
Received August 3, 2019, accepted August 20, 2019, date of publication August 22, 2019, date of current version September 3, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2936948

Deep Learning With Customized Abstract
Syntax Tree for Bug Localization
HONGLIANG LIANG 1, (Member, IEEE), LU SUN1, MEILIN WANG2, AND YUXING YANG1
1School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
2China Information Technology Security Evaluation Center, Beijing 100085, China

Corresponding author: Hongliang Liang (hliang@bupt.edu.cn)

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant U1713212.

ABSTRACT Given a bug report, bug localization technique can help developers automatically locate poten-
tial buggy files. Information retrieval and deep learning approaches have been applied in bug localization
by extracting lexical features in bug reports and syntactic features in source code files, though they fail
to utilize the structural and semantic information of source code files. In this paper, we present a bug
localization system CAST, which exploits deep learning and customized abstract syntax trees of programs
to locate potential buggy source files automatically and effectively. Specifically, CAST extracts both lexical
semantics in bug reports (e.g., words) and source files (e.g., method names) and program semantics in
source files (e.g., abstract syntax tree, AST). Moreover, CAST enhances the tree-based convolutional neural
network (TBCNN) model with customized ASTs, which distinguish between user-defined methods and
system-provided ones to reflect their contributions leading to defects. Furthermore, customized ASTs group
the syntactic entities with similar semantics and prune the ones with little or redundant semantics in order
to facilitate the learning performance. Experimental results on four widely-used software projects show that
CAST significantly outperforms the state-of-the-art methods in locating the buggy source files.

INDEX TERMS Abstract syntax tree, bug localization, convolutional neural network, deep learning, method
invocation.

I. INTRODUCTION
For large and evolving software, developers may receive a
large number of bug reports, and it is difficult and costly to
manually locate the potential buggy source files based on
bug reports. Bug localization aims to alleviate the burden
of developers by automatically locating potentially buggy
files in software repositories for a given bug report. To this
end, the key for bug localization is to explore the connec-
tion between a bug report written in natural languages and
the corresponding source code files written in programming
languages.

There are two main approaches to locate bugs auto-
matically. One approach is information retrieval (IR). For
instance, Gay et al. [25] represent both source files and bug
reports using vector space model (VSM) based on the sim-
ilarities between a bug report and the buggy source files.
Zhou et al. [28] propose a revised vector spacemodel (rVSM)
called BugLocator, which considers the historical reports of

The associate editor coordinating the review of this article and approving
it for publication was Weiping Ding.

similar bugs and their corresponding buggy files. Though
being convenient to correlate the heterogeneous data in
the same lexical feature space, these approaches usually
require much computational capability and mostly depend
on the quality of features extracted from bug reports and
programs [10].

The other approach for bug localization is deep learning,
which requires less human labors and shows better accuracy
than IRmethods, because the more abstract high-dimensional
features which it uses have better representation capabilities.
Lam et al. [29] present DNNLOC which combines the fea-
tures built from DNN, rVSM, and the bug-fixing history of
a software project, and DNNLOC achieves higher accuracy
than the state-of-the-art IR and machine learning techniques.
To solve the lexical mismatch between natural and program-
ming languages, Huo and Li[14] and Huo et al.[22] employ
convolutional neural network (CNN) to learn unified features
from natural and programming language. Xiao et al. [35] pro-
poseDeepLocator which leverages an enhancedCNN consid-
ering bug-fixing history and achieves 3.8% higher MAP than
DNNLOC.

