n = −P2 · Q4n + U4n (Q4n) (10)

s.t. Q4n = −δ4nP2 + β4n (11)
M∑
m=1

Q3m + Qin
I =

N∑
n=1

Q4n + Qout
I , (12)

where R4n is the profit of retailer n in the DEM.

5) OPTIMIZATION PROBLEM FOR THE
ARBITRAGEUR’S BIDDING
If P1 > P2, the arbitrageur will participate in the competition
of the DAWM. The price in the DEM is the cost of the
electricity selling to the DAWMby the arbitrageur. Therefore,
the arbitrageur’s optimization problem to determine the best
value of δI1 is as follows:

max
δI1

RI1 = (P1 − P2)Qout
I (13)

s.t. Qout
I = δI1P1 (14)
J∑
j=1

Q1j + Qout
I =

K∑
k=1

Q2k + Qin
I , (15)

where RI1 represents the profit of the arbitrageur when the
price in the DAWM is higher than that in the DEM.

If P1 < P2, the arbitrageur will participate in the competi-
tion of the DEM. The arbitrageur’s optimization problem to
chooses the best value of δI2 is as follows:

max
δI2

RI2 = (P2 − P1)Qin
I (16)

s.t. Qin
I = δI2P2 (17)
M∑
m=1

Q3m + Qin
I =

N∑
n=1

Q4n + Qout
I , (18)

where RI2 represents the profit of the arbitrageur when the
price in the DEM is higher than that in the DAWM.

6) EQUILIBRIUM PROBLEMS IN THE DAWM AND THE DEM
When P1 > P2, the equilibrium problem of the DAWM
game is formed by combining J optimization problems of
generators expressed by (1) ∼ (3), K optimization prob-
lems of retailers in the DAWM expressed by (4) ∼ (6) and
the optimization problem of the arbitrageur expressed by
(13) ∼ (15). The equilibrium problem of the DEM game is
formed by combining M optimization problems of micro-
grids expressed by (7) ∼ (9), N optimization problems of
retailers in the DEM expressed by (10) ∼ (12).
When P1 < P2, the equilibrium problem of the DEM

game is formed by combining M optimization problems of
microgrids expressed by (7) ∼ (9), N optimization prob-
lems of retailers in the DEM expressed by (10) ∼ (12)
and the optimization problem of the arbitrageur expressed

by(16)∼ (18). The equilibrium problem of the DAWM game
is formed by combining J optimization problems of gener-
ators expressed by (1) ∼ (3), K optimization problems of
retailers in the DAWM expressed by (4) ∼ (6).

It should be noted that the electricity transferred by the
arbitrageur will explicitly affect the equilibrium outcomes of
the two markets. Thus, considering the interaction between
the DAWM and the DEM caused by the arbitrageur, the equi-
librium of the two markets needs to be found by solving a
joint equilibrium model, which is formed by combining the
equilibrium problems of the two markets.

IV. SOLUTION METHOD
The joint equilibrium model is solved by converting the
equilibrium problems into convex optimization problems and
the existence and uniqueness of the Nash equilibrium is the-
oretically demonstrated. Then, considering the information
asymmetry in practical application, a distributed algorithm
is further proposed to find the equilibrium outcomes. In this
section, we only discuss the solution process of the equilib-
rium model when P1 > P2. When P1 < P2 the solution
process is similar and can be seen in the Appendix.

A. NASH EQUILIBRIUM FOR THE DAWM
When P1 > P2, the arbitrageur will bid in the DAWM
and Qin

I =0. The Nash equilibrium is a set of strategies for
which no player has an incentive to change unilaterally. Let
the tuple {δ∗1j, δ

∗

2k , δ
∗

I1}j=1,2,...,J ,k=1,2,...,K denotes the Nash
equilibrium in the DAWM, P∗1 be the equilibrium price in the
DAWM which is determined by the bids of the arbitrageur,
generators and retailers in the DAWM. In the following,
we will demonstrate the existence and uniqueness of the Nash
equilibrium
Lemma 1: If {δ∗1j, δ

∗

2k , δ
∗

I1}j=1,2,...,J ,k=1,2,...,K is a Nash
equilibrium of the DAWM, then Q∗1j < (A+ β1j)

/
2 for any

generator j(j = 1, 2, · · ·, J ),Q∗2k < β2k for any retailer
k(k = 1, 2, · · ·,K ) and Qout∗

I < A/2 for the arbitrageur,
where A = −

∑J
j=1 β1j +

∑K
k=1 β2k .

