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ABSTRACT In reinforcement learning (RL), a reinforcement signal may be infrequent and delayed, not
appearing immediately after the action that triggered the reward. To trace back what sequence of actions
contributes to delayed rewards, e.g., credit assignment (CA), is one of the biggest challenges in RL. This
challenge is aggravated under sparse binary rewards, especially when rewards are given only after successful
completion of the task. To this end, a novel method consisting of key-action detection, among a sequence of
actions to perform a task under sparse binary rewards, and CA strategy is proposed. The key-action defined
as the most important action contributing to the reward is detected by a deep neural network that predicts
future rewards based on the environment information. The rewards are re-assigned to the key-action and its
adjacent actions, defined as adjacent-key-actions. Such re-assignment process enables increased success rate
and convergence speed during training. For efficient re-assignment, two CA strategies are considered as part
of proposed method. Proposed method is combined with hindsight experience replay (HER) for experiments
in the OpenAI gym suite robotics environment. In the experiments, it is demonstrated that proposed method
can detect key-actions and outperform the HER, increasing success rate and convergence speed, in the Fetch
slide task, a type of task that is more exacting as compared to other tasks, but is addressed by few publications
in the literature. From the experiments, a guideline for selecting CA strategy according to goal location is
provided through goal distribution analysis with dot map.

INDEX TERMS Credit assignment, delayed rewards, goal distribution, reinforcement learning, reward
shaping.

I. INTRODUCTION
Reinforcement learning (RL) refers to a machine learning
method that allows an agent to learn actions to achieve
goals with minimum supervision by providing reinforce-
ment signal in the form of negative or positive reward.
Combined with recent neural network structures, the RL
is utilized to obtain breakthrough results in various areas
such as game environments [1]–[4], robotic tasks [5], and
autonomous driving control [6]. For some type of RL prob-
lems, a reinforcement signal does not appear immediately
after the action that triggers the reward. In this case, the RL
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algorithm faces what is called delayed rewards. Handling
delayed rewards is one of the biggest challenges in RL. The
training performance is insufficient because the definition of
which action induces rewards is ambiguous [7]. This problem
can be solved by assigning credit to the action that triggers a
reward so that the agent can take the future value into account
when it chooses an action. This is defined as a credit assign-
ment (CA) problem in a delayed rewards environment [8].
In RL, the CA for a received reward is one of the main tasks
whenmodeling the system.Many off-policy algorithms being
used extensively, such as deep Q-networks [1], are methods
involving CA with neural networks. They allow an agent to
learn a policy even if there exists a delay between an action
and the corresponding reward by propagating the reward
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backwardwith guaranteed convergence [9]. These algorithms
drive the agent to repeat the actions which lead to the highest
accumulated reward by updating the value of a specific action
in a specific state, called Q value, based on the rewards that
the actions receive. The iteration of this process propagates
the delayed reward to the action that triggers the reward
through Q values of sequential actions between them.

Even with these algorithms, training becomes extremely
difficult when sparse binary rewards are used for RL. There
are no intermediate rewards, except the reward given in two
values, e.g., −1 or 0, when the agent achieves the goal.
Sparse binary rewards are free from conventional reward
shaping, which is prone to accompany developer’s bias and
needs domain knowledge to make reward function. However,
low frequency of reward for success, or poor sampling effi-
ciency, as well as the delay of reward significantly retards the
training [10]. Training in an environment with vast state space
such as continuous robot arm control aggravates this problem.
Therefore, improving the training performance under sparse
binary rewards is a key issue in applying RL algorithm in
complex applications.

Our method proposed in this paper is designed to deal with
this problem in a high-dimensional RL environment under
sparse binary rewards. In general, the CA for RL with sparse
binary rewards requires large computing power. On the other
hand, effective training is enabled through CA by assigning
the delayed reward directly to the action that contributes to
the achievement of the goal. Effect of this direct assignment
is similar to that of reward shaping. As stated in [11], this
results in large savings in training time and, as a result,
alleviating poor sample efficiency. The action that contributes
most to a reward for success, defined as the key-action, and
actions before or after the key-action, defined as adjacent-
key-actions, are detected and new rewards are assigned to
these actions. With the presence of adjacent-key-actions also
receiving rewards, sampling efficiency increases and as a
result success rate and convergence speed are increased.

Among existing methods for CA, reward shaping is rep-
resentative. Static reward shaping was widely used before
dynamic reward shaping has been introduced lately. Static
reward shaping uses reward functions whose returns do not
change with the agent’s experience. Before training, devel-
opers create a criteria to provide rewards based on domain
knowledge and the criteria is static over training time [12].
Because the states where additional rewards are not imposed
are not explored, only the states where rewards are given
can be trained effectively [13]. This is called biased learn-
ing. Reward functions using static reward shaping should be
modified whenever the task or environment changes, so that
its application to multiple environments is not easy [14].

Dynamic reward shaping is closely related to the pro-
posed method, considering it uses reward functions whose
time-varying returns depend on the experiences. As the learn-
ing progresses, the reward function is generated based on
the observed experiences during training. In [15], a Bayesian
reward shaping method to distribute rewards is proposed.

It uses prior beliefs regarding the environment as a form of
introduction to shape the rewards. In [16], two algorithms
for restructuring reward functions intended to reduce the
gap between the rewards and action that causes them are
presented. Hybrid reward decomposition in multi-objective
tasks is evaluated in [17].

Exploration is a critical part for facilitating CA with neu-
ral networks. To improve exploration, effective sampling is
important. There have been some ways to improve sam-
pling efficiency. In [18] the episodes stored are split into
two memories, one for successful episodes and the other
for unsuccessful episodes. To keep a proper rate of success-
ful episodes in a training batch, they are sampled with a
fixed probability. In [19], an experience with high expected
learning improvement has priority when it is sampled from
replay buffer. It utilizes the temporal-difference (TD) error
magnitude as a prioritization mechanism. There is another
way to improve exploration and sampling efficiency. The
hindsight experience replay (HER) algorithm [20] effectively
explores the environment by replacing the original goal of an
episode with the actual result of the episode. This increases
the frequency of the reward for success under sparse binary
rewards.

