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ABSTRACT This paper provides an efficient method to determine the direction of departure (DOD) and
direction of arrival (DOA) in bistatic multiple-input multiple-output (MIMO) radars. The proposed method
firstly decouples the DOD and DOA parameters by converting the original received signal model into two
separate new signal models. The new signal model corresponding to DOA can be directly obtained by
matched filtering operation. In order to obtain the model for DOD, vectorization operation and kronecker
transformation are utilized after the matched filtering operation. Both the new signal models for DOA and
DOD behave like an augmented signal model of uniform linear array (ULA). Then, a covariance- vector
sparsity-aware estimator is developed to find the accurate angular parameter. Meanwhile, in order to improve
the estimation accuracy, the additive noise is eliminated by exploiting the toeplitze structure inherent in
the array received covariance matrix and the asymptotic distribution of the sampling errors is also derived.
Furthermore, the regularization parameter setting used by the proposed estimator is derived with the aid
of the Lagrangian duality theory to guarantee the sparsity of solution. Simulation results are conducted to
verify the effectiveness and the superiority of the sparsity-based estimator over other methods in terms of
the angular estimation accuracy.

INDEX TERMS Bistatic MIMO radar, DOD estimation, DOA estimation, sparsity-aware estimator.

I. INTRODUCTION
In recent years, the estimation of angular parameters in
multiple- input multiple-output (MIMO) radar has become a
hot research topic [1]–[4] due to its advantages in the field of
radar signal processing. MIMO radar together with orthogo-
nal waveforms can obtain higher resolution, better parameter
identifiability, greater flexibility in the beampattern design
and more degrees of freedom (DOFs) over the conventional
phased-array radar associated with coherent waveforms
[5]–[7]. According to [8] and [9], MIMO radar systems are
generally categorised into the statistical MIMO radar sys-
tems and the colocated MIMO radar systems. Furthermore,
the colocated MIMO radars can be divided into bistatic
and monostatic MIMO radars. In bistatic MIMO radars,
the direction-of-departure (DOD) and direction-of-arrival
(DOA) are totally different due to the transmit array and
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receive array are separated away from each other, while the
DOD and DOA can be regarded as the same because the
transmitters and receivers are close enough.

In order to determine the DOD and DOA estimation in
bistatic MIMO radars, a number of effective methods have
been proposed. In [10] and [11], a two-dimensional (2D)
Capon estimator and 2D MUSIC estimator are proposed to
estimate the DOD and DOA by using a 2D peak search
process at the cost of high computational complexity. In order
to reduce the computational load, the corresponding reduced-
dimensional Capon (RD-Capon) [12] and RD-MUSIC [11]
algorithms are conducted to identify the DOD and DOA.
Furthermore, in order to avoid peak searching, the estima-
tion of signal parameters via rotational invariance technique
(ESPRIT) is tailored to determine the angular parameter in
bistatic MIMO radars [13] and [14]. The polynomial root
finding algorithm with automatical angular pairing is pro-
posed in [15] for jointly estimating of DOD and DOA.
In [16], a method combining the ESPRIT and SVD of
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cross-correlation matrix is put forward to obtain the closed-
form solution for angular parameter estimation in bistatic
MIMO radars. In [17], an alternating-projection-based max-
imum likelihood (ML) estimators is presented to enhance
the DOD and DOA estimation performance even when the
impinging targets are coherent. In [18], an ESPRIT-like esti-
mator and a maximum likelihood estimator are proposed to
determine more targets than the number of physical sen-
sors under the condition of Swerling-II targets. Compared
with Swerling-I targets, the method in [18] can identify
four times targets. In [19], [20], the joint diagonalization
method is devised to increase the degrees of freedom (DOFs)
both for ULA and L-shaped transmit and receive array
structures in bistatic MIMO radar system. In [21]–[23],
in order to exploit the multidimensional structure inherence
in the bistatic MIMO radar data, the third-order tensor-
based methods are proposed to estimate the DOD and DOA
after matched filtering operation. Besides, matrix comple-
tion as a significant mathematics tool is employed for tar-
get localization in bistatic MIMO radar when there exist
missing entries in the collected data after the matched fil-
tering [23]. Nevertheless, the resolution and accuracy of the
aforementioned approaches to DOA and DOD joint estima-
tion for MIMO radar will degrade in low signal-to-noise ratio
(SNR) region and/or small sample situation. As a matter of
fact, the sparse structure inherent in the radar data has not
yet been employed by the aforementioned methodologies,
which, when appropriately utilized, is able to significantly
enhance the resolution as well as accuracy in DOA and DOD
estimation.

It has been demonstrated that the sparsity-based methods
in angular parameter estimation have attracted great interests
due to theirs high resolution in the case of low SNR and
limited snapshots [24]–[29]. In [24], [25], the reweighted
`0-norm and `1-norm sparse representation methods are
proposed to improve the DOA estimation accuracy for mono-
static MIMO radars. In [26], a nuclear norm minimiza-
tion (NNM) algorithm based on the noncircular property
of the signals is adopted to extend the array aperture in
monostatic MIMO radars. In [27], in order to deal with the
unknown mutual coupling problem in monostatic MIMO
radars, the sparse method for direction finding has been sug-
gested based on the second order statistics and fourth-order
cumulants. In [29], a real-valued sparse Bayesian learning
algorithm is derived to deal with the DOA estimation for
monostatic MIMO radar under the condition of unknown
nonuniform noise. However, the aforementioned sparsity-
based methods only focus on improving the estimation per-
formance in monostatic MIMO radar. Unlike the monostatic
MIMO radar, the DOD and DOA in bistatic MIMO radar are
different, causing more angular parameters to be estimated.
Therefore, it is nontrivial to reformulate the sparse direction
finding approach for the bistastic MIMO radar. Furthermore,
the dictionary matrix becomes huge in size if the whole 2D
detection area is discretized. The design issue of large-scale
dictionary matrix for the 2D direction finding turn out to

be ill-conditioned, which has not yet been addressed in the
literature. In order to apply the sparsity-based methods to the
bistastic MIMO radar successfully, a special sparsity-aware
estimator is proposed. It is revealed that the devised sparse
recovery algorithm is able to avoid discretizing the whole 2D
detection area and significantly enhance the DOD and DOA
estimation performance in the low SNR and small samples
environment.

To summarize, the main contributions of this work can be
given as follows:
• Two new signal model for DOD and DOA are con-
structed, which can be able to decouple the DOD and
DOA parameters. This in turn allows us to separately
determine DOD and DOA parameters.

• A sparse representation estimator for direction finding
is devised, which is able to efficiently employ the sparse
structure inherent in the array covariance matrix, leading
to accurate direction finding for bistatic MIMO radar.
To further improve the estimation performanace, a selec-
tion matrix to eliminate the background noise and a
whitening filter to suppress the residual error are also
suggested.

• In order to guarantee the sparsity of the solution, the reg-
ularization parameter selection in the proposed sparse
recovery model is correctly determined by using the
Lagrangian duality theory.