Proof: Since QinI = 0, by substituting (2), (5),

(14) into (3), we obtain
J∑
j=1

(
δ1jP1 + β1j

)
+ δI1P1 =

K∑
k=1

(−δ2kP1 + β2k), that is

P1=

− J∑
j=1

β1j +

K∑
k=1

β2k

/ J∑
j=1

δ1j +

K∑
k=1

δ2k+δI1

.
(19)

For generator j(j = 1, 2, . . . , J ), δ−1j is introduced to
denote

∑J
i=1,i 6=j δ1i+

∑K
k=1 δ2k + δI1 for mathematic expres-

sion convenience, i.e. δ−1j =
∑J

i=1,i6=j δ1i +
∑K

k=1 δ2k + δI1.
Thus (19) can be written as

P1 =
A

δ1j + δ−1j
. (20)
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Substituting (20) into (2), we have

Q1j =
δ1jA

δ1j + δ−1j
+ β1j. (21)

From (1), (20) and (21), we get

∂R1j
∂δ1j
=

A2(
δ1j + δ−1j

)2
×

[
−
β1j

A
+
δ−1j − δ1j

δ−1j + δ1j

−
δ−1j

A
C ′1j

(
δ1jA

δ1j + δ−1j
+ β1j

)]
.

(22)

Since δ−1j−δ1j
δ−1j+δ1j

≤ 1, if −β1jA −
δ−1j
A C ′1j

(
δ1jA

δ1j+δ−1j
+ β1j

)
<

−1, then ∂R1j
/
∂δ1j < 0 for all δ1j. Hence R1j is strictly

decreasing in δ1j. Because Q1j = δ1jP1 + β1j ≥ 0, i.e.
δ1j ≥ −β1j

/
P1, so δ∗1j = −β1j

/
P1 maximizes generator j’s

payoff R1j for the given δ−1j. As a result, Q∗1j = 0, generator
j does not participate in the competition of the DAWM.

If −β1jA −
δ−1j
A C ′1j

(
δ1jA

δ1j+δ−1j
+ β1j

)
≥ −1, then the optimal

solution needs to satisfy:

−
β1j

A
+
δ∗
−1j − δ

∗

1j

δ∗
−1j + δ

∗

1j
−
δ∗
−1j

A
C ′1j

(
δ∗1jA

δ∗1j + δ
∗

−1j
+ β1j

)
= 0.

(23)

Note that
δ∗
−1j
A C ′1j

(
δ∗1jA

δ∗1j+δ
∗

−1j
+ β1j

)
> 0, so we get

−
β1j
A +

δ∗
−1j−δ

∗

1j
δ∗
−1j+δ

∗

1j
> 0. Hence

−β1j + P1
(
δ∗
−1j − δ

∗

1j

)
> 0. (24)

Since P∗1 =
A

δ∗
−1j+δ

∗

1j
and Q∗1j = δ

∗

1jP
∗

1 + β1j, we have

Q∗1j <
(
A+ β1j

)/
2. (25)

For each retailer k(k = 1, 2, . . . ,K ) in the DAWM, δ−2k
is introduced to denote

∑J
j=1 δ1j +

∑K
i=1,i 6=k δ2i + δI1 for

mathematic expression convenience, i.e. δ−2k =
∑J

j=1 δ1j +∑K
i=1,i 6=k δ2i + δI1. Similar to above mathematical deduction

for generators, we can derive

∂R2k
∂δ2k

=
A2

(δ2k + δ−2k)
2

×

[
β2k

A
+
δ−2k − δ2k

δ−2k + δ2k
−
δ−2k

A
U ′2k

×

(
−

δ2kA
δ2k + δ−2k

+ β2k

)]
. (26)

Since δ−2k−δ2k
δ−2k+δ2k

≥ −1, if β2k
A −

δ−2k
A U ′2k(

−
δ2kA

δ−2k+δ2k
+ β2k

)
> 1, then ∂R2k

/
∂δ2k > 0 for all δ2k .

Thus R2k is strictly decreasing in δ2k . Because Q2k =

−δ2kP1 + β2k ≥ 0, i.e. δ2k ≥ β2k
/
P1, so

δ∗2k = β2k
/
P1 maximizes retailer k’s payoff R2k for the

given δ−2k . Thus Q∗2k = 0, retailer k does not participate
in the competition of the DAWM.

If β2kA −
δ−2k
A U ′2k

(
−

δ2kA
δ2k+δ−2k

+ β2k

)
≤ 1, then the optimal

solution needs to satisfy:

β2k

A
+
δ∗
−2k − δ

∗

2k

δ∗
−2k + δ

∗

2k
−
δ∗
−2k

A
U ′2k

(
−

δ∗2kA

δ∗2k + δ
∗

−2k
+ β2k

)
= 0.