In this paper, a novel method comprising key-action
detection and CA strategies is proposed, in order to
increase success rate and convergence speed during training
in high-dimensional RL environment under sparse binary
rewards. For the key-action detection, rewards prediction
model is created. With the CA strategies, adjacent-key-
actions are determined and then rewards are re-assigned
to the key-action and adjacent-key-actions. This reward
re-assignment to the key-action and adjacent-key-action(s)
enhances success rate and convergence speed during training.
The CA strategies designed in this paper are CA_1 strat-
egy, which selects adjacent-key-actions among a series of
actions before the key-action, according to the hyperparam-
eter distribution length D and CA_2 strategy, which selects
adjacent-key-actions between the key-action and another
action assigned a reward for success for the first time
after the key-action, according to another hyperparameter
offset length O. Underlying assumption on adjacent-key
action(s) of the CA_1 strategy is that the set of actions
before the key-action is for preparation of the key-action
and adjacent-key-action(s) can be considered as a subset of
it. Another set of actions after the key-action is considered
less likely to contribute to received reward. On the other
hand, the CA_2 strategy pays attention to the enhanced explo-
ration of the key-action by increasing the Q value of the
adjacent-key-action(s) that cannot be conducted without the
key-action.

To verify the performance of the proposed method,
the Fetch push and Fetch slide tasks in OpenAI gym
suite [21], which is a toolkit for developing and comparing
reinforcement learning algorithms, are considered. The goal
space for the two tasks is the surface on the table and it is
divided into near zone within the reach of robot arm (1.2 m)
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and far zone. The two tasks considered in this paper can be
reclassified into two categories according to cause and effect
relationship between actions and reward. In case of the Fetch
push task, the robot arm continually pushes the puck as far
as the reach of the robot arm. This type of task where all
sequential actions before generation of a reward affect the
value of the reward is referred to asEvenly Distributed chance
of Actions to affect Reward (EDAR) task. The EDAR tasks
are general RL tasks, such as solving a maze, lifting a box
and moving it to a specific location, and pushing a box to a
specific location. In case of the Fetch slide task, the robot arm
continually pushes the puck as far as the reach of the robot
arm to earn a reward, however, for the goals beyond the reach
it hits the puck. Therefore, the Fetch slide task is fulfilled by
push action and hit action, which represents combination of
different types of actions. The hit action is more appropriately
fit to other type of task, namely non-EDAR task. The non-
EDAR task is a task where some actions among sequential
actions before generation of a reward do not affect the value of
the reward. Examples of this task include shooting an object
to a specific location, passing a ball, and the famous Atari
game named breakout that breaks the blocks by bouncing a
ball with a short bar. In the non-EDAR task, an agent can
affect the state of the object only at a specific moment. The
Fetch push task and Fetch slide task with goals in near zone,
where the goal is achieved more effectively by push action,
can be classified into EDAR tasks, whereas the Fetch slide
task with goals positioned in far zone, requiring hit action
to achieve goals, can be classified into non-EDAR tasks.
The Fetch slide task with goals positioned in far zone is
particularly called in this paper far-zone Fetch slide task.
Main contributions of this paper are as follows.

1) A novel method consisting of key-action detection
and two CA strategies is proposed for EDAR and
non-EDAR tasks. The non-EDAR task is known to be
hard to fulfill, unlike other tasks [22]. A deep neu-
ral network is applied to predict rewards in future
timesteps. With the predicted rewards, a key-action is
defined. The key-action is used to re-assign reward
for success in a sparse binary rewards environment.
Showcase of two CA strategies for the Fetch push and
Fetch slide tasks is presented.

2) Classification rule according to cause and effect rela-
tionship between actions and reward is introduced. The
EDAR task is a task where all sequential actions before
generation of a reward affect the value of the reward.
The non-EDAR task is a task where some actions
among sequential actions before generation of a reward
do not affect the value of the reward.

3) Experiments for comparison of proposed method with
the deep deterministic policy gradient (DDPG) [23]
combined with the HER, e.g., DDPG+HER, are pre-
sented. Comparison of success rate and convergence
speed between the proposed method and DDPG+HER
is presented. In addition, variation of mean Q value
with the proposed method and DDPG+HER is shown.

4) For analysis of success and failure in achieving goals
according to goal position, use of two dot maps is
introduced. Success dot map represents distribution of
achieved goals and failure dot map shows distribution
of unachieved goals. It is important to see by an analysis
which goals are achievable by the policy and which
ones are not, because such characterization enables
efficient use of the policy.

5) A guideline for selecting CA strategy according to
goal location is provided from the results of experi-
ments. The CA_1 strategy works in near zone better
than CA_2 strategy and DDPG+HER, which corre-
sponds to the Fetch push task and Fetch slide task with
goals positioned in near zone, whereas the CA_2 strat-
egy performs in far-zone Fetch slide task better than
CA_1 strategy andDDPG+HER. Therefore, combined
use of CA_1 and CA_2 strategies outperforms the
DDPG+HER regardless of goal position.

The rest of this paper is organized as follows. In Section II,
concepts of off-policy RL, DDPG, and HER are described.
Section III introduces the proposed method in details.
Section IV shows the experimental results. SectionV presents
concluding remarks.

II. SYSTEM MODELING
In this section, the concept and mathematical model of an
off-policy RL algorithm, DDPG, and HER are presented.

A. OFF-POLICY REINFORCEMENT LEARNING
In the general RL framework, an agent, represented in this
paper by a robot, interacts with an environment to perform a
task in a finite number of discrete timesteps. Let S and A be
the state and action space, respectively. At each timestep t ,
the agent observes a state st ∈ S and chooses an action
at ∈ A based on a policy π . The policy π is a function
that maps states into actions, and often is approximated by
a neural network. As a consequence of taking the action at ,
the agent receives a reward rt and observes the next state st+1
of the environment. The reward at timestep t is defined by
rt = r(st , at ) and the next state st+1 is sampled according
to the transition probability p(st+1|st , at ). For each environ-
ment timestep, an experience (st , at , rt , st+1) is stored in the
experience replay buffer until the end of an episode. The
framework considers the Markov decision process assump-
tion as the state st+1 is only conditioned by st and at . The
agent interacts with the environment until it reaches the last
timestep, called the terminal state.

To calculate the value of a state st , a return variable is
defined as Rt =

∑
∞

i=t γ
i−tri, that is the total accumulated

return from timestep t with discount factor γ ∈ [0, 1]. The
goal of the agent is to take actions so as to maximize the
expected return for a given state st . The Q function or action-
value function following a policy π is defined as Qπ (s, a) =
E [Rt |s = st , a] and can be interpreted as the expected return
for selecting action a in state s. For an optimal policy π∗,
the optimal Q function Q∗ satisfies the Bellman equation
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given as Q∗(st , at ) = E
[
rt + γ maxat+1∈A Q∗(st+1, at+1)

]
and can be interpreted as the expected return at timestep t
when the action that maximizes the Q function is taken in the
next state st+1.

B. DEEP DETERMINISTIC POLICY GRADIENTS
Like the policy π , the optimal Q function can be approx-
imated by a deep neural network. The neural networks
used to approximate the policy and Q function are called
the actor and critic networks, respectively. These net-
works can be trained by a variety of actor-critic RL algo-
rithms. An example of an actor-critic algorithm used for
robot control is the DDPG. The DDPG is an off-policy
and model-free RL algorithm for continuous action space.
In the DDPG, the critic network is trained by minimiz-
ing the loss Lc = (rt + γQ(st+1, π(st+1)) − Q(st , at ))2

and the actor network is trained by minimizing the loss
La = −Es[Q(st+1, π(st+1))].