The rest of this paper is organized as follows. In Section II,
data model is addressed. In Section III, we describe the
proposed covariance sparsity-aware algorithm for DOD and
DOA estimation. In Section IV, the performance of the pro-
posed method is evaluated through extensive simulations and
Section V concludes the paper.
Notations: Throughout this paper, scalars, vectors and

matrices are denoted by lowercase letters, boldface lowercase
letters and boldface uppercase letters, respectively. The super-
scripts ∗, T and H denote the complex conjugate, the trans-
pose, and the complex conjugate transpose, respectively. The
Moore-Penrose pseudoinverse is denoted by the superscript
† and E(·) represent the expectation operation. The symbol
⊗ and � denote the Kronecker product and Kronecker-Rao
operation, respectively. The vec(A) denotes vectorization,
which converts a matrix into a column vector by stacking the
columns of the matrix on top of one another. Additionally,
0 and I denote the zero matrix and identity matrix with
appropriate dimensions.

II. SIGNAL MODEL
Consider a bistatic MIMO radar system equipped with M
transmit arrays and N receive arrays to locate K targets in
the two-dimension detection area. Both arrays are omnidi-
rectional ULAs with half-wavelength element spacing. At the
transmit array, M elements are used to emit orthogonal nar-
rowband waveforms with identical bandwidth and center fre-
quency. And, assume that the reflection dopper frequencies
have no effect on the orthogonality between the transmitted
and received waveforms. The transmit orthogonal waveform

VOLUME 7, 2019 118827



Q. Xie et al.: Sparsity-Based DOD and DOA Estimation for Bistatic MIMO Radar

can be denoted as S = [s1, s2, · · · , sM ]T ∈ CM×P, where P
is the number of samples per pulse period. Assume that there
are K narrowband far-field uncorrelated targets located in the
same range bin of interest with (αk , βk ), k = 1, 2, · · · ,K ,
where αk and βk denotes theDOD andDOAof the k-th target.
Thus, the signal model at the receiver can be expressed as

X =
K∑
k=1

γkb(βk )aT (αk )S+W (1)

where γk denotes the reflection coefficients of K targets,
b(βk ) = [1, ejπ sin(βk ), · · · , ejπ (N−1) sin(βk )]T ∈ CN×1 is
the steering vector corresponding to DOA and a(αk ) =
[1, ejπ sin(αk ), · · · , ejπ (M−1) sin(αk )]T ∈ CM×1 is the steer-
ing vector corresponding to DOD. W denotes the additive
Gaussian white noise. Due to the orthogonality between the
transmit and receive waveforms, the output data at the receive
array after the matched filtering operation with SH can be
expressed as

X̄ =
K∑
k=1

γkb(βk )aT (αk )SSH +WSH

=

K∑
k=1

γkb(βk )aT (αk )+ W̄

= B(β)3(γ )AT (α)+ W̄ (2)

where 3(γ ) = diag[γ1, γ2, · · · , γK ] denotes the reflec-
tion coefficients matrix, B(β) = [b(β1), b(β2), · · · , b(βK )]
and A(α) = [a(α1), a(α2), · · · , a(αK )] denote the receive
and transmit steering matrix, respectively. Let S(γ ) =
3(γ )AT (α) ∈ CK×M , the receivedmodel in (2) can be further
expressed as

X̄ = B(β)S(γ )+ W̄ (3)

From (3), we can find that the model behaves like a multiple
snapshots ULA received model. But, the received data in
(3) is only a single snapshot data for bistatic MIMO radars.
Assuming that the total number of snapshots is L, in oder to
use the advantages of the angular decouple in (3), by collect-
ing all snapshopts together, the received data becomes

X̂ = B(β)Ŝ(γ )+ Ŵ (4)

where

Ŝ(γ ) =


γ1(1)aT (α1) · · · γ1(L)aT (α1)
γ2(1)aT (α2) · · · γ2(L)aT (α2)

...
. . .

...

γK (1)aT (αK ) · · · γK (L)aT (αK )

∈CK×ML

(5)

It can be found that the new model in (4) can separate the
DOA and DOD. Thus, the high resolution sparse recovery
methods used in the one-dimensional angular parameter esti-
mation for ULA can be directly applied to DOA estimation
in the bistatic MIMO radar. The detailed sparse recovery
algorithmwill be introduced in the next Section. Now, wewill

construct another new signal model for DOD to realize the
accuracy angular estimation.

By using the vectorization operation on (2), we can obtain
an MN × 1 virtual data vector as follows

Y = vec(X̄) = [A(α)� B(β)]γ + w (6)

where γ = [γ1, γ2, · · · , γK ]T ∈ CK×1, w = vec
(
W̄
)
. And

there exists a permutation matrix5 ∈ RMN×MN , satisfying

5[A(α)� B(β)] = B(β)� A(α) (7)

and

Ȳ = 5Y = (B(β)� A(α)) γ + w̄ (8)

For matrices of Y1 ∈ CM1×M2,Y2 ∈ CM2×M3 and
Y3 ∈ CM3×M4, the equation vec {Y1Y2Y3} = (YT3 ⊗ Y1)
vec (Y2) can be obtained by using the relationship between
the Kronecker product and vectorization operation. Due to
this special characteristic, (8) can be further expressed as (9)
at the top of the next page.

Define a matrix Ŷ ∈ CM×N and the matrix Ŷ satisfies
Ȳ = vec(Ŷ ). Thus, from (9), we can find that

vec(Ŷ ) = (B(β)⊗ IN )vec(S̃(γ ))+ w̄

= vec
(
IN S̃(γ )BT (β)+ W̃1

)
(10)

where S̃(γ ) = [a(α1)γ1, a(α2)γ2, · · · , a(αK )γK ] ∈ CM×K ,
W̃1 satisfies w̄ = vec(W̃1). Thus,

Ŷ = S̃(γ )BT (β)+ W̃1

= [a(α1)γ1, a(α2)γ2, · · · , a(αK )γK ]


bT (β1)
bT (β2)
...

bT (βK )

+ W̃1

= [a(α1), a(α2), · · · , a(αK )]


γ1bT (β1)
γ2bT (β2)

...

γKbT (βK )

+ W̃1

= A(α)Ŝ1(γ )+ W̃1 (11)

where Ŝ1(γ ) =
[
γ1bT (β1), γ2bT (β2), · · · , γKbT (βK )

]T
∈

CK×N , W̃1 ∈ CM×N . It can be founded that the signal model
in (11) has the same structure as (3) under the condition
of single snapshot. Thus, we can also stack all snapshots
together to form a more large measurement matrix for DOD
as follows

Ŷ1 = A(α)Ŝ2(γ )+ W̃2 (12)

where

Ŝ2(γ ) =


γ1(1)bT (β1) · · · γ1(L)bT (β1)
γ2(1)bT (β2) · · · γ2(L)bT (β2)

...
. . .

...