(27)

Note that β2k
A +

δ∗
−2k−δ

∗

2k
δ∗
−2k+δ

∗

2k
> 0, so we have

δ∗
−2k
A U ′2k

(
−

δ∗2kA
δ∗2k+δ

∗

−2k
+ β2k

)
> 0. Hence

Q∗2k < β2k . (28)

For the arbitrageur, δ−I1 is introduced to denote∑J
j=1 δ1j+

∑K
k=1 δ2k for mathematic expression convenience,

i.e. δ−I1 =
∑J

j=1 δ1j+
∑K

k=1 δ2k . Similar to above mathemat-
ical deduction for generators, we can get:

∂RI1
∂δI1

=
A2

(δ−I1 + δI1)
2

(
δ−I1 − δI1

δ−I1 + δI1
−
δ−I1

A
P2

)
. (29)

Since δ−I1−δI1
δ−I1+δI1

≤ 1, if δ−I1
A P2 > 1, then ∂RI1

/
∂δI1

for δI1. This means RI1 is strictly decreasing in δI1 and δ∗I1 = 0
maximizes the arbitrageur’s payoff RI1 for the given δ−I1.
Thus Q∗I1 = 0, the arbitrageur does not participate in the
competition of the DAWM.

If δ−I1A P2 ≤ 1, then the optimal solution needs to satisfy:

A2(
δ∗
−I1 + δ

∗

I1

)2
(
δ∗
−I1 − δ

∗

I1

δ∗
−I1 + δ

∗

I1
−
δ∗
−I1

A
P2

)
= 0. (30)

Notice that δ−I1∗A P2 > 0, so δ−I1∗−δI1∗

δ−I1∗+δI1∗
> 0, which requires

δ∗I1 < δ−I1∗ . Hence

Qout∗
I =

Aδ∗I1
δ∗
−I1 + δ

∗

I1
< A

/
2. (31)

Theorem 1: The equilibrium problem of the DAWM,
expressed by (1)-(6) and (13)-(15) has a unique Nash equilib-
rium. Moreover, the equilibrium solves the following convex
optimization problem:

min
0≤Q1j<

A+β1j
2 ,

0≤Q2k<β2k ,0≤Qout
I < A

2

J∑
j=1

D1j(Q1j)

−

K∑
k=1

D2k (Q2k )+ d1(Qout
I ) (32)

s.t.
J∑
j=1

Q1j + Qout
I =

K∑
k=1

Q2k (33)

with

D′1j(Q1j) =
(
1+

Q1j

A− 2Q1j + β1j

)
C ′1j(Q1j) (34)

D′2k (Q2k ) =
(
1−

Q2k

A+ 2Q2k − β2k

)
U ′2k (Q2k ) (35)

d ′1(Q
out
I ) =

(
1+

Qout
I

A− 2Qout
I

)
P2, (36)
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where,D′1j(Q1j) is the first derivative ofD1j(Q1j) with respect
to Q1j, D′2k (Q2k ) is the first derivative of D2k (Q2k ) with
respect toQ2k , d ′1(Q

out
I ) is the first derivative of d1(QoutI ) with

respect to QoutI , C ′1j
(
Q1j
)
is the first derivative of C1j

(
Q1j
)

with respect to Q1j and U ′2k (Q2k) is the first derivative of
U2k (Q2k) with respect to Q2k .

Proof: First, note that if 0 ≤ Q1j < (A+ β1j)
/
2,

0 ≤ Q2k < β2k and 0 ≤ QoutI < A/2, then D′′1j(Q1j) > 0,
D′′2k (Q2k ) > 0 and d ′′1 (Q

out
I ) > 0. Thus the optimization

problem (32) and (33) is a strictly convex problem and has
a unique optimal solution. The unique solution can be deter-
mined as follows.

For each generator j(j = 1, 2, . . . , J ),[(
1+

Q∗1j
A− 2Q∗1j + β1j

)
C ′1j(Q

∗

1j)− ω1

](
Q1j − Q∗1j

)
≥ 0

∀0 ≤ Q1j <
(
A+ β1j

)/
2. (37)

For each retailer k(k = 1, 2, . . . ,K ),[
−

(
1−

Q∗2k
A+2Q∗2k − β2k

)
U ′2k(Q

∗

2k )+ ω1

] (
Q2k − Q∗2k

)
≥0

∀0 ≤ Q2k < β2k . (38)

For the arbitrageur,[(
1+

Qout∗
I

A− 2Qout∗
I

)
P2 − ω1

](
Qout
I − Q

out∗
I

)
≥ 0

∀0 ≤ Qout
I < A

/
2, (39)

where ω1 is the Lagrange multiplier of the convex optimiza-
tion problem.

The optimality condition of the DAWM equilibrium prob-
lem determined by (1) ∼ (6) and (13) ∼ (15) is as follows.
For each generator j(j = 1, 2, . . . . ., J ),[
−
β1j

A
+
δ∗
−1j − δ

∗

1j

δ∗
−1j + δ

∗

1j
−
δ∗
−1j

A
C ′1j

(
δ∗1jA

δ∗1j + δ
∗

−1j
+ β1j

)]
×

(
δ−1j − δ

∗

1j

)
≤ 0 ∀δ1j ≥ 0. (40)

Since P∗1 = A
/
(δ∗
−1j + δ

∗

1j) and Q
∗

1j = δ
∗

1jP
∗

1+β1j, we can
write (40) as[
P∗1 −

(
1+

Q∗1j
A− 2Q∗1j + β1j

)
C ′1j

(
Q∗1j
)](

Q1j − Q∗1j
)
≤ 0

∀0 ≤ Q1j <
(
A+ β1j

)/
2. (41)