C. HINDSIGHT EXPERIENCE REPLAY
The HER proposed in [20] attempts to solve the problem
of sampling efficiency in tasks where multiple different
goals (multigoal) can be achieved. Its main concept comes
from the proposition that in these tasks it is possible to
learn not only from successful experiences but also from
unsuccessful experiences. In multigoal environments, a goal
g representing the final goal of the task is added to the input
of actor and critic networks. The experience is redefined as
(st , g, at , rt , st+1). TheHER assumes that amapping between
a state s and a goal g exists and that the goal g exists for
every state s. This assumption leads to the definition of an
achieved goal gh to every state s. The HER replaces the origi-
nal goal g of an episode with the actual result of the episode s,
making the action in the episode seems to be intended for the
actual result. As a consequence, when the original goal g is
substituted with the achieved goal gh, an unsuccessful expe-
rience can be taken as a successful experience and sampling
efficiency increases. An experience after the substitution is
defined as hindsight experience (st , gh, at , rht , st+1), where
the reward rht is recomputed for the hindsight goal gh.

III. PROPOSED METHOD
A. CONCEPT OF PROPOSED METHOD EXPLAINED
WITH EXAMPLES
In this section, a deep learning based method to determine
the key-action during an episode is proposed. Proposed
method consisting of rewards prediction model, key-action
detection, and credit assignment stages is incorporated
into the off-policy algorithm which is the first and fifth
stages of the process flow in Fig.1. Based on the input
(st , g, at ) at a timestep t , the rewards prediction model pre-
dicts future rewards at subsequent timesteps and detects the
actions at specific timesteps that give decisive clues for
the future reward values. The CA is conducted for these
detected actions. The proposed method combined with an

FIGURE 1. Process flow of the proposed method.

off-policy RL algorithm consists of five stages as depicted
in Fig. 1. Explanations on entries of nomenclature are in
subsection III-B.

Figure 2 represents four sequential episodes in amaze envi-
ronment and Q value propagation during these four episodes.
On the left side of the figure, the shape of the maze and
symbol legend are shown. The maze is a 4x4 grid world,
and the black blocks are walls that the agent cannot enter.
The point marked with S is the start point of the maze, and
the point marked with E is the endpoint. The yellow line
is the path of the agent for each episode. The darker green
block is the location where the action contributing most to
escape the maze is detected. Solving a maze is an EDAR task
under sparse binary rewards. Thus, the CA_1 strategy is used
to choose adjacent-key-actions. Details on CA_1 strategy
are in subsection III-B.3. Only when the maze is solved,
an episode ends and a reward for success is given. The first
row represents the results of each episode and the location
where the key-action of that episode is detected. The second
and third rows show the propagation of Q value according
to the results of the episodes in the first row. The second
row represented by 4 mazes as conventional method is based
on a general off-policy algorithm, and the third row formed
by another 4 mazes as proposed method is based on the
key-action detection. The agent moves either right, left, up,
or down in each block at each timestep. In each block, one
action whose Q value is the largest among the four actions’
Q values is indicated by an arrow, and the red color depth of
the block varies according to the magnitude of the indicated
action’s Q value. In the figure, the red color shades darker as
the magnitude of Q value becomes larger.
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FIGURE 2. An example of EDAR task. In this GridWorld configuration, the agent moves from the start point to the endpoint of the maze to receive a
reward. With the proposed method a key-action and adjacent-key-actions are detected and rewards are re-assigned.

FIGURE 3. An example of non-EDAR task. In the Fetch slide task, the robot actions after hitting the puck do not affect the
final reward.

Though the block position where the key-action is detected
is identical with 4 episodes, timestep of key-action for each
episode is different. The detailed description on key-action
found by the proposed method is in subsection III-B. In each
episode, the action that goes up from the darker green
block to upper block is detected as the key-action. The
lighter green block is the location where the adjacent-key-
action is detected. In this example, the adjacent-key-action
obtained by the CA_1 strategy is taken as the one just before
the key-action and the location of each adjacent-key-action
depends on the path in each episode.

As the agent succeeded in escaping the maze in the first
episode before the terminal state, as in the case of general
off-policy algorithm, a reward for success received at the
end of the episode is incorporated into the Q value of the
action that is taken at the last timestep. In the proposed
method, the key-action, as well as the last action of the
episode, receives a reward for success, so that the color of
the block accounting for the Q value of the key-action also
changes to light red. The block with adjacent-key-action is
marked in red lighter than that of key-action block because

the adjacent-key-action receives a smaller reward than the
key-action. As the number of episodes increases sequen-
tially, Q value propagation is performed faster with the pro-
posed method, due to larger number of actions,including
adjacent-key-action, that receive rewards. As a result, policy
to solve the maze is obtained faster due to the presence of the
adjacent-key-action.

Figure 3 is an illustration of the far-zone Fetch slide task
at each timestep. Because the far-zone Fetch slide task in this
example is a non-EDAR task, the CA_2 strategy is adopted.
The agent learns how to make the puck slide to the red goal
by hit. An agent hits the puck at timestep t = 2, and the puck
stopped at the goal at timestep t = 6. A reward for success is
given when the puck is located within a circle of 5 cm radius
centered at the target point. Because the puck is within the
circle since timestep t = 4, as seen in Fig. 3, the agent gets
rewards for success at timesteps t = 4, 5, 6. If the proposed
method works properly, the key-action to be detected is the
action at timestep t = 2, namely a2, and the action a3 taken
between the timestep t = 2, when key-action is detected, and
timestep t = 4, when the agent gets a reward for success for

118780 VOLUME 7, 2019



M. Seo et al.: Rewards Prediction-Based Credit Assignment for RL

FIGURE 4. Framework for supervised learning of rewards prediction model.

FIGURE 5. Framework for testing rewards prediction model.

the first time after the key-action, is the adjacent-key-action.
From timestep t = 3, the agent cannot affect the state of the
puck because it is beyond the reach of the agent. Giving a
reward to the adjacent-key-action a3 is not for learning the
actions, but for enhanced exploration of the actions ‘‘hitting
the puck’’ by increasing the Q value of the adjacent-key-
actions that cannot be conducted without hitting the puck.
This increases the sampling efficiency and the policy achieves
the goal faster.