γK (1)bT (βK ) · · · γK (L)bT (βK )

∈CK×NL

(13)
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Ȳ = (B(β)� A(α)) γ + w̄

= [b(β1)⊗ a(α1), b(β2)⊗ a(α2), · · · , b(βK )⊗ a(αK )] γ + w̄

=

[
vec

(
a(α1)bT (β1)

)
, vec

(
a(α2)bT (β2)

)
, · · · , vec

(
a(αK )bT (βK )

)]
γ + w̄

= [(b(β1)⊗ IN ) a(α1), (b(β2)⊗ IN ) a(α2), · · · , (b(βK )⊗ IN ) a(αK )] γ + w̄

= [b(β1), b(β2), · · · , b(βK )]⊗ IN
[
aT (α1)γ1, aT (α2)γ2, · · · , aT (αK )γK

]
+ w̄ (9)

It is obvious that (4) and (12) have the similar form and
the constructed two new received models can avoid the cou-
pled problem for DOD and DOA. Thus, the sparse recovery
algorithm can be applied to (4) and (12) without discreting
the whole two-dimensional angular area. Here we can find
that X̂ and Ŷ1 can be solved in a similar manner. Thus,
in the following analysis, we only derive the sparse recovery
solution for (12). The solution for (4) can be obtained in the
same way and the corresponding process is omitted in this
paper.

III. SPARSITY BASED METHOD FOR
BISTATIC MIMO RADAR
A. SPARSITY BASED ESTIMATOR
According to (12),we can use the sparse recovery method to
resolve the DOD in bistatic MIMO radar due to the angular
position is sparsely distributed over the whole angular area.
Thus, an over-complete dictionary can be constructed by
discreting the potential angular area from −90◦ to −90◦.
Furthermore, we assume that the true DODs are exactly
aligned with the sampling angular grid. Thus, Ŷ1 in (12) can
be rewritten as

Ŷ1 = Â(α)S̃+ N (14)

where Â(α) = [â(α)1, â(α)2, · · · , â(α)Q] ∈ CM×Q ,
Q denotes the number of the sampling grid, and S̃ =
[s̃(α)1, s̃(α)2, · · · , s̃(α)Q]T ∈ CQ×NL with s̃(α)q = [s̃(1),
s̃(2), · · · , s̃(NL)]T ∈ CNL . The data model in (14) is referred
to as multiple measurement vectors (MMVs). In the case of
multiple snapshots, the rows of S̃ satisfy the joint sparsity.
Thus, the true DODs can be estimated by using those grid
points of α corresponding to the nonzero rows of S̃. The
temporal redundancy of MMV model can further improve
the estimation performance for the sparse representation tech-
niques. Since the MMV data model in (14) is quite gen-
eral, the joint sparse signal recovery probelm can be directly
solved by the `2,0-norm sparse optimization algorithm. But,
the `2,0 sparse optimization problem is non-convex and
NP-hard. Alternatively, the tightest convex relaxation `2,1
optimization method is proposed to resolve the joint sparse
signal recovery probelm in [30]. Unfortunately, the relaxation
error cannot be ignored when the `2-norms of the the nonzero
rows in S̃ exhibit different values. In order to circumvent
these disadvantages existed in the `2,0-norm and `2,1-norm
sparse optimization algorithms, a covariance sparsity-aware
estimator is proposed to realize the angular parameter

estimation for DOD. And, we can also eliminate the effect of
the noise by using the structure of the noise covariancematrix.
So, better estimation accuracy of the proposed method can be
guaranteed.

In practice, the sample covariance matrix is estimated by
finite snapshots, which can be expressed as

R̂ =
1
NL

NL∑
t=1

Ŷ1Ŷ
H
1 = Â(α)RsÂ

H
(α)+ Rn + E (15)

where Rs = E[S̃S̃H ] denotes the signal covariance matrix,
Rn = E[W̃2W̃

H
2 ] denotes the noise covariance matrix and E

denots the perturbation errors between the estimated covari-
ance matrix and the theoretical covariance matrix due to
the finite number of snapshots. By adopting vectorization
operation to (15), a virtual long vector can be obtained as

r = vec(R̂) = 9ρ + ε + ξ (16)

where 9 = Â
∗
(α)� Â(α), ρ = vec(Rs),ε = vec(E) and ξ =

vec(Rn). Compared (16) with (14), it can be obviously found
that theMMV data model is converted to single measurement
vector (SMV) datamodel. Thus, theDODestimation problem
turns out to be that of recovering the sparse vector ρ and
detecting the locations of nonzero elements of this vector.

Due to the noises satisfy zero-mean, complex circular
Gaussian characteristic and the noises are statistically inde-
pendent of all targets in bistatic MIMO radar, thus the
sturcture of the noise covariance matrix is a diagonal matrix.
This means that the positions of the nonzero element in ξ
can be determined. Therefore, in order to further improve
the estimated performance, the effect of the noises can be
eliminated by using a selecting matrix J ∈ CM (M−1)×M2

as
follows

u = Jr = J9ρ + Jε (17)

where

J = [J1, J2, · · · , JM−1]T (18)

and

Jm =
[
e(m−1)(M+1)+2, e(m−1)(M+1)+3, · · · , em(M+1)

]
(19)

for m = 1, 2, · · · ,M . And, ei(i = (m − 1)(M + 1) + 2,
(m − 1)(M + 1) + 3, · · · ,m(M + 1)) is an M2

× 1 column
vector with 1 at the i-th position and 0 elsewhere.
For the perturbation errors vector ε, as derived in [31], [32],

its asymptotically norm distribution (AsN) satisfies
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ε ∼ CN (0, R̂
T
⊗ R̂/NL). Thus, the distribution of Jε

satisfies CN (0,G) withG = (J(R̂
T
⊗R̂)JH )/NL. Obviously,

a whitening filter G−
1
2 can be adopted to alleviate the effect

of the perturbation errors vector, namely

û = G−
1
2 u = 8ρ + ν (20)

where 8 = G−
1
2 J9 and the new perturbation errors vector

ν = G−
1
2 Jε ∼ CN (0, IM (M−1)). Thus, after the noise sup-

presion and whitening filter operation, the optimization prob-
lem for finding the nonzero elements in ρ can be described as

min
ρ

{
1
2

∥∥û−8ρ∥∥22 + τ ‖ρ‖1} , s.t. ρ � 0 (21)

where τ ≥ 0 denotes the regularization parameter and the
appropriate choice of τ can improve the angular estimation
performance. In (21), the convex relaxation `1-norm opti-
mization method is proposed to resolve the sparse signal
recovery probelm. However, for the vectorization model (16),
the nonzero elements values in ρ which denotes the target
powers may be different. In oder to achieve better estimation
performance, we design a reweighted alternative optimization
algorithm as follows

min
ρ

1
2

∥∥û−8ρ∥∥22 + τ Q−1∑
i=0

ωi|ρi|

 , s.t. ρ � 0 (22)

where ρi denotes the i-th element of ρ and ωi is the
weight coefficient to guarantee the better sparsity solu-
tion. According to the analysis in [33], ρi satisfies ρi ≤
NL/(â(α)Hi R̂

−1
â(α)i). Thus, we choose the weight coeffi-

cient ωi as ωi = (â(α)Hi R̂
−1
â(α)i)/NL. The machanism of

the weight coefficient lies that the large weight coefficients
can punish the elements who are more likely to be zeros in
the sparse vector ρ, in contrast, small weights reserve the
larger entries. In other words, the weight coefficient operation
can improve the angular estimation accuracy by punishing
the sparsity of the elements in ρ. But, the better estimation
performance also relies on the selection of the regulariza-
tion parameter τ . In order to avoid the disadvantages of the
heuristic methods in [34], an appropriate selection of τ is
required to guarantee the robust sparse recovery, which will
be investigated in the next subsection.