For each retailer k(k = 1, 2, . . . ,K ),[
β2k

A
+
δ∗
−2k − δ

∗

2k

δ∗
−2k + δ

∗

2k
−
δ∗
−2k

A
U ′2k

(
−

δ∗2kA

δ∗2k + δ
∗

−2k
+ β2k

)]
(
δ2k − δ

∗

2k
)
≥ 0, ∀δ2k ≥ 0. (42)

Since Q∗2k = −δ
∗

2kP
∗

1 + β2k , we can achieve[
P∗1−

(
1−

Q∗2k
A+ 2Q∗2k − β2k

)
U ′2k

(
Q∗2k

)] (
Q2k − Q∗2k

)
≥0

∀0 ≤ Q2k < β2k . (43)

For the arbitrageur,(
δ∗
−I1 − δ

∗

I1

δ∗
−I1 + δ

∗

I1
−
δ∗
−I1

A
P2

) (
δI1 − δ

∗

I1
)
≤ 0 ∀δI1 ≥ 0. (44)

Note that (44) can be written compactly as[
P∗1 −

(
1+

Qout∗
I

A− 2Qout∗
I

)
P2

](
Qout
I − Q

out∗
I

)
≥ 0

∀0 ≤ Qout
I < A

/
2. (45)

The condition (41), (43) and (45) is equivalent to (37), (38)
and (39) respectively. Thus, the Nash equilibrium of the
DAWM satisfies the optimality conditions (37), (38) and
(39) and solves the optimization problem (32) and (33). The
existence and uniqueness of the Nash equilibrium is a result
of the existence and uniqueness of the optimal solutions of
(32) and (33).

B. NASH EQUILIBRIUM FOR THE DEM
When P1 > P2, the microgrids and retailers in the
DEM will compete by submitting bids taking consider-
ation of the arbitrageur’s bidding in the DAWM. Let
{δ∗3m, δ

∗

4n}m=1,2,...,M ,n=1,2,...,N be a Nash equilibrium in the
DEM, P∗2 be the equilibrium price in the DEM which is
determined by the bids of the microgrids and retailers in the
DEM.
Lemma 2: If {δ∗3m, δ

∗

4n}m=1,2,...,M ,n=1,2,...,N is a Nash equi-
librium of the DEM, then Q∗3m < (B+ β3m)

/
2 for any

microgrid m (m = 1, 2, . . . ,M ) and Q∗4n < β4n for any
retailer n(n = 1, 2, · · ·,N ), where B = −

∑M
m=1 β3m +∑N

n=1 β4n + Q
out
I .

Proof: For each microgrid m(m = 1, 2, . . . ,M ), δ−3m
is introduced to denote

∑M
i=1,i 6=m δ3i +

∑N
n=1 δ4n for math-

ematic expression convenience, i.e. δ−3m =
∑M

i=1,i6=m δ3i +∑N
n=1 δ4n. Similar to the proof of Lemma 1, (8) and (9) can

be written compactly as
P2 =

B
δ3m + δ−3m

Q3m =
δ3mB

δ3m + δ−3m
+ β3m.

(46)

From (7), we can derive

∂R3m
∂δ3m

=
B2

(δ3m + δ−3m)
2

= ×

[
−
α3m

B
+
δ−3m − δ3m

δ−3m + δ3m
−
δ−3m

B
C ′2m

×

(
δ3mB

δ3m + δ−3m
+ β3m

)]
. (47)
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Since δ−3m−δ3m
δ−3m+δ3m

≤ 1, if −β3mB −
δ−3m
B C ′3m(

δ3mB
δ3m+δ−3m

+ β3m

)
< −1, then ∂R3m

/
∂δ3m < 0 for all δ3m.

Hence R3m is strictly decreasing in δ3m. Because Q3m =

δ3mP2 + β3m ≥ 0, i.e. δ3m ≥ −β3m/P2, so δ∗3m = −β3m/P2
maximizes microgridm’s payoff R3m for the given δ−3m. As a
result, Q∗3m = 0, microgrid m does not participate in the
competition of the DEM.

If −β3mB −
δ−3m
B C ′3m

(
δ3mB

δ3m+δ−3m
+ β3m

)
≥ −1, then the

optimal solution needs to satisfy:

−
β3m

B
+
δ∗
−3m − δ

∗

3m

δ∗
−3m+δ

∗

3m
−
δ∗
−3m

B
C ′3m

(
δ∗3mB

δ∗3m+δ
∗

−3m
+ β3m

)
= 0.