B. PROPOSED ALGORITHM
In this subsection, methodology how to create labels to train
the rewards prediction model is explained in Fig. 4. With the
trained rewards prediction model, distribution of predicted

rewards over timesteps is obtained in Fig. 5. Since finding
the input causing abrupt increase of the predicted rewards
in a cause and effect relationship is our concern, differen-
tial predicted rewards are obtained in Fig. 6 from the dis-
tribution of predicted rewards. With differential predicted
rewards, a table for key-action detection is made. Based on
the entries in the table, the key-action is detected. Follow-
ing the key-action detection, re-assignment of rewards to
key-action and adjacent-key-actions with a relevant formula
is executed by CA strategies, as shown in Figs. 7 and 8.

Process flow of the proposed method is shown in
Fig. 1. In the first stage of Fig. 1, episodes with each
episode length e are generated. Each episode consists
of (s0, g, a0, ro0 , s1), . . . , (se−1, g, ae−1, r

o
e−1, se). With the
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FIGURE 6. Key-action detection process.

FIGURE 7. Credit assignment strategy CA_1.

episodes, each denoted by e 5-tuples, training inputs and
labels representing rewards for rewards prediction model are
obtained and supervised learning is conducted in the second
stage. In this stage, if the original rewards are not rot =
0, 1, converted rewards rt = 0, 1 are used as labels for
the training. Until the third stage, converted rewards are
used. The rewards prediction model predicts the rewards
for the subsequent p timesteps, using the prediction length
p as a hyperparameter. The Pt,ri is the predicted ri based
on the input (st , g, at ). It is noted here that Pt,ri can take
arbitrary value within a range determined by an activation
function of the output layer of the rewards prediction model,
whereas ri is binary. Therefore, based on input (se−1, g, ae−1)

FIGURE 8. Credit assignment strategy CA_2.

of an episode at the last timestep t = e − 1, p out-
puts Pe−1,re−1 , Pe−1,re , . . . ,Pe−1,re+p−2 are generated, and
these values respectively correspond to reward values re−1,
re, . . . , re+p−2. With these predicted rewards, key-actions are
detected in the third stage. In the fourth stage, credit assign-
ment is conducted, and recalculated rewards are assigned
to the key-actions and their respective adjacent-key-actions.
The experiences generated in the first stage are changed to
new experiences with credit assigned rewards r ′. With these
experiences, the policy network is updated in the fifth stage.
If the episode length is inadequate, the number of experiences
supplied as the input of the second stage can be adjusted prop-
erly. The proposed method finds the key-actions within the
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experiences given as input. In the same manner, the proposed
method can be applied to non-episodic tasks.

Detailed descriptions of the second, third, and fourth stages
in Fig. 1 are given with an example. The episode used as the
example is the one in Fig. 3. The puck is hit at timestep t = 2
and original rewards are−1 and 0. The agent receives rewards
for success at timesteps t = 4, 5, 6.

1) REWARDS PREDICTION
Figure 4 shows the supervised learning for the rewards pre-
diction model. The first row is the timesteps of the episode
illustrated in Fig. 3. Entries in the same column are pertinent
to the same timestep. The second row is the original reward rot
received at each timestep. In this example,−1 and 0 are used
as binary rewards, rf = −1 for failure and rs = 0 for success.
The third row presents converted rewards, 0 for failure and
1 for success. The rewards prediction model predicts the
future reward values at p consecutive timesteps with their
indices starting from the index of input. For example, with
prediction length p = 5, the predicted reward values based
on the input (s6, g, a6) are r6, r7, . . . , r10. However, because
the episode length is 7, rewards r7, r8, . . . , r10 do not exist.
To deal with this problem, timesteps are extended, and the
reward value at the last timestep of the episode is assigned
as rewards at the extra timesteps. Thus, the reward value 1 at
timestep t = 6 is assigned to r7, r8, . . . , r10. Extra rewards
assigned this way are presented in the fourth row. Labels of
input at each timestep are presented from the fifth row to the
eleventh row. Note that some rows are absent for illustrational
convenience. As an instance, the label (0, 0, 0, 1, 1) for
input (s1, g, a1) is a 5-tuple consisting of reward values from
timestep t = 1 to timestep t = 5.
Figure 5 shows predicted reward values based on input at

each timestep. For example, with input (s1, g, a1), rewards
prediction model predicts the rewards at timesteps t =
1, . . . , 5 as−0.36, 0.15, 0.53, 0.75, 0.81. This means that the
probability of obtaining reward value 1 at timestep t = 1
and t = 2 based on the input at timestep t = 1 is relatively
low, considering rewards predicted as −0.36, 0.15, and the
probabilities of obtaining reward value 1 at timesteps t = 4
and t = 5 are relatively high. Comparing with the converted
rewards 0, 0, 0, 1, 1 at timesteps t = 1, . . . , 5, it can be
stated that the rewards prediction model can predict the trend
of rewards.

In this example, the agent hits the puck at timestep t = 2,
so the rewards prediction model is highly likely to assign
reward value 1 at timesteps t = 4, 5, 6 when it takes
(s2, g, a2) as input. The predicted rewards P1,r4 = 0.75 and
P1,r5 = 0.81 based on the input at timestep t = 1, the time
right before the agent hits the puck, are relatively high, but
they are not as big as P2,r4 = 0.95 and P2,r5 = 0.98 obtained
from the input at timestep t = 2. It is because the agent
performs an action at timestep t = 1 that is close to the
key-action but not decisive as the key-action. The predicted
rewards P3,r4 = 0.89 and P3,r5 = 0.92 based on the input
(s3, g, a3), the timestep right after the agent hits the puck, are

lower than the predicted rewards values obtained at timestep
t = 2.

2) KEY-ACTION DETECTION
It is seen in Fig. 5 that the distribution of the predicted rewards
does not clearly identify the abrupt increase of the predicted
rewards. For instance, with the reward r4, P0,r4 = 0.68,
P1,r4 = 0.75, P2,r4 = 0.95, P3,r4 = 0.89, P4,r4 = 0.96,
so the largest predicted reward is P4,r4 and the second largest
is P2,r4 , both are closed to each other. Since abrupt change
of the predicted rewards according to input over timesteps is
our concern, differential predicted rewards in subsequential
timesteps are introduced as shown in Fig.6. The differential
predicted rewards 1Pt,ri can be defined as follows

1Pt,ri =

{
0, if Pt−1,ri does not exist
Pt,ri − Pt−1,ri , if Pt−1,ri exists

(1)

where 1Pt,ri is the difference of predicted rewards of ri
obtained at timestep t and at timestep t − 1. With the aids
of the values presented in Fig. 5 and (1), values of 1Pt,ri for
relevant ranges of t , i with prediction length p = 5 are shown
in Fig. 6.