B. REGULARIZATION PARAMETER SELECTION
The selection of the regularization parameter is very impor-
tant for the final sparse receovery performance because it
can balance the sparsity and the data fidelity. For exam-
ple, an poor choice may lead to wrong angular parameter
estimation or generate many false peaks. In order to set a
suitable regularization parameter value, we will derive the
regularization parameter with the help of the Largrangian
duality.

Firstly, the sparse recovery problem in (22) can be rewrit-
ten as

min
ρ

1
2
‖ζ‖22 + τ

Q−1∑
i=0

ωi|ρi|


s.t. ζ = û−8ρ, ρ � 0 (23)

Then, by introducingµ and λ as the Lagrangianmultipliers
and formulating the augmented Lagrange function for (23) as

min
ρ

1
2
‖ζ‖22 + τ

Q−1∑
i=0

ωi|ρi| + µ
T (ζ − û+8ρ)− λTρ


(24)

where µ is the Lagrange multiplier corresponding to the
equality constraint ζ = û − 8ρ, λ � 0 is the Lagrange
multiplier corresponding to the inequality constraint ρ � 0.
For fixed ρ, the minimization of the augmented Lagrange
function w.r.t the vector ζ can be expressed as

µ = −ζ = −(û−8ρ) (25)

Thus, the vector ζ can be eliminated by substituting (25)
into (24). Sequentially, the new augmented Lagrange function
can be denoted as

min
ρ

1
2
‖µ‖22 + τ

Q−1∑
i=0

ωi|ρi| + µ
T8ρ − µT û− λTρ


(26)

Furthermore, in order to obtain the regularization param-
eter τ , the duality of the augmented Lagrange function is
adopted. The minimization of (26) is equivalent to the maxi-
mization its duality function

max
µ,λ

{
1
2
‖µ‖22 − µ

T û+ inf
ρ
[L(ρ,µ,λ)]

}
s.t. L(ρ,µ,λ) = τ

Q−1∑
i=0

ωi|ρi| + µ
T8ρ − λTρ (27)

where inf denotes the infimum and infρ[L(ρ,µ,λ)] means
that minimum over ρ for fixedµ and λ. TheKarush−Kuhn−
Tucker(KKT ) condition is the essential condition for the
strong dual optimization. Thus, by using the KKT condition,
the last term of the infρ[L(ρ,µ,λ)] satisfies λTρ = 0 [35].
Then, the infimum of L(ρ,µ,λ) can be redenoted as

Q−1∑
i=0

inf
ρi
[δi]

s.t. δi = τµi|ρi| + ηiρi (28)

where ηi = φiTµ = −φiT (û−8ρ) denotes the i-th element
of µT8 and φi denotes the i-th column of 8. In order to
determine the minimum of the δi, the absolute value of ρi
should be removed. Then,

δi =

{
τµiρi + ηiρi, if ρi ≥ 0
−τµiρi + ηiρi, if ρi < 0

(29)
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From (29), it can be found that the mathematical essence
of the above equation is to find the minimum value of the
one-dimensional linear function. Thus, the infimum of δi can
be expressed as

inf
ρi

[δi] =

{
0, if τµi ≥ |ηi|

−∞, otherwise
(30)

Since infρi [δi] = −∞ is meaningless for the sparse opti-
mization problem. Hence, infimum of δi is 0. The constraint
on regularization parameter τ can be denoted as

τµi ≥ |ηi| =

√{
φi
T (û−8ρ)(φiT (û−8ρ))H

}
i = 0, 1, · · · ,Q− 1 (31)

As discussed in (20), the perturbation error vector ν sat-
isfies ν = G−

1
2 Jε ∼ CN (0, IM (M−1)), namely, û −

8ρ ∼ CN (0, IM (M−1)). Thus, the distribution φiT (û − 8ρ)
is CN (0,φiTφi). A prewhitening operation on φiT (û − 8ρ)
yields √{

2/(φiTφi)
}
φi
T (û−8ρ) ∼ CN (0, 2) (32)

By using the relationship betweenn the chi-square distri-
bution and the standard normal distribution, the distribution
of φiT (û−8ρ)(φiT (û−8ρ))H can be denoted as{

2/(φiTφi)
}
φi
T (û−8ρ)(φiT (û−8ρ))H ∼ χ2(2) (33)

where χ2(2) denotes the chi-square distribution with 2 DOF.
In order to use the obtained chi-square distribution, a suit-

able threshold value κ is chosen tomake its probability almost
equal to one. Namely,

Pr(χ2(2) ≤ κ) = Pκ ≈ 1 (34)

Then, substituting (31) and (33) into (34) yields

Pr(2/(φiTφi)|ηi|2 ≤ κ)=Pr(|ηi|≤

√
φi
Tφi
√
2

√
κ)=Pκ (35)

Therefore, the regularisation parameter τ can be chosen as

τ ≥

√
φi
Tφi

√
2µi

√
κ (36)

And the relationship in (31) can be satisfied with a probability
close to one. Thus, for all theQ inequality constraints in (31),
the final regularization parameter τ is adopted as

τ = max
i


√
φi
Tφi

√
2µi

√κ (37)

Finally, the original sparse recovery algorithm in (22) can be
efficiently solved with the appropriate regularization param-
eter selected in (37) by off-the-shelf optimization softwares,
e.g., the CVX [36]. In order to make the proposed method
comprehensible, the procedure of our algorithm is summa-
rized in Algorithm 1.

Algorithm 1 summary of the Proposed Method

Require: array received data X̂ ∈ CN×ML , threshold value
κ ∈ (0, 1)

Ensure: estimated DODs α̂ and estimated DOAs β̂
1: Construct the new signal model Ŷ1 for DOD by using the

relationship between the Kronecker product and vector-
ization operation according to (6)-(12).

2: Calculate the covariance matrix R̂ and virtual long vector
r according to (15) and (16), respectively.

3: Construct the selecting matrix J ∈ CM (M−1)×M2
accord-

ing to (18) and the whitening filter G = (J(R̂
T
⊗

R̂)JH )/NL.
4: Calculate the new vector û by using the constructed

selecting matrix J and the whitening filter G according
to (20).

5: After obtaining the new vector û, construct the sparse
optimization problem according to (21) and the
reweighted alternative algorithm according to (22).

6: Calculate the regularization parameter τ with the aid of
the Largrangian duality theory and the final regulariza-

tion parameter is adopted as τ = maxi

(√
φi
Tφi√

2µi

)
√
κ .

7: Calculate the estimated DODs α̂ by solving the
reweighted alternative algorithm according to (22),
the corresponding signal directions are indexed by the
nonzero values in ρ.

8: The estimated DOAs β̂ can be obtained in the same way
by repeating Step.2 to Step.7 if the DODs and DOAs of
the imping targets are in ascending order or descending
order.

9: If the DODs and DOAs of the imping targets are out of
order, construct the orthogonality relation between the
signal subspace and the noise subspace accoring to (44).

10: Construct the constrained relationship between α and
β according to (45) and (46) by using the Kronecker
product and vectorization operation.