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 116309

https://orcid.org/0000-0001-6877-780X

H. Liang et al.: Deep Learning With Customized Abstract Syntax Tree for Bug Localization

Although these tools can model natural and programming
language for bug localization, there is room for improvement
on accuracy and performance. On one hand, the hierarchical
nature of programming language is not well-modeled, and
thus the programs are not fully understood by deep learning
models. The reason behind this is that existing represen-
tation learning algorithms in deep learning are unable to
make full use of hierarchical structures, e.g. the AST of a
program. Natural language files are always written in one
dimension over time. In contrast, developers always write
their code files with multiple hierarchical structures, e.g.
branches, loops or even nested structures. Hence, natural
language is ‘‘flat’’ and its representation algorithms are not
suitable for learning program structure features directly. On
the other hand, for performance, the ASTs of source code
files used in existing methods have too many redundant or
unrelated nodes, and hence result in longer training time,
the curse of dimensionality, overfitting and a complex model.
In this paper, we propose CAST to locate buggy files auto-
matically and effectively. CAST leverages CNN to extract
rich lexical semantic features, which indicate the relation-
ship between syntactic entities, e.g. words or methods in
bug reports and source files, and exploits TBCNN [9] on
customized ASTs to capture hierarchical structure features,
which contain the structural or semantic relation of pro-
gram statements in source code files. A customized AST
is obtained by 1) differentiating user-defined methods and
system-provided ones in order to reflect their contributions
leading to defects, 2) grouping the syntactic entities with
similar semantics and pruning the ones with little or redun-
dant semantics to improve the learning performance. Exper-
imental results on four widely-used projects, i.e. AspectJ,
JDT, SWT, and Tomcat, indicate that CAST significantly
outperforms four existing tools for bug localization.

The main contributions of this paper are summarized as
follows:
• We propose the customized AST for bug local-
ization. It differentiates user-defined methods and
system-provided ones to reflect their contributions lead-
ing to defects, which is helpful to improve the accuracy
of bug localization. Moreover, it groups the syntactic
entities with similar semantics and prunes the ones with
little or redundant semantics to facilitate the learning
performance.

• We present CAST system which exploits CNN on bug
reports and TBCNN on the customized ASTs of source
code for bug localization.

• Evaluation results on four widely-used software projects
show that customized ASTs are beneficial for bug local-
ization and the proposed CAST system outperforms four
state-of-the-art tools for bug localization.

The rest of this paper is organized as follows. We introduce
the motivation and preliminaries in section II and III respec-
tively. Section IV presents the details of CAST. Section V
describes the evaluation on CAST. We discuss the threats

TABLE 1. Bug (ID: 55342) report #55342 for Tomcat.

to validity in section VI. We introduce related work in
section VII and conclude in section VIII.

II. MOTIVATION
Abstract syntax trees (ASTs) are ordered trees where inner
nodes represent operators (e.g., additions or assignments) and
leaf nodes correspond to operands (e.g., constants or iden-
tifiers). While these trees faithfully encode how statements
and expressions are nested to produce programs, we argue
that they are not suitable for deep neural networks to localize
defects because of two observations:

1) user-defined methods and system-provided methods
are treated equally in ASTs though they obviously have
different contribution to defects. In fact, user-defined
methods usually call system or library methods whose
code may be not available and thus not usable for bug
localization. Moreover, the system methods usually are
tested by wider community and hence with less bugs
than user-defined ones.

2) the original AST contains a large number of redundant
or unrelated features. If the original AST is fed directly
to a deep neural network, it may lead to longer training
time, the curse of dimensionality, and overfitting of the
neural network.

Therefore, these observations motivate us to build
customized ASTs for defect localization. As an example, bug
#55342 report for Tomcat is shown in Table 1 and its buggy
code in Listing 1, the code at lines 7-8 should be removed
because the interrupted flag has been cleared when the
InterruptedException is thrown. Fig.1(a) is the orig-
inal AST of the example code, where the number after each
node indicates the line number in code snippet. Fig.1(b) is our
customized AST for the example code snippet, which prunes
many useless nodes, i.e., those red nodes in Fig.1(a). More-
over, it also distinguishes the invocations of user-defined
methods from the ones of system-provided methods. For
example, a system method i.e., interrupted() at line 8,
is called in above code snippet. From Fig.1(a), one can-
not differentiate the two types of method calls which are
unified as Method_Invocation; however, in Fig.1(b),
this entity is refined into Method_Invocation_Usr and
Method_Invocation_Sys. As a result, deep learning
models can learn these features from the customized AST,
which the original AST fails to provide, and pay more
attention to the user-defined methods.

116310 VOLUME 7, 2019

H. Liang et al.: Deep Learning With Customized Abstract Syntax Tree for Bug Localization

FIGURE 1. (a) Original AST and (b) Customized AST of The Code in Listing 1.

Listing 1. Buggy code snippet for report #55342.

III. PRELIMINARIES
A. CONVOLUTIONAL NEURAL NETWORK (CNN)
Convolutional neural networks (CNNs) are inspired by
biological processes in that the connectivity pattern between
neurons resembles the organization of the animal visual cor-
tex. A CNN consists of an input and an output layer, as well
as multiple hidden layers. The hidden layers of a CNN typ-
ically consist of convolutional layers, pooling layers, fully
connected layers, and normalization layers. In deep learning,
CNNs are usually applied to analyze visual images.