Consider differential predicted rewards 1P0,r4 = 0,
1P1,r4 = 0.07, 1P2,r4 = 0.20, 1P3,r4 = −0.06, 1P4,r4 =
0.07 in Fig. 6, involving with the reward r4. Among these
differential predicted rewards, the largest one is 1P2,r4 =
0.20. This means that the key-action that most likely to trigger
reward r4 = 1 is a2. The same process is repeated for r4,
r5, r6 whose values are 1. The largest differential predicted
reward for each timestep associated with reward value 1 is
shown in the boxes filled with light red. The actions at
the timestep marked in light red are the key-action candi-
dates of the entire episode. Each key-action candidate that is
likely to trigger corresponding reward is represented in tenth
row.

The key-action for the CA_1 and CA_2 strategies is
defined as an action that is nominated as a key-action candi-
date most frequently in the episode. The table at the bottom of
Fig. 6 shows the frequency of nomination of each key-action
candidate. In the table, a2 is seen to be nominated twice and
a4 is nominated once. Therefore, the action a2 becomes the
key-action. If there are actions that are nominated with the
same frequency, the action that is taken at the later timestep
is chosen as the key-action, because more actions in episode
can take into account the Q value propagated.

Proper prediction length p is necessary for identifying key-
action. In the Fetch slide task, a key-action is likely to be
the action that is taken at around the moment of hitting the
puck. The key-action candidate for r6 should also be a2 as
well, due to achieved goal since t = 4. However, because the
rewards prediction model only predicts r1, r2, . . . , r5 when
it receives input at timestep t = 1, there is no prediction
reward P1,r6 and 1P2,r6 becomes 0 according to (1). If the
prediction length is longer than 5,1P2,r6 might be the biggest
one among available differential predicted rewards.
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3) CREDIT ASSIGNMENT
Figures. 7 and 8 contain tables showing the CA strategies,
CA_1 strategy and CA_2 strategy, which re-assign the reward
to the key-action a2 and adjacent-key-actions in the Fetch
slide task depicted in Fig.3. The second row of each table
shows the original rewards rot that are given during the
episode, and the third row shows the result of CA for the
key-action a2 and adjacent-key-actions.

Figure 7(a) shows the mechanism of the CA_1 strategy.
The number of the key-action and adjacent-key-actions is
defined as the distribution length D. In this example, the dis-
tribution lengthD is set to 3. IfD is excessively large, rewards
are given to actions that do not affect the reward for success.
Thus, it is necessary to choose a proper value for D for
efficient propagation of the Q value. Recalculated rewards
Ri are assigned by the CA_1 strategy to the key-action and
adjacent-key-actions as follows

Ri = rs +
(
rf − rs
D

)
i, (2)

where i is changed from 0 to (D-1). According to (2),
i is the indexmatchedwith timestep t . The key-action receives
the same reward value of rs, and adjacent-key-actions receive
the reward values between rf and rs. Figure 7(b) is an example
of the CA_1 strategy when using binary reward values as
rf = −1 and rs = 0. The R0, R1, and R2 are calculated by (2).
In case of the CA_1 strategy, increment of i corresponds to
decreased timestep t .
Figure 8(a) shows the CA_2 strategy. The adjacent-key-

actions are selected among the actions between the key-action
and another action receiving a reward for success for the
first time after the key-action. The number of adjacent-key-
actions is defined as the offset length O. The offset length O
is set to 2, which corresponds to the number of the key-action
and adjacent-key-actions, for this example. After applying the
CA_2 strategy, the action a3 becomes the adjacent-key-action
and presented in Fig. 8 as Rs like the key-action. Figure 8(b)
is an example of the CA_2 strategy when using binary reward
values −1 and 0. It can be seen that the reward for action a3
is changed from −1 to 0.

C. PROPOSED ALGORITHM COMBINED WITH
DDPG AND HER
The proposed method improves sampling efficiency and
reduces the delay between action and consequent reward
by increasing the number of the experiences receiving the
reward for success by CA. Because the proposed method
conducts CA only for successful episodes, the HER providing
successful episodes even out of unsuccessful episodes can be
combined to enhance exploration. The pseudo code of the
proposed method combined with the HER is presented in
Algorithm 1. After a minibatch of episodes is sampled from
the replay buffer, the HER is applied and for the successful
episodes key-action detection as well as credit assignment
based on the CA_1 or CA_2 strategy is performed by the
proposed method.

Algorithm 1 Proposed Method: Rewards Prediction Based
CA Combined With HER
Given: an off-policy RL algorithm A(DDPG), a strategy S

for sampling goals for replay, a methodK for calculating
key-actions, a reward function r : S ×A× G → R

1: Initialize neural networks A
2: Initialize replay buffer R
3: for epoch = 1, K do
4: for episode = 1, M do
5: Sample a goal g and initial state s0
6: for t=0,T-1 do
7: Sample an action at using the behavior policy

from A : at ← π (st , g)+Nt
8: Execute the action at and observe new

state st+1
9: Calculate reward rt = r(st , g, at )
10: Store the experience (st , g, at , rt , st+1) in

replay buffer R
11: end for
12: for t=1,N do
13: Sample a minibatch B from the replay

buffer R
14: Sample a set of experiences in B with sam-

pling rate ε to substitute by achieved goals G sampled
with S

15: for gh ∈ G do
16: rht = r(s, gh, a)
17: Substitute the experience

(st , g, at , rt , st+1) with the experience
(st , gh, at , rht , st+1)

18: end for
19: Get the successful episodes E in the mini-

batch B
20: for e ∈ E do
21: Calculate the key-action for episode e

with K
22: Re-assign credit for the key-action and

adjacent-key-action experiences (st , g, at , rt , st+1) in the
minibatch B

23: end for
24: Perform one step of optimization usingA and

minibatch B
25: end for
26: end for
27: end for

IV. EXPERIMENT
A. EXPERIMENT ENVIRONMENT
Experiments are conducted with the Fetch environment for
multigoal continuous control tasks described in [24]. The
Fetch environment is developed with the integration of Ope-
nAI gym [21] and the MuJoCo physics engine [25]. The
proposed method is tested with the Fetch push and the Fetch
slide tasks. In the Fetch push task, a robot pushes a box to a
goal position. In the Fetch slide task, a robot tries to achieve a
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goal position by hitting a puck. An episode is successful if the
distance between the puck/box and the goal is less than 5 cm.

For the DDPG used as the off-policy RL algorithm, actor
and critic networks take a multi-layer perceptron architec-
ture with rectified linear unit (ReLU) as nonlinear activation
functions. They are trained by backpropagation using the
ADAM [26] as an optimizer. Other values used for train-
ing are adopted from [24] and listed in Appendix A. The
proposed method uses a multi-layer perceptron with 4 feed-
forward layers with 64 neurons with hyperbolic tangent as
nonlinear activation functions. The episode length and the
prediction length are set to 50, and the nomination frequency
of the action needs to be at least two to be selected as a
key-action. The rewards prediction model is also trained by
backpropagation with ADAM as the optimizer. Number of
epochs for training is 100, each consisting of 105 episodes,
and the batch size is 128 and the learning rate is 10−4. Though
it is claimed in the introduction that the CA_1 strategy is more
appropriate for the Fetch push task and Fetch slide task with
goals in near zone and the CA_2 strategy is more efficient in
the far-zone Fetch task, they are compared in the experiments
to verify the claim.