11: Get the estimated receive steering vector b̂(β) according
to (49) by using the estimatedDODs α̂ obtained in Step.7.

12: Calculate the estimated DOAs β̂ according to (50) and
(51) by using the shift invariance relationship.

C. RELATED REMARKS
Remark 1: The computational complexity of the pro-

posed method mainly contains the calculation of the covari-
ance matrix, selecting matrix operation, the whitening fil-
ter operation, over-complete dictionary construction and
reweighted alternative convex optimization process by
using the CVX, which are required an amount of com-
plex multiplications of O(M2NL + N 2ML), O(M3

+ N 3),
O(M5

+ N 5),O(KM6
+ KN 6) and O(Q3M (M − 1)+ Q3

N (N − 1), respectively. Thus, the total computational com-
plexity of the proposed method isO(M2NL+N 2ML+M3

+

N 3
+ M5

+ N 5
+ KM6

+ KN 6
+ Q3M (M − 1) + Q3N

(N − 1). Besides the proposed method, the computational
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TABLE 1. Comparison of the complexity.

complexity of the RD-MUSIC algorithm, RD-Capon algo-
rithm and ESPRIT algorithm are also discussed for com-
parisons. The computational complexity of the RD-MUSIC
algorithm mainly contains the covariance matrix, the eigen-
value decomposition and one dimensional peak search
process, which are required an amount of complex mul-
tiplications of O(LM2N 2), O(M3N 3) and O(Q[(M2N +
M2)(MN − K ) + M2]), respectively. Thus, the total com-
putational complexity of the RD-MUSIC algorithm is
O(LM2N 2

+ M3N 3
+ Q[(M2N + M2)(MN − K ) + M2]).

The computational complexity of the RD-Capon algorithm
mainly contains the covariance matrix, matrix inversion
operation and two one dimensional peak search process,
which are required an amount of complex multiplications of
O(LM2N 2), O(M3N 3) and O(Q[M3N 2

+M2N 3
+M3N +

N 3M + M2
+ N 2]), respectively. Thus, the total com-

putational complexity of the RD-Capon algorithm is
O(LM2N 2

+M3N 3
+Q[M3N 2

+M2N 3
+M3N + N 3M+

M2
+ N 2]). The computational complexity of the ESPRIT

algorithm mainly contains the covariance matrix, the eigen-
value decomposition and the construction of the rota-
tional invariance relationship for DOD and DOA, which
are required an amount of complex multiplications of
O(LM2N 2), O(M3N 3) and O(2K 2(N − 1)M + 2K 2(M −
1) + 6K 3), respectively. Thus, the total computational com-
plexity of the ESPRIT algorithm is O(LM2N 2

+ M3N 3
+

2K 2(N − 1)M + 2K 2 (M − 1) + 6K 3). In order to provide
an intuitive complexity comparison, the average MATLAB
running time of four methods are also provided. The pro-
cessing time is calculated by the MATLAB R2016a under
the conditional of Intel Core i7-7700 central processing unit
@3.6 GHz and 3.6GB random access memory and 8GB
RAM. The simulation parameters for RD-MUSIC algorithm,
RD-Capon algorithm and ESPRIT algorithm are the same
as the first experiment in Section IV. As shown in Table 1,
the proposed algorithm has the highest computational effi-
ciency due to the convex optimization process. Meanwhile,
the ESPRIT algorithm is the most computationally efficient
as it obtains estimates with closed-form solutions.
Remark 2: The maximal number of identified targets is an

important aspect that should be considered for the developed

sparse recovery-based method. We note that the dimension
of the virtual manifold matrix 8 is M (M − 1), which may
improve the degrees of freedom (DOF) of the original linear
array. This motivates us to discuss the problem of maximum
number of resolvable targets of the proposed method based
on (20). As shown in (20), the angular estimation problem
relies on the sparsity of the vector ρ. According to the differ-
ence co-array principle [37], the maximum DOF achievable
in 9 = Â

∗
(α) � Â(α) satisfies DOFmax = 2(M − 1) + 1

for M -element ULA. Note that the matrix Â
∗
(α) � Â(α)

contain many repeating row vectors, thus, pre-multiplying J
to Â
∗
(α)�Â(α) will give rise to a degree 1 deficiency; namely,

the maximum DOF achievable of 2(M − 1) . According to
Corollary 1 of [38], we know that a unique sparest represen-
tation ρ satisfies (20) does exist, if and if and only if

‖ρ‖0 <
Spark(8)

2
(38)

where Spark(8) denotes the smallest possible integer of
columns of 8 that are linearly dependent. With nonambigu-
ity in the array structure, we can deduce that Spark(8) =
2(M − 1)+ 1. Thus,

‖ρ‖0 ≤ M − 1 (39)

It is easy to obtain that the maximum separable signal number
is M − 1 by using the proposed method.

IV. SIMULATION RESULTS
In this section, a series of simulation results are presented
to evaluate the effectiveness and superiority of the proposed
method for joint DOD and DOA estimation in bistatic MIMO
radar. In addition, the RD-MUSIC, RD-Capon and ESPRIT
algorithms are adopted to compare with the proposedmethod.
In the following simulations, a narrowband bistatic MIMO
radar system with M = 6 transmit arrays and N = 6 receive
arrays is considered, both transmit and receive arrays are
half-wavelength inter-element spacing ULAs. The average
root mean square error (RMSE) is used to evaluate the angle
estimation performance, which is defined as

RMSE(α) =

√√√√ 1
KI

I∑
i=1

∥∥α̂i − α∥∥2 (40)

RMSE(β) =

√√√√ 1
KI

I∑
i=1

∥∥∥β̂ i − β∥∥∥2 (41)

where I denotes the number of the independent Monte Carlo
trails. Unless explicitly stated, the RMSE curves presented
in the follwing simulations are obtained by I = 200 inde-
pendent trials. And, α̂i and β̂ i denote the estimated angular
parameters of α and β in the i-th trial, respectively. Assume
that the DODs and DOAs of three imping uncorrelated nar-
rowband far-field targets are α = [15◦, 25◦, 35◦] and β =
[10◦, 20◦, 30◦], respectively. Moreover, the predefined spa-
tial sampling for all algorithms are from −90◦ to 90◦ with
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FIGURE 1. The DOA and DOD spatial spectrum by using the proposed sparsity based method.

the sampling interval being 1◦, and the probability Pκ used in
the proposed sparsity based method is set as 0.99999.