(48)

Note that
δ∗
−3m
B C ′3m

(
δ∗3mB

δ∗3m+δ
∗

−3m
+ β3m

)
> 0, so −β3mB +

δ∗
−3m−δ

∗

3m
δ∗
−3m+δ

∗

3m
> 0. Hence

−β3m + P∗2
(
δ∗
−3m − δ

∗

3m
)
> 0. (49)

Similar to the proof of Lemma 1, we get

Q∗3m < (B+ β3m)
/
2. (50)

For each retailer n(n = 1, 2, . . . ,N ) in the DEM, the proof
process is similar to that of retailer k in the DAWM. Thus,
we get

Q∗4n < β4n. (51)

Theorem 2: The equilibrium problem of the DEM, consti-
tuted by (7)-(12) has a unique Nash equilibrium. Moreover,
the equilibrium solves the following convex optimization
problem:

min
0≤Q3m<

B+β3m
2 ,0≤Q4n<β4n

M∑
m=1

D3m(Q3m)−
N∑
n=1

D4n(Q4n)

(52)

s.t.
M∑
m=1

Q3m =

N∑
n=1

Q4n + QoutI (53)

with

D′3m(Q3m) =
(
1+

Q3m

B− 2Q3m + β3m

)
C ′3m (Q3m) (54)

D′4n(Q4n) =
(
1−

Q4n

B+ 2Q4n − β4n

)
U ′4n (Q4n) , (55)

where, D′3m(Q3m) is the first derivative of D3m(Q3m)
with respect to Q3m, D′4n(Q4n) is the first derivative of
D4n(Q4n) with respect to Q4n, C ′3m(Q3m) is the first deriva-
tive ofC3m(Q3m) with respect toQ3m andU ′4n(Q4n) is the first
derivative of U4n(Q4n) with respect to Q4n.

Proof: First, note that if 0 ≤ Q3m < (B + β3m)/2
and 0 ≤ Q4n < β4n, then we have D′′3m(Q3m) > 0 and
−D′′4n(Q4n) > 0. Thus, the optimization problem (52) and
(53) is a strictly convex problem and has a unique optimal
solution. The unique solution is determined as follows.

For each microgrid m(m = 1, 2, . . . ,M ),[(
1+

Q∗3m
B− 2Q∗3m + β3m

)
C ′3m

(
Q∗3m

)
− ω2

] (
Q3m − Q∗3m

)
≥0

∀0 ≤ Q3m < (B+ β3m)
/
2. (56)

For each retailer n(n = 1, 2, . . . ,N ),[
−

(
1−

Q∗4n
A+ 2Q∗4n − β4n

)
U ′4n

(
Q∗4n

)
+ω2

] (
Q4n − Q∗4n

)
≥0

∀0 ≤ Q4n < β4n, (57)

where ω2 is the Lagrange multiplier of the convex optimiza-
tion problem.

The optimality condition of the DEM equilibrium problem
determined by (7) ∼ (12) is as follows.

For each microgrid m(m = 1, 2, . . . ,M ),[
−
β3m

B
+
δ∗
−3m − δ

∗

3m

δ∗
−3m+δ

∗

3m
−
δ∗
−3m

B
C ′3m

(
δ∗3mB

δ∗3m + δ
∗

−3m
+ β3m

)]
·
(
δ3m − δ

∗

3m
)
≤ 0 ∀δ3m ≥ 0. (58)

Since P∗2 = B/(δ∗3m + δ
∗

−3m) and Q
∗

3m = δ3mP∗2 + β3m,
we obtain[
P∗2 −

(
1+

Q∗3m
B− 2Q∗3m+β3m

)
C ′3m

(
Q∗3m

)] (
Q3m − Q∗3m

)
≤0

∀0 ≤ Q3m < (B+ β3m)
/
2. (59)

For each retailer n(n = 1, 2, . . . ,N ), similar to the proof
of Theorem 1, we obtain[
P∗2 −

(
1−

Q∗4n
B+ 2Q∗4n − β4n

)
U ′4n

(
Q∗4n

)](
Q4n − Q∗4n

)
≥0

∀0 ≤ Q4n < β4n. (60)

The condition (59) and (60) is equivalent to (56) and (57)
respectively. Similar to the DAWM, the Nash equilibrium of
the DEM solves the optimization problem (52) and (53). The
existence and uniqueness of the Nash equilibrium is a result
of the existence and uniqueness of the optimal solutions of
(52) and (53).

C. DISTRIBUTED ALGORITHM
One way to find the equilibrium is to directly solve the con-
vex optimization problems (32)-(33) and (52)-(53), requiring
the knowledge of cost (or utility) functions for all market
participants. However, due to the information asymmetry,
it may be impractical to collect the information of all market
participants who are usually unwilling or unable to report
their true information, motivating the needs of a distributed
algorithm where the utility company sets the market prices
while the market participants submit bids based on the prices,
which requires only light communication and computation
and can be easily scaled to large systems.