B. RESULTS
In this sebsection, experimental results obtained with the
DDPG+HER, CA_1 strategy, and CA_2 strategy are pre-
sented. It is to be shown that the CA_1 strategy works better
than the others with the Fetch push task and near-zone Fetch
slide task, while the CA_2 strategy is more efficient with
far-zone Fetch slide task. Therefore, the results suggest use
of the CA_1 strategy for the Fetch push and near-zone Fetch
slide tasks and the CA_2 strategy for far-zone Fetch slide task.
Provided that the CA_1 strategy is used for far-zone Fetch
slide task and the CA_2 strategy is used for the Fetch push
and near-zone Fetch slide task, their performances are close
to those of the DDPG+HER.

1) EXPERIMENT A. VISUAL CONFIRMATION OF THE
DETECTED KEY-ACTIONS BY THE PROPOSED
METHOD IN A NON-EDAR TASK
The key-action detected by the proposed method is illustrated
in Fig. 9. It is seen that the proposed method identifies the
moment when the robot gripper hits the puck in a successful
episode for the Fetch slide task. Based on the information of
the key-action, it is possible to redistribute the reward by giv-
ing credit directly to the key-action. This process drastically
reduces the delay in assigning the reward and, when properly
designed, directs the agent toward good policies.

2) EXPERIMENT B. COMPARISON BETWEEN THE PROPOSED
METHOD AND DDPG+HER FOR AN EDAR TASK
(FETCH PUSH TASK)
Experimental results obtained from the proposed method are
presented together with the results of DDPG+HER for the
Fetch push task. For the HER, the rate of hindsight expe-
rience in sampling a minibatch is kept at 0.8 and the final

FIGURE 9. Key-actions detected by the proposed method in three
episodes of the Fetch slide task. Reward is given only when the puck
achieves the goal. Proposed method identifies the key-action when the
robot hits the puck in the direction towards the goal. Furthermore,
the delay in assigning rewards can be shortened by giving credit directly
to the key-action. As an instance, in Episode 1, the gripper is initially
located at timestep t = 0 to the right of the puck. Proposed method
detects the key-action at timestep t = 11 when the puck is hit, after the
gripper moved behind the puck.

strategy [20], where the goal reached in the last timestep
of the episode is chosen as the achieved goal, is used for
sampling goals. An extensive search is performed and the
distribution length is set to 5. The offset length is set to the
number of all actions, between the key-action and the action
receiving the reward for success for the fist time after the
key-action, plus 1, representing inclusion of the key-action.
The training is performed for 200 epochs. For each training
epoch, 50 cycles are executed with two agents in the experi-
ment environment and stored in the replay buffer, followed
by 40 optimization steps of the policy. After each training
epoch, 20 test episodes are executed and the success rate is
calculated. To reduce granularity at each epoch index, moving
average of the success rate across 50 epochs is taken. The
foregoing process is repeated with multiple random seeds.
For each epoch index, the median is selected and presented
as the result. The same experimental setup is used in Experi-
ment C and Experiment D.

Comparison of the DDPG+HER with and without the
proposed method is presented in Fig. 10. The results show
that the proposed method improves the convergence speed
and achieves similar performance to that of DDPG+HER
over 200 epochs. The success rate in the last epoch of
CA_1 strategy, CA_2 strategy, DDPG+HER are 100%, 98%,
98%, respectively. It is notable that the CA_2 strategy not
considering actions after the key-action is seen to be able to
solve the Fetch push task with comparable convergence speed
as compared to DDPG+HER.

Variation of mean Q value obtained during training with
DDPG+HER and proposed method is shown in Fig. 11.
As higher mean Q value of proposed method is indicative
of more aggressive policy, the goal is achieved faster. More
aggressive policy is more likely to explore various parts of
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FIGURE 10. Success rate obtained by proposed method and DDPG+HER
for the Fetch push task. Results show that proposed method achieves
similar performance to that of DDPG+HER over 200 epochs. Success rates
of CA_1 strategy, CA_2 strategy, DDPG+HER are 100%, 98%, 98%,
respectively. It is seen that CA_1 strategy converges faster as compared to
others.

FIGURE 11. Variation of mean Q value during training with DDPG+HER
and proposed method (CA_1 and CA_2 strategies) for the Fetch push task.
At epoch index 200, the mean Q value is approximately −2 with
DDPG+HER and proposed method. It is seen that CA_1 and
CA_2 strategies converge to the optimum mean Q value −2 faster, which
means more efficient exploration during training.

the state space, leading to enhanced sampling efficiency.
At epoch index 200, the mean Q value is approximately
−2 with DDPG+HER and proposed method. It is seen that
the CA_1 and CA_2 strategies converge to the optimummean
Q value −2 faster as compared to DDPG+HER.

The performance is measured by the quality of the best
policy over 1000 test episodes. The average success rate
is shown in TABLE 1. The CA_1 strategy performs better
than DDPG+HER and CA_2 strategy. The success rate of
CA_1 strategy is 99.17% on average with the test episodes,
which exceeds 97.67% of DDPG+HER and 88.83% of
CA_2 strategy.

TABLE 1. Comparison between the proposed method and DDPG+HER for
the Fetch push task.

FIGURE 12. Success rate obtained by proposed method and DDPG+HER
for Fetch slide task. Results show that the proposed method achieves
similar performance to that of DDPG+HER over 200 epochs. Success rates
of CA_2 strategy, CA_1 strategy, DDPG+HER are 62%, 60%, 57%,
respectively. This success rate accounts for the Fetch slide task in near
zone as well, which conceals higher success rate in far zone with the
CA_2 strategy. The higher success rate in far zone is referred to Fig. 14.

3) EXPERIMENT C. COMPARISON BETWEEN PROPOSED
METHOD AND DDPG+HER FOR A NON-EDAR
TASK (FETCH SLIDE TASK)
Fig. 12 compares DDPG+HER with and without the pro-
posed method for Fetch slide task. The results show that
the proposed method achieves similar convergence speed
to that of DDPG+HER over 200 epochs. The approximate
success rate in the last epoch of CA_2 strategy, CA_1 strat-
egy, DDPG+HER are 62%, 60%, 57%, respectively. It is
important to note that, despite the similar convergence speed
between epoch index 150 and epoch index 200, the strategies
CA_1 and CA_2 strategies are able to achieve higher suc-
cess rates when compared to DDPG+HER. Because higher
success rate is translated into improved policy, the CA_1 and
CA_2 strategies demonstrating higher success rates in rela-
tion to DDPG+HER, as shown in TABLE 2, are likely to
provide improved policies.