In the first experiment, we demonstrate the spatial spec-
trum estimation performance of the proposed algorithm,
a total of 100 snapshots are used and SNR is set to 0dB.
As illuminated in Fig. 1(a) and Fig. 1(b), we can find that
the proposed sparsity based method can accuracy resolve the
DODs and DOAs for three uncorrelated targets. As analy-
sis in Remark 2, the maximum resolvable targets is 5 for
M = 6 transmitters and N = 6 receivers. In order to further
demonstrate the superiority of the proposed sparsity-based
estimator, the spatial spectrum under the condition of the
maximum resolvable targets is also provided. Assume that
the DODs and DOAs of five imping uncorrelated narrowband
far-field targets are α = [−45◦,−25◦, 5◦, 25◦, 45◦] and
β = [−40◦,−20◦, 0◦, 20◦, 40◦], respectively. Other simula-
tion parameters are the same as Fig. 1(a) and Fig. 1(b). From
Fig. 1(c) and Fig. 1(d), we can find that the proposed method
can still provide a better spatial spectrum estimation under the

condition of themaximum resolvable targets. And, we can see
that theDODs andDOAs of the imping targets in Fig. 1(a) and
Fig. 1(b) are in ascending order, namely α1 < α2 < α3 and
β1 < β2 < β3. The advantages of the this selection is that
we can use the sparsity based estimator to realize the DODs
and DOAs estimation without needing the angular parameter
pairing, respectively. But, when the DODs and DOAs are out
of order, the angular parameter pairing process is inevitable.
This means that we can only use the sparse recovery method
to estimate the DODs or DOAs based on the data model in
(12) or (4). In the simulations of this paper, we omited the
performance comparison between the proposed method with
other methods when the DODs and DOAs are out of order.
But after obtaing the estimated DODs or DOAs by using
the proposed method, the detailed angular parameter pairing
process is given in Appendix.

In the second experiment, the RMSE performance as a
function of SNR and snapshots for the proposed method,
RD-MUSIC algorithm, RD-Capon algorithm and ESPRIT
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FIGURE 2. Performance comparison of different methods as a function of snapshots with SNR=0dB. (a-b) Root mean square error.

FIGURE 3. Performance comparison of different methods as a function of SNR with snapshots=100. (a-b) Root mean square error.

algorithm are demonstrated. As illuminated in Fig. 2,
the number of snapshots increases from 40 to 220 with a step
of 20 and the SNR is 0dB for all snapshots. It can be seen
from Fig. 2 that the angular estimation precision of the pro-
posed algorithm outperformances the RD-MUSIC algorithm,
RD-Capon algorithm and ESPRIT algorithmwith the number
of the snapshots increases and the proposed method still
work well when the available snapshots is relatively limited.
In Fig. 3, the SNR increases from−10dB to 10dB with a step
of 2dB and the snapshots is fixed at 100. As shown in Fig. 3,
the proposed method can provide lower SNR threshold with
the SNR ranges from high noise region to low noise region.
When the SNR is less than −4dB, the sparsity based method
can still maintain a better angular estimaion precision while
the other methods will produce relatively large error. From
Fig. 2 and Fig. 3, it can be observed that the proposed sparsity

based method can provide excellent estimation performance
under the condition of the small snapshots and low SNR.

In the last experiment, we compare the angular super-
resolution capabilities of the different algorithms mentioned
above, the number of snapshots is fixed at 100 and the SNR
is fixed at 0dB. As illuminated in Fig. 4, the performance of
RMSEs are compared. Two closely targets are considered,
namely, the DOD and DOA of the first target is (α1, β1) =
(15◦, 10◦) ,while the DOD and DOA of the second target
is (α2, β2) = (15◦ + 1θ, 10◦ + 1θ ). Where 1θ varies
from 1◦ to 12◦ with a step size 1◦. The result in Fig.4 shows
that if the angular interval is small, the RMSE performance
of the subspace estimators is very poor. But, for closely-
spaced targets, the proposed method provides the minimum
RMSE. For a more intuitive comparison, the spatial spectrum
estimations are also provided when the angular separation is
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FIGURE 4. Performance comparison of different methods as a function of angular interval with snapshots =100 and SNR=0dB.
(a-b) Root mean square error.

FIGURE 5. Scattergram comparison of the proposed method, RD-MUSIC, RD-Capon and ESPRIT methods for two closely sources imping from
α = [15◦,18◦] and β = [10◦,13◦] with snapshots =100 and SNR=0dB.

small. Consider the DODs and DOAs of two closely spaced
targets are α = [15◦, 18◦] and β = [10◦, 13◦], respec-
tively. Other simulation parameters are the same as Fig. 4.

As illuminated in Fig. 5, the scattergram simulation results
are obtained with the aid of 30 Monte Carlo trials, where the
asterisks with different colors denote the estimates of

VOLUME 7, 2019 118835



Q. Xie et al.: Sparsity-Based DOD and DOA Estimation for Bistatic MIMO Radar

different angular parameters and the black circles denote the
true angular parameters. It can be seen that the scattergram of
the two closely spaced targets is relatively more concentrated
by using the proposedmethod, whichmeans that the proposed
estimator can still provide superior estimation performance.
On the other hand, the scattergrams in Fig. 5(b)-Fig. 5(d)
are scattered. Thus, the simulation results in Fig. 4 and
Fig. 5 demonstrate that the proposed sparse recovery method
holds the best angle estimation performance for closely
spaced targets.

V. CONCLUSION
A sparsity-based estimator has been proposed to deal with
the DOD and DOA estimation in bistatic MIMO radars under
the condition of low SNR region and/or small sample sit-
uation. And, the proposed new signal models can decouple
the DOD and DOA in bistatic MIMO radars by stacking all
the sampling data. The decoupling operation can avoid the
construction of hugh dictionary matrix in the two dimension
detection area. Furthermore, a selction matrix and whitening
filter operation have been designed to mitigate the effect
of the additive Gaussian noise and the perturbation errors.
And, in order to guarantee the robust sparse recovery, an
approach has been proposed for deriving the regularization
parameter. Extensive simulation results demonstrate that the
proposed sparsity recovery estimator can provide better angu-
lar estimation performance and higher spatial resolution than
RD-MUSIC, RD-Capon and ESPRIT algorithms under the
condition of low SNR region and/or small sample situation.
And, in order to improve the adaptability of the proposed
algorithm when the DODs and DOAs of the imping targets
donot satisfy the ascending order or the descending order,
the detailed angular parameter pairing process is also given.
In the near future, we will focus on the gridless sparse recov-
ery methods for the angular parameter estimation in bistatic
MIMO radar system.

APPENDIX
ANGULAR PARAMETER PAIRED PROCESS
For disordered arrangement DODs and DOAs of the targets,
we can firstly use the proposed sparse recovery algorithm to
obtain the corresponding DODs or DOAs based (12) and (4),
respectively. And, then the other angular parameters can be
obtained by using the following process. Here, we derive
the solution of DOAs when obtained the DODs by using the
sparse recovery method and the same process for DODs can
be adopted when obtained the DOAs by using the proposed
method. Firstly, the sampling covariance matrix of (8) can be
denoted as

R̂Ȳ Ȳ =
1
L
Ȳ Ȳ

H

= (B(β)� A(α))R̂γ γ (B(β)� A(α))H + R̂w̄w̄ (42)

By performing eigenvalue decomposition on R̂Ȳ Ȳ , we have

R̂Ȳ Ȳ = [Eγ ,Ew̄]6[Eγ ,Ew̄]H (43)

where the vectors in Eγ , associated with the K largest eigen-
values, span the signal subspace; while the vectors in Ew̄,
associated with the MN − K small eigenvalues, span the
noise subspace. 6 is a diagonal matrix whose elements
are eigenvalues and arranged in descending order. Due to
the orthogonality between the signal subspace and the noise
subspace, we have∥∥∥EHw̄ (b(β)� a(α))

∥∥∥2 = 0 (44)