The convex optimization problems (32)-(33) and (52)-(53)
can be easily solved in a distributed way by the dual gradient
algorithm in [19]. Flow chart for solving the joint equilibrium
model is shown in Fig.2. In the flow chart, e is a pre-specified
threshold to control solution accuracy. Initially, the utility
company picks initial prices P1(1) and P2(1) for the DAWM
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FIGURE 2. Flow chart for solving the joint equilibrium model.

and the DEM respectively and then announces the prices to
eachmicrogrid, generator, retailer and the arbitrageur over the
communication network. At each iteration, when the price in
the DAWM is higher than that in the DEM, the arbitrageur
will bid in the DAWMalong with the generators and retailers.
The utility company determines the DAWM price and the
quantity of electricity bought from the DEM by the arbi-
trageur based on the clearing results of the DAWM, and then
the microgrids and retailers bid in the DEM to form the DEM
price. When the price in the DEM is higher than that in the
DAWM, the arbitrageur will bid in the DEM along with the
microgrids and retailers, and then the generators and retailers
bid in the DAWM.

At l th iteration, ifP1(l) > P2(l), the distributed algorithms
for the DAWM and the DEM are as follows. The solution
process for the case P1(l) < P2(l) is given in the Appendix.

1) DISTRIBUTED ALGORITHM FOR THE DAWM
Generator j updates its bidding variable according to

δ1j(l) =

[
(D′1j)

−1(P1(l))− β1j

P1(l)

]+
, j = 1, 2, . . . , J .

(61)

The arbitrageur updates its bidding variable according to

δI1(l) =
[
(d1)−1(P1(l))

P1(l)

]+
, δI2(l) = 0. (62)

Retailer k in the DAWM updates its bidding variable as
follows

δ2k (l) =

[
−
(D′2k )

−1(P1(l))− β2k
P1(l)

]+
, k = 1, 2, . . . ,K .

(63)

Upon gathering the bids δ1j(l) from generators, δ2k (l) from
retailers and δI1(l) from the arbitrageur, the utility company
updates the price in the DAWM as follows

P1 (l + 1)

=

P1 (l)− γ1
 J∑
j=1

(
δ1j (l)P1 (l)+ β1j

)
+ δI1 (l)P1 (l)−

K∑
k=1

(−δ2k (l)P1 (l)+ β2k)

]}+
, (64)

where parameter γ1 denotes the step size, [.]+ is the projec-
tion onto the feasible set and (.)−1 is the inverse function.

2) DISTRIBUTED ALGORITHM FOR THE DEM
The utility company determines the cleared quantity of the
arbitrageur based on the bidding information. Then each
microgrid updates its bidding variable according to

δ3m(l) =

[
(D′3m)

−1(P2(l))− β3m
P2(l)

]+
, m = 1, 2, . . . ,M .

(65)

Retailer n in the DEM updates its bidding variable accord-
ing to

δ4n(l) =

[
−
(D′4n)

−1(P2(l))− β4n
P2(l)

]+
, n = 1, 2, . . . ,N .

(66)

Upon gathering the bids from the microgrids and retailers
in the DEM, the utility company updates the price in the DEM
as follows

P2 (l + 1)

=

{
P2 (l)− γ2

[
M∑
m=1

(δ3m (l)P2 (l)+β3m)

−

N∑
n=1

(−δ4n (l)P2 (l)+ β4n)− δI1 (l)P1 (l)

]}+
, (67)

where parameter γ2 denotes the step size.
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Once the price in the DEM changes, the profit of the
arbitrageur will also change and it will affect the equilibrium
outcomes of the DAWM. Let l = l + 1, each generator,
retailer and the arbitrageur will update its bidding variable
again. Repeat the process until the price in the DEM will not
change, which means the bidding variables of all microgrids,
generators, retailers and the arbitrageur will no longer change
and the iterative processes converge to the Nash equilibrium
of the joint equilibrium model.

The above distributed algorithm is equivalent to the dual
gradient method for the proposed optimization problems.
Besides, it is demonstrated in [19] that the optimal solution
to a linearly constrained convex separable optimization prob-
lem can be found using the dual gradient method. Hence,
the above distributed algorithm will converge to the opti-
mal solutions to the optimization problems (32)-(33) and
(52)-(53) when sufficiently small step sizes γ1 and γ2 are
used. Since the Nash equilibrium for both the DAWM and
the DEM is unique, the iterative processes will converge to
the Nash equilibrium of the joint equilibrium model. The
selection of step size and the relation between step size
and convergence speed can be referred to [20] and [21].
In addition, it does not need the profile of the other market
participants since (61)-(63) and (65)-(66) only depend on
its own bidding variable and the information announced by
the utility company. This can guarantee the privacy of the
market participants, which also perfectly meets the practical
situation of information asymmetry in practical electricity
markets.