Variation of mean Q value obtained during training is
presented in Fig. 13. It is seen by the higher Q values that the
CA_2 strategy is the most aggressive policy. The CA_2 strat-
egy tends to focus during the training on the first ‘‘hit’’ of the
puck, which leads to a better exploration of the goals on the
table surface. The higher Q value, the faster the policy is able
to achieve the goals. At epoch index 200, mean Q values are

118786 VOLUME 7, 2019



M. Seo et al.: Rewards Prediction-Based Credit Assignment for RL

FIGURE 13. Variation of mean Q value during training with DDPG+HER
and the proposed method for Fetch slide task. At epoch index 200,
the mean Q value is approximately −11, −10.5, and −13.3 with the
CA_1 strategy, CA_2 strategy and DDPG+HER respectively. It is seen that
CA_2 strategy takes higher Q values as compared to CA_1 strategy and
DDPG+HER, which means more efficient exploration of the state space
during training.

approximately −11, −10.5, and −13.3 with the CA_1 strat-
egy, CA_2 strategy, and DDPG+HER respectively.

TABLE 2. Comparison between the proposed method and DDPG+HER for
the Fetch slide task.

TABLE 3. Comparison between the proposed method and DDPG+HER for
the far-zone Fetch slide task.

The performance in the Fetch slide task is measured by
quality of the best policy over 1000 test episodes. The aver-
age success rate is shown in TABLE 2. As shown in the
table, CA_1 strategy performs better than DDPG+HER and
CA_2 strategy. The success rate of CA_1 strategy is 68.77%
on average with the test episodes, which exceeds 65.57% of
CA_2 strategy and 61.37% of DDPG+HER.

4) EXPERIMENT D. COMPARISON BETWEEN THE
PROPOSED METHOD AND DDPG+HER FOR
A NON-EDAR TASK (FAR-ZONE
FETCH SLIDE TASK)
Comparison of the DDPG+HER with and without the pro-
posed method for the far-zone Fetch slide task is presented
in Fig. 14. As goals reachable by the robot are excluded,

FIGURE 14. Success rate obtained by proposed method and DDPG+HER
for the far-zone Fetch slide task. Success rates of CA_2 strategy,
CA_1 strategy, DDPG+HER are 62%, 48%, 49%, respectively. It is seen that
CA_2 strategy outperforms CA_1 strategy and DDPG+HER by 10 percent
at epoch index 200.

FIGURE 15. Variation of mean Q value during training with DDPG+HER
and the proposed method for the far-zone Fetch slide task. At epoch
index 200, the mean Q value is approximately −12.3, −16.1, and −16.2 for
the CA_2 strategy, DDPG+HER, and CA_1 strategy respectively. It is seen
that CA_2 strategy takes higher Q values as compared to CA_1 strategy
and DDPG+HER, which means that the policy trained with CA_2 strategy
is able to achieve the goal faster and explore goals located in far zone.

the difficulty level of the task is increased. The robot can
not push the puck until the goal position as compared to
the Fetch slide task. Proposed method, more specifically the
CA_2 strategy, increases the convergence speed and success
rate when compared with DDPG+HER over 200 epochs.
It is observed in Fig. 14 that the variance of success rate at
each epoch index is decreased in general over entire epochs
with the CA_2 strategy as compared to that of CA_1 strategy
and DDPG+HER. The final success rate at epoch index
200 of CA_2 strategy, CA_1 strategy, DDPG+HER are
62%, 48%, 49%, respectively. Similar to the results obtained
in Experiment C, the proposed method is able to achieve
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FIGURE 16. Dot maps of success and failure obtained by the best policy over 1000 test episodes, gained with the DDPG+HER and the proposed method
for the Fetch slide task. Each column consists of two dot maps, each representing success dot map (uppermost one) and failure dot map(middle one), and
histogram(lowermost one) of distance between the final position of the puck and the goal for each episode. The DDPG+HER and the CA_1 strategy are
able to achieve more goals in the near zone between located within 1.2m of the horizontal position. The CA_2 strategy, on the other hand, achieves more
goals located in the far zone beyond 1.2m in the horizontal position. Higher density of dots in local zone represents higher chance of event(success or
failure) occurrence. See the variation of local density of dots along horizontal position. (a) DDPG+HER. (b) CA_1 strategy. (c) CA_2 strategy.

FIGURE 17. Dot maps of success and failure obtained by the best policy over 1000 test episodes, gained with the DDPG+HER and the proposed method
for the Fetch slide task. Each column consists of two dot maps, each representing success dot map (uppermost one) and failure dot map(middle one), and
histogram(lowermost one) of distance between the final position of the puck and the goal for each episode. The CA_2 strategy is highly accurate and
clearly outperforms the CA_1 strategy and the DDPG+HER with goals located in the zone between 1.5m and 1.8m of the horizontal position.
(a) DDPG+HER. (b) CA_1 strategy. (c) CA_2 strategy.

higher success rate when compared with DDPG+HER dur-
ing training.

Variation of mean Q value is shown in Fig. 15. As the goals
are located far from the robot, the propagation of rewards
combined with exploration in distant locations on the table is
a critical problem. Similar to the pattern observed in Experi-
ment C, in the far-zone Fetch slide task the CA_2 strategy also
shows higher mean Q value as compared to other techniques.
At epoch index 200, mean Q values are approximately−12.3,
−16.2, and−16.1 with the CA_2 strategy, CA_1 strategy, and
DDPG+HER respectively. The mean Q values obtained in
Fig. 15 are lower as compared to the ones obtained in Fig. 13
because the goals are located farther from the robot.

The performance is measured by evaluating the quality of
the best policy over 1000 test episodes. The average success
rate is shown in TABLE 3. The CA_2 strategy is successful on
average 67.38% of the test episodes, which exceeds 58.63%
of CA_1 strategy and 60.45% of DDPG+HER. The results
show that the reduction of the delay of the CA_2 strategy
between the key-action and assigning reward improves the

final success rate in the far-zone Fetch slide task. Because the
far-zone Fetch slide task is more difficult to execute, lower
success rate with the far-zone Fetch slide task is expected in
the experiments, however, the results shown in TABLE 2 and
another results listed in TABLE 3 are comparable as opposed
to the expectation.