By using the Kronecker product and vectorization
operation, (44) can be rewritten as

V (α, β) =
∥∥∥EHw̄ (b(β)� a(α))

∥∥∥2 = b(β)HF(α)b(β) (45)

where F(α) = (IM ⊗ a(α))HEw̄EHw̄ (IM ⊗ a(α)). It is can be
found that the first element of the steering vector b(β) is 1.
Thus, (44) can be further expressed as

min
α,β

b(β)HF(α)b(β)

s.t. eH1 b(β) = 1 (46)

Then, a new cost function for β can be constructed with the
aid of the Lagrange theory, yielding

Lα,β = b(β)HF(α)b(β)+ ς (eH1 b(β)− 1) (47)

where ς denotes the Lagrange multiplier. For fixed α,
the derivative of the Lagrange function w.r.t β can be
expressed as

∂Lα,β
∂b(β)

= 2F(α)b(β)+ ςe1 = 0 (48)

b̂(β) =
F−1(α̂)e1
eH1 F

−1(α̂)e1
(49)

By substituting the estimated α̂ using the sparse recovery
method into (49), the corresponding estimated steering vector
b̂(β) can be obtained. Then, the shift invariance relationship
between the first N − 1 elements and last N − 1 elements in
b̂(β) can be adopted to determine the final estimated β̂[

b̂(β)
]
1:N−1

exp(j
2π
λ

sin(βk )) =
[
b̂(β)

]
2:N

(50)

β̂k = arcsin(angle([b̂(β)]1:N−1]†[b̂(β)]2:N )/π ) (51)

Thus, the DODs and DOAs can be automatically paired.

ACKNOWLEDGMENT
The authors acknowledge the interesting plenary talk about
the bistatic MIMO radar with Prof. Lei Huang and Dr. Weize
Sun. It inspired them to come up with the idea of using sparse
recovery algorithm to bistatic MIMO radar.

REFERENCES
[1] E. Fishler, A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and

R. Valenzuela, ‘‘MIMO radar: An idea whose time has come,’’ in Proc.
Proc. IEEE Radar Conf., Philadelphia, PA, USA, Apr. 2004, pp. 71–78.

118836 VOLUME 7, 2019



Q. Xie et al.: Sparsity-Based DOD and DOA Estimation for Bistatic MIMO Radar

[2] X. Wang, L. Wan, M. Huang, C. Shen, and K. Zhang, ‘‘Polariza-
tion channel estimation for circular and non-circular signals in massive
MIMO systems,’’ IEEE J. Sel. Topics Signal Process., to be published.
doi: 10.1109/JSTSP.2019.2925786.

[3] J. Xu, W.-Q. Wang, and R. Gui, ‘‘Computational efficient DOA, DOD,
and Doppler estimation algorithm for MIMO radar,’’ IEEE Signal Process.
Lett., vol. 26, no. 1, pp. 44–48, Jan. 2019.

[4] L. Mao, H. Li, and Q. Zhang, ‘‘Transmit design and DOA estimation for
wideband MIMO system with colocated nested arrays,’’ Signal Process.,
vol. 152, pp. 63–68, Nov. 2018.

[5] L. Mao, H. Li, and Q. Zhang, ‘‘Transmit subaperturing for MIMO
radars with nested arrays,’’ Signal Process., vol. 134, pp. 244–248,
May 2017.

[6] M. Yang, L. Sun, X. Yuan, and B. Chen, ‘‘A new nested MIMO array
with increased degrees of freedom and hole-free difference coarray,’’ IEEE
Signal Process. Lett., vol. 25, no. 1, pp. 40–44, Jan. 2018.

[7] A. Liu, X. Zhang, Q. Yang, X. Wu, and W. Deng, ‘‘Combined root-
MUSIC algorithms for multi-carrier MIMO radar with sparse uniform
linear arrays,’’ IET Radar, Sonar Navigation, vol. 13, no. 1, pp. 89–97,
2019.

[8] A. M. Haimovich, R. S. Blum, and L. J. Cimini, ‘‘MIMO radar with
widely separated antennas,’’ IEEE Signal Process. Mag., vol. 25, no. 1,
pp. 116–129, Jan. 2008.

[9] J. Li and P. Stoica, ‘‘MIMO radar with colocated antennas,’’ IEEE Signal
Process. Mag., vol. 24, no. 5, pp. 106–114, Sep. 2007.

[10] H. Yan, J. Li , and G. Liao , ‘‘Multitarget identification and localization
using bistatic MIMO radar systems,’’ EURASIP J. Adv. Signal Process.,
vol. 2008, Jan. 2008, Art. no. 48.

[11] X. Zhang, L. Xu, L. Xu, and D. Z. Xu, ‘‘Direction of departure (DOD)
and direction of arrival (DOA) estimation in MIMO radar with reduced-
dimension MUSIC,’’ IEEE Commun. Lett., vol. 14, no. 12, pp. 1161–1163,
Dec. 2010.

[12] X. Zhang and D. Xu, ‘‘Angle estimation in MIMO radar using reduced-
dimension capon,’’ Electron. Lett., vol. 46, no. 12, pp. 860–861, Jul. 2010.

[13] C. Duofang, C. Baixiao, and Q. Guodong, ‘‘Angle estimation using
ESPRIT in MIMO radar,’’ Electron. Lett., vol. 44, no. 12, pp. 770–771,
Jun. 2008.

[14] C. Jinli, G. Hong, and S.Weimin, ‘‘Angle estimation using ESPRITwithout
pairing in MIMO radar,’’ Electron. Lett., vol. 44, no. 24, pp. 1422–1423,
Nov. 2008.

[15] M. L. Bencheikh, Y.Wang, and H. He, ‘‘Polynomial root finding technique
for joint DOA DOD estimation in bistatic MIMO radar,’’ Signal Process.,
vol. 90, pp. 2723–2730, Sep. 2010.

[16] Y. Cheng, R. Yu, H.Gu, andW. Su, ‘‘Multi-SVDbased subspace estimation
to improve angle estimation accuracy in bistatic MIMO radar,’’ Signal
Process., vol. 7, pp. 2003–2009, Jul. 2013.

[17] B. Tang, J. Tang, Y. Zhang, and Z. D. Zheng, ‘‘Maximum likelihood
estimation of DOD and DOA for bistatic MIMO radar,’’ Signal Process.,
vol. 5, pp. 1349–1357, May 2013.

[18] F. K. W. Chan, H. C. So, L. Huang, and L.-T. Huang, ‘‘Under-
determined direction-of-departure and direction-of-arrival estimation in
bistatic multiple-input multiple-output radar,’’ Signal Process., vol. 104,
pp. 284–290, Nov. 2014.

[19] T.-Q. Xia, ‘‘Joint diagonalization based DOD and DOA estimation
for bistatic MIMO radar,’’ Signal Process., vol. 108, pp. 159–166,
Mar. 2015.

[20] T.-Q. Xia, ‘‘Joint diagonalization based 2D-DOD and 2D-DOA esti-
mation for bistatic MIMO radar,’’ Signal Process., vol. 116, pp. 7–12,
Nov. 2015.