It is noted that in the proposed model, we assume that the
DAWMprice P1 and the DEM price P2 are known to the arbi-
trageur in advance. This assumption is valid for the following
reasons: 1) there is a multi-round bidding process in many
actual electricity markets, which is simulated by the iterative
distributed algorithm in this paper. 2) at the beginning of
the first-round bidding, the arbitrageur and other participants
can make a rough prediction of the prices in two markets
according to the historical information, then make the first-
round bids. The utility company collects the bidding infor-
mation from all market participants and updates the prices
of the two markets based on the bids and market clearing
rule, then announces the prices to the market participants. 3)
starting from the second-round bidding, the arbitrageur and
other participants can know the prices in advance according
to the announced prices from the utility company.

V. NUMERICAL EXAMPLES
In order to evaluate the effectiveness of the proposed
approach, a DEM with two microgrids(i.e., MG1,MG2)
and two retailers(H1,H2), a DAWM with two generators
(i.e.,G1,G2) and two retailers(i.e.,C1,C2), and one arbi-
trageur (i.e.,I) are assumed. As shown in Table 1, the follow-
ing two cases are considered: case1 for relatively high gener-
ation cost of microgrids; case2 for relatively low generation
cost of microgrids. The step size is set as 0.01.

TABLE 1. Market participants’ parameters.

FIGURE 3. Evolution of price and bidding variables of generators and
retailers in the DAWM.

FIGURE 4. Evolution of price and bidding variables of microgrids, retailers
and arbitrageur in the DEM.

A. CONVERGENCE OF DISTRIBUTED ALGORITHM
In this section, we consider case 1 to demonstrate the effec-
tiveness of the distributed algorithm. The step size is set as
0.01 and it takes about 0.1218s to obtain the solution. Fig.3
shows the evolution of the price and bidding variables of
generators and retailers in the DAWM. Fig. 4 shows the evo-
lution of the price and bidding variables of microgrids, retail-
ers and the arbitrageur(I) in the DEM. It can be noted that
when using the distributed algorithm to solve the equilibrium
model proposed in this paper, the iterative process converges
quickly, which illustrate effectiveness of the algorithm.

B. EQUILIBRIUM OUTCOMES ANALYSIS
In this section, we analyze the results for case 1 and case 2,
and examine the impacts of introducing the arbitrageur. The
equilibrium outcomes for case 1 and case 2 with/without the
arbitrageur(I) are listed in Table 2.

It can be found that in case1 with the arbitrageur, the arbi-
trageur purchases electricity from the DAWM and sells to
the DEM. Compared to the case without the arbitrageur,
the price in the DEM drops while the price in the DAWM
increases, thus the price difference between the two markets
decreases. Therefore, the profits of microgrids decrease while
the profits of retailers in the DEM increase; the profits of
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TABLE 2. Equilibrium results.

FIGURE 5. Electricity prices v.s. number of microgrids.

generators increasewhile the profits of retailers in theDAWM
decrease. Moreover, with the arbitrageur, the social welfare is
improved.

For case2 with the arbitrageur, the arbitrageur purchases
electricity from the DEM and sells it to the DAWM. Com-
pared to the case without the arbitrageur, the market power
abuse of generators in the DAWM is mitigated. The price in
the DEM increases while the price in the DAWM drops. As a
result, the profits of microgrids of increase while the profits
of retailers in the DEM decrease. The profits of generators
decrease while the profits of retailers in the DAWM increase.
In addition, the social welfare increases for the case with the
arbitrageur.

Thus, under the market framework proposed in this paper,
arbitrage between the two markets should be encouraged in
order to increase the social welfare. In addition, the reduction
in the generation cost of microgrids can help mitigate market
power abuse of generators in the DAWM.

C. IMPACTS OF NUMBER OF MICROGRIDS ON
EQUILIBRIUM OUTCOMES
In this section, we examine the impacts of the number of
microgrids in the DEM. Assume that microgrids’a3m and
b3m are isometrically drawn from 15 to 20 and 0.15 to 0.20,
respectively. Fig.5 plots the prices in the DAWM and the
DEM with different number of microgrids. Fig. 6 plots the

FIGURE 6. Bidding variable and profit of generator G1 v.s. number of
microgrids.

bidding variable and profit of generator G1 in the DAWM
with different number of microgrids.

It can be found that the increase in the number of micro-
grids leads to a reduction in the DEM price and is followed
by a price drop in the DAWM. More importantly, with an
increase in the number of microgrids, generators increase
their bidding variables, which means that they bid more
aggressively in the DAWM. As a result, the market power
abuse of generators in the DAWM is mitigated and their
profits are lowered.

VI. CONCLUSION
This paper addresses the need for microgrids to participate
in electricity market competition. For this purpose, a mar-
ket trading framework is presented where microgrids sell
electricity by submitting bids in the distribution electricity
market (DEM) while conventional generators compete by
submitting bids in the day-ahead wholesale market (DAWM).
The arbitrageur is allowed to buy and sell electricity between
the twomarkets. Based on this framework, a joint equilibrium
model for strategic bidding games in the DAWM and the
DEM is proposed. Considering the information asymmetry
in practical application, the equilibrium model is solved by
converting equilibrium problems into convex optimization
problems. The existence and uniqueness of the Nash equi-
librium is theoretically proved and a distributed algorithm is
further proposed to find the equilibrium outcomes. Finally,
the numerical examples are presented to verify the reason-
ableness and effectiveness of the proposed model and algo-
rithm. It is shown that under the market framework proposed
in this paper, arbitrage between the two markets should be
encouraged in order to increase the social welfare. In addition,
the reduction in the generation cost of microgrids and the
increase in the number ofmicrogrids can helpmitigatemarket
power abuse of generators in the DAWM.