5) EXPERIMENT E. ANALYSIS OF SUCCESS AND FAILURE
OBTAINED FROM THE BEST POLICY FOR THE FETCH
SLIDE AND FAR-ZONE FETCH SLIDE TASKS
It is important to see by an analysis which goals are achiev-
able by the policy and which ones are not, because such
characterization enables efficient use of the policy. To per-
form the analysis, dot maps of success and failure obtained
by the best policy over 1000 test episodes can be used.
Figs. 16, 17 show dot maps gained with the DDPG+HER
and proposed method for the Fetch slide and far-zone Fetch
slide tasks. Each column of Figs. 16,17 consists of two dot
maps, each representing success dot map (uppermost one)
and failure dot map(middle one), and histogram(lowermost
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one) of distance between the final position of the puck and
the goal for each episode. Horizontal axis of dot map repre-
sents horizontal position and vertical axis indicates vertical
position on the table. Blue dots presented in success dot
map represent achieved goals and red dots in failure dot
map indicate unachieved goals. The sum of the number of
dots in the success dot map and the number of dots in the
failure dot map is the number of test episodes. The histogram
of distance shows the distribution of relative frequency of
distance between the final position of the puck and the goal
for each episode that ended in failure.

For the Fetch slide task in Fig. 16 with goals located
within 1.2 m, the robot is able to reach and thus can push the
puck to the goal. The results in Experiment C shows that the
CA_1 strategy is the best one for this task. It is seen that both
DDPG+HER andCA_1 strategy are able to learn how to push
the puck to the goal. The CA_2 strategy, however, just learns
to hit the puck to achieve the goal, even if it is in a reachable
position. Therefore, the success rate of the CA_2 strategy
with the goals in near zone is worse than CA_1 strategy and
DDPG+HER. For goals in far zone, the success rates of the
CA_1 strategy and DDPG+HER are lower than that of the
CA_2 strategy.

It is seen in Fig. 17 that the horizontal location of the goal
of far-zone Fetch slide task is between 1.3 m and 1.9 m. The
results in Experiment D show that the CA_2 strategy is the
best one for this task. It is possible to see that CA_2 strategy
clearly outperforms CA_1 strategy and DDPG+HER from
1.5m to 1.8m, having a high accuracy for this range.

In Figs. 16 and 17, the histograms show the distance
between the final position of the puck and the goal for the
episodes that ended in failure. In the experiments, to define
a successful episode, a tolerance of 5 cm between the final
puck position and goal is used as described in [24]. The results
show that the distances between the final puck position and
the goal of the majority of the episodes that ended in failure
are less than 0.2m with the three approaches. Frequency of
failure with the CA_1 strategy and CA_2 strategy is lower
than that with the DDPG+HER. The results show that the
best policy learned by the proposed method is more accurate.

V. CONCLUSION
This paper deals with the problem in high-dimensional RL
environment under sparse binary rewards. In order to increase
success rate and convergence speed during training in this
environment, a novel method composed of key-action detec-
tion and CA strategies is proposed. Rewards predictionmodel
is established and with the rewards predicted by the model,
the key-action is identified. Using CA strategies, adjacent-
key-actions are determined and then rewards are re-assigned
to the key-action and adjacent-key-actions. The CA strategies
considered in this paper are CA_1 strategy, which selects
adjacent-key-actions among the series of actions before the
key-action, and CA_2 strategy, which chooses adjacent-key-
actions between the key-action and an action receiving a
reward for success for the first time after the key-action.

The CA_1 strategy is fit to the type of EDAR tasks. Every
action in EDAR task affects the value of the reward. The
CA_2 strategy is efficient to the type of non-EDAR tasks.
In non-EDAR tasks, some actions affect the value of the
reward. The Fetch push task, where the goal is achieved
more effectively by push action, can be classified into EDAR
tasks, whereas the Fetch slide task with goals positioned
in far zone, requiring hit action to achieve goals, can be
classified into non-EDAR tasks. The Fetch slide task with
goals positioned in far zone is particularly called in this paper
far-zone Fetch slide task. When the goals are located in near
zone, the Fetch slide task is better fulfilled by push action.
Therefore, the Fetch slide task with goals located in near
zone can be classified into EDAR tasks. Entire goal space is
divided into near zone, where the goal is reachable by robotic
arm, and far zone. Though the key-action with non-EDAR
task is relatively easy to identify, the key-action with EDAR
task is significantly more difficult to identify. The detected
key-actions with certain type of EDAR task are often against
our conjecture.

In order to verify the performance of the proposed method,
five experiments are conducted. In the experiments, the pro-
posed method demonstrates increase success rate and con-
vergence speed. More specifically, for the Fetch push task,
the CA_1 strategy outperforms DDPG+HER, especially
increasing the convergence speed. For the Fetch slide task,
the CA_1 and CA_2 strategies achieve similar convergence
speed but significantly increase the success rate to 68.77%
and 65.57% respectively compared to 61.37% obtained by
existing method DDPG+HER. For the far-zone Fetch slide
task, the CA_2 strategy increases the convergence speed
and improves the success rate to 67.38% when compared
to 60.45% of DDPG+HER and 58.63% by CA_1 strategy.
From the experiments, a guideline for selecting CA strategy
according to goal location is provided through goal distri-
bution analysis with dot map. As a result, the CA_1 strat-
egy works in near zone better than CA_2 strategy and
DDPG+HER, which corresponds to the Fetch push task
and Fetch slide task with goals positioned in near zone,
whereas the CA_2 strategy performs in far zone better than
CA_1 strategy and DDPG+HER. Therefore, combined use
of CA_1 and CA_2 strategies is recommended.

APPENDIX A
NETWORK ARCHITECTURE AND HYPERPARAMETERS
The hyperparameters used for experiments are adopted
from [24] describing experiment environment of the HER.
List of the hyperparameters used for experiments is as follows
• Actor and critic networks: 3 layers with 256 units each
and ReLU non-linearities after each layer

• ADAM optimizer [26] with learning rate 10−3 for train-
ing both actor and critic networks

• Buffer size: 106 experiences
• Polyak-averaging coefficient: 0.95
• Action L2 norm coefficient: 1.0
• Observation clipping: [−200, 200]
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• Batch size: 256
• Rollouts per MPI worker: 2
• Number of MPI workers: 1 (Fetch push) and 4 (Fetch
slide and far-zone Fetch slide)

• Cycles per epoch: 50
• Batches per cycle: 40
• Test rollouts per epoch: 10
• Probability of random actions: 0.3
• Scale of additive Gaussian (exploration) noise: 0.2
• Normalized clipping: [−5, 5]

Details of the hyperparameters are described in [20] and [24].
An episode is defined as 50 environment timesteps. One
environment timestep is consisted of 20 MuJoCo (simulator)
steps with 1t = 0.002s. The inputs of the neural networks
are normalized to have zeromean and unit standard deviation.
Normalized clipping is also used.
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