[21] X. Wang, W. Wang, J. Liu, Q. Liu, and B. Wang, ‘‘Tensor-based real-
valued subspace approach for angle estimation in bistatic MIMO radar
with unknown mutual coupling,’’ Signal Process., vol. 116, pp. 152–158,
Nov. 2015.

[22] C. Cai, F. Wen, and D. Huang, ‘‘New approach to angle estimation for
bistatic MIMO radar with unknown spatially colored noise,’’ IEEE Access,
vol. 6, pp. 24249–24255, 2018.

[23] L.-T. Huang, A. L. F. de Almeida, and H. C. So, ‘‘Target estimation in
bistatic MIMO radar via tensor completion,’’ Signal Process., vol. 120,
pp. 654–659, Mar. 2016.

[24] J. Liu, W. Zhou, F. H. Juwono, and D. Huang, ‘‘Reweighted smoothed
`0-norm based DOA estimation for MIMO radar,’’ Signal Process.,
vol. 137, pp. 44–51, Aug. 2017.

[25] X. Wang, W. Wang, J. Liu, X. Li, and J. Wang, ‘‘A sparse representation
scheme for angle estimation in monostatic MIMO radar,’’ Signal Process.,
vol. 104, pp. 258–263, Nov. 2014.

[26] X. Wang, L. Wang, X. Li, and G. Bi, ‘‘Nuclear norm minimization frame-
work for DOA estimation in MIMO radar,’’ Signal Process., vol. 135,
pp. 147–152, Jun. 2017.

[27] J. Liu, W. Zhou, and X. Wang, ‘‘Fourth-order cumulants-based sparse
representation approach for DOA estimation inMIMO radar with unknown
mutual coupling,’’ Signal Process., vol. 128, pp. 123–130, Nov. 2016.

[28] H.Wang, L.Wan,M. Dong, K. Ota, and X.Wang, ‘‘Assistant vehicle local-
ization based on three collaborative base stations via SBL-based robust
DOA estimation,’’ IEEE Internet Things J., vol. 6, no. 3, pp. 5766–5777,
Jun. 2019.

[29] F. Dong, C. Shen, K. Zhang, and H. Wang, ‘‘Real-valued sparse DOA
estimation for MIMO array system under unknown nonuniform noise,’’
IEEE Access, vol. 6, pp. 52218–52226, 2018.

[30] D. Malioutov, M. Cetin, and A. S. Willsky, ‘‘A sparse signal reconstruction
perspective for source localization with sensor arrays,’’ IEEE Trans. Signal
Process., vol. 53, no. 8, pp. 3010–3022, Aug. 2005.

[31] Z.-M. Liu, Z.-T. Huang, andY.-Y. Zhou, ‘‘Sparsity-inducing direction find-
ing for narrowband and wideband signals based on array covariance vec-
tors,’’ IEEE Trans. Wireless Commun., vol. 12, no. 8, pp. 1–12, Aug. 2013.

[32] M. Huang, L. Huang, C. Guo, P. Zhang, J. Zhang, and L.-L. Yang, ‘‘Carrier
frequency offset estimation in uplink OFDMA systems: An approach
relying on sparse recovery,’’ IEEE Trans. Veh. Technol., vol. 66, no. 10,
pp. 9592–9597, Oct. 2017.

[33] X. Xu, X. Wei, and Z. Ye, ‘‘DOA estimation based on sparse signal
recovery utilizing weighted `1-norm penalty,’’ IEEE Signal Process. Lett.,
vol. 19, no. 3, pp. 155–158, Mar. 2012.

[34] B. D. Rao, K. Engan, S. F. Cotter, J. Palmer, and K. Kreutz-Delgado,
‘‘Subset selection in noise based on diversity measure minimization,’’
IEEE Trans. Signal Process., vol. 51, no. 3, pp. 760–770, Mar. 2003.

[35] S. Boyd and L. Vandenberghe, Convex Optimization. London, U.K.:
Cambridge Univ. Press, 2004.

[36] M. Grant and S. Boyd. (2012). CVX: MATLAB Software for
Disciplined Convex Programming, Version 1.22. [Online]. Available:
http://cvxr.com/cvx

[37] J. Shi, G. Hu, X. Zhang, F. Sun, and H. Zhou, ‘‘Sparsity-based two-
dimensional DOA estimation for coprime array: From sum–difference
coarray viewpoint,’’ IEEE Trans. Signal Process., vol. 65, no. 21,
pp. 5591–5604, Nov. 2017.

[38] D. L. Donoho and M. Elad, ‘‘Optimally sparse representation in general
(nonorthogonal) dictionaries via `1 minimization,’’ Proc. Nat. Acad. Sci.
USA, vol. 100, no. 5, pp. 2197–2202, 2003.

QIANPENG XIE was born in Henan, China,
in 1991. He received the B.S. and M.S. degrees
from the National University of Defense Technol-
ogy, Hefei, China, in 2014 and 2016, respectively,
where he is currently pursuing the Ph.D. degree.
His research interests include array signal process-
ing, radar signal processing, and electromagnetic
environment effects.

XIAOYI PAN was born in Anhui, China, in 1986.
He received the M.S. and Ph.D. degrees in
information and communication engineering
from the National University of Defense Tech-
nology, Changsha, China, in 2009 and 2014,
respectively.

He is currently a Lecturer with the National
University of Defense Technology. His research
interests include inverse synthetic aperture radar
imaging, feature extraction, and electromagnetic
environment effects.

VOLUME 7, 2019 118837

http://dx.doi.org/10.1109/JSTSP.2019.2925786


Q. Xie et al.: Sparsity-Based DOD and DOA Estimation for Bistatic MIMO Radar

MIN HUANG received the B.S. and Ph.D. degrees
in electrical communication from Xidian Univer-
sity, China, in 2008 and 2015, respectively. He is
currently a Postdoctoral Fellow with the Shenzhen
Key Laboratory of Advanced Navigation Tech-
niques, Shenzhen University. His research inter-
ests include channel estimation, OFDM signal
detection, and compressive sensing algorithms.

JIYUAN CHEN was born in Yunnan, China,
in 1994. He received the bachelor’s degree in elec-
tronic engineering from the National University of
Defense Technology, Changsha, China, in 2017,
where he is currently pursuing the master’s degree.
His research interests include inverse synthetic
aperture radar imaging and electromagnetic envi-
ronment effects.

SHUNPING XIAO was born in Jiangxi, China,
in 1964. He received the B.S. and Ph.D. degrees in
electronic engineering from the National Univer-
sity of Defense Technology (NUDT), Changsha,
China, in 1986 and 1995, respectively, where he is
currently a Professor.

His research interests include radar target recog-
nition and radar signal processing. He is also a
Senior Member of CIE.

118838 VOLUME 7, 2019


	INTRODUCTION
	SIGNAL MODEL
	SPARSITY BASED METHOD FOR BISTATIC MIMO RADAR
	SPARSITY BASED ESTIMATOR
	REGULARIZATION PARAMETER SELECTION
	RELATED REMARKS

	SIMULATION RESULTS
	CONCLUSION
	REFERENCES
	Biographies
	QIANPENG XIE
	XIAOYI PAN
	MIN HUANG
	JIYUAN CHEN
	SHUNPING XIAO