APPENDIX
If P1 < P2, the arbitrageur bids in the DEM and QoutI =0.
Lemma 3: It can be proved that if
{δ∗1j, δ

∗

2k}j=1,2,...,J ,k=1,2,...,K is a Nash equilibrium of the
DAWM, then Q∗1j < (A + β1j)/2 for any generator
j(j = 1, 2, · · ·, J ) and Q∗2k < β2k for any retailer
k(k = 1, 2, · · ·,K ), where A = −

∑J
j=1 β1j +

∑K
k=1 β2k .
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Lemma 4: If {δ∗3m, δ
∗

4n, δ
∗

I2}m=1,2,...,M ,n=1,2,...,N is a Nash
equilibrium of the DEM, then Q∗3m < (B + β3m)/2 for any
microgrid m(m = 1, 2, · · ·,M ),Q∗4n < β4n for any retailer
n(n = 1, 2, · · ·,N ) and Qin∗

I < B/2 for the arbitrageur, where
B = −

∑M
m=1 β3m +

∑N
n=1 β4n.

Theorem 3: The equilibrium model of the DAWM, consti-
tuted by (1)-(6) has a unique Nash equilibrium. Moreover,
the equilibrium solves the following convex optimization
problem:

min
0≤Q1j<

A+β1j
2 ,0≤Q2k<β2k

J∑
j=1

D1j
(
Q1j
)
−

K∑
k=1

D2k (Q2k) (68)

s.t.
J∑
j=1

Q1j =

K∑
k=1

Q2k + Qin
I . (69)

Theorem 4: The equilibrium model of the DEM, expressed
by (7)-(12) and (16)-(18) has a unique Nash equilibrium.
Moreover, the equilibrium solves the following convex opti-
mization problem:

min
0≤Q3m<

B+β3m
2 ,

0≤Q4n<β4n,0≤Qin
I <

B
2

M∑
m=1

D3m (Q3m)

−

N∑
n=1

D4n (Q4n)+ d2
(
Qin
I

)
(70)

s.t.
M∑
m=1

Q3m + QinI =
N∑
n=1

Q4n (71)

with

d ′2(Q
in
I ) =

(
1+

Qin
I

B− 2Qin
I

)
P1, (72)

where, d ′2(Q
in
I ) is the first derivative of d2(Q

in
I ) with respect

to Qin
I ,

If P1 < P2, the distributed algorithms for the DAWM and
the DEM are as follows.

A. DISTRIBUTED ALGORITHM FOR THE DEM
Microgrid m updates its bidding variable according to

δ3m(l) =

[(
D′3m

)−1 (P2(l))− β3m
P2(l)

]+
, m = 1, . . . ,M .

(73)

The arbitrageur updates its bidding variable according to

δI2(l) =
[
(d2)−1(P2(l))

P2(l)

]+
, δI1(l) = 0. (74)

Retailer n in the DEM updates its bidding variable
according to

δ4n(l) =

[
−
(D′4n)

−1(P2(l))− β4n
P2(l)

]+
, n = 1, . . . ,N .

(75)

Upon gathering the bids δ3m (l) from microgrids, δ4n (l)
from retailers and δI2 (l) from the arbitrageur, the utility
company updates the price in the DEM as follows

P2(l + 1) =

{
P2(l)− γ2

[
M∑
m=1

(δ3m(l)P2(l)+ β3m)

+ δI2(l)P2(l)−
N∑
n=1

(−δ4n(l)P2(l)+ β4n)

]}+
.

(76)

B. DISTRIBUTED ALGORITHM FOR THE DAWM
The utility company determines the cleared quantity of the
arbitrageur based on the bidding information. Then each
generator updates its bidding variable according to

δ1j(l) =

[
(D′1j)

−1(P1(l))− β1j

P1(l)

]+
, j = 1, . . . , J .

(77)

Retailer k in the DAWM updates its bidding variable
according to

δ2k (l) =

[
−
(D′2k )

−1(P1(l))− β2k
P1(l)

]+
, k = 1, 2, . . . ,K .

(78)

Upon gathering the bids from the generators and retailers
in the DAWM, the utility company updates the price in the
DAWM as follows

P1(l + 1) =

P1(l)− γ1
 J∑
j=1

(δ1j(l)P1(l)+ β1j)

−

K∑
k=1

(−δ2k (l)P1(l)+ β2k )− δI2(l)P2(l)

]}+
.

(79)
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