A convolutional layer applies a convolution operation to
the inputs, then passes the result to the next convolutional
layer. The parameters of convolution layers consist of a set of
learnable filters. Every filter is small spatially (along width
and height), but extends through the full depth of the input
volume. We slide each filter across the width and height
of the input volume and compute at every spatial position
the dot products of the entries in the filter. Then we use an
activation function (e.g., Rectified Linear Unit, ReLU) to get
a non-linear feature. The formula is as follows:

y = f

(∑
i

wixi + b

)
(1)

where f is an activation function, wi is the weight, xi is the
input, and b is the bias.

Pooling layers combine the outputs of neuron clusters at
one layer into a single neuron in the next layer. For instance,

Max (Average) pooling uses the maximum (average) value
from a cluster of neurons at the prior layer.

B. TREE-BASED CONVOLUTIONAL NEURAL
NETWORK (TBCNN)
TBCNN is proposed by Mou et al. [9]. Its main compo-
nents include vector representation and coding, tree-based
convolution, dynamic pooling, fully-connected networks, and
an output. To represent the AST of a program as vectors,
the authors propose a code criterion to ensure that simi-
lar AST nodes have similar feature vectors. As tree-based
convolution, the authors design a set of fixed-depth subtree
detectors sliding over the entire AST to extract structural
features of the program, e.g., the structure relation of code
tokens. In a fixed-depth window, if there are n nodes with
vector representations x1, x2, . . . , xn, then the output of the
feature detectors is

y = tanh(
n∑
i=1

Wconv,i · xi + bconv) (2)

where bconv ∈ RNc is the bias,Wconv,i ∈ RNc×Nf is the weight.
To deal with varying children numbers of a node,

the ‘‘continuous binary tree’’ method in TBCNN uses three
weight matrices as parameters for tree-based convolution,
i.e.,W t

conv,W
r
conv, andW

l
conv (superscript t , r , l means ‘‘top’’,

‘‘right’’, ‘‘left’’ respectively). The weight matrix for any node
xi is a linear combination of W t

conv,W
r
conv, and W l

conv as
follows:

Wconv,i = θ
t
iW

t
conv + θ

l
iW

l
conv + θ

r
i W

r
conv (3)

and the coefficients computed as follows:

ηti =
di − 1
d − 1

(4)

ηri = (1− ηti)
pi − 1
n− 1

(5)

ηli = (1− ηti)(1− η
r
i) (6)

where di is the depth of the node xi in the sliding window, d
is the depth of the window, pi is the position of the node, n is
the total number of p’s siblings.

VOLUME 7, 2019 116311

H. Liang et al.: Deep Learning With Customized Abstract Syntax Tree for Bug Localization

FIGURE 2. CAST’s architecture.

IV. APPROACH
The architecture of CAST is shown in Fig.2. CAST takes the
bug reports and source files as inputs and deals with them
into two partitions for data preprocessing, word embedding,
feature extraction, and fuses them in feature combination,
Finally CAST feeds fusion features into the fully-connected
network and ranks the given source files. During the training
phase, pairs of source code files and bug reports, and their
labels are fed into the CAST network which is then trained
iteratively to optimize the loss function. At the testing phase,
the trained network is given a new bug report and its candidate
source files, and outputs the scores of these source files. Each
score indicates the relevance between a source code file with
the given bug.

We explain the approach via the example, i.e., report
#55342 in Table 1. The report #55342 for Tomcat and source
files are parsed into words respectively by data preprocessing
(IV-B) and then all words are converted to feature vectors
(IV-C). Next the feature vectors of report and source files
are fed into the CNNs to extract lexical semantic feature
(IV-D). In addition, we use the original ASTs like Fig.1(a)
to build the customized ASTs like Fig.1(b) (IV-A), and feed
them into the TBCNN to extract hierarchical structure feature
(IV-D). Finally, all extracted features are combined (IV-E)
using a fully connected neural network to get the
scores which indicate the relevances between source files
(e.g., Listing 1) and the report #55342.

In summary, CAST is formalized as a learning task. For
a software project P, let R = r1, r2, . . . , ri, . . . , rn1 denotes
the set of bug reports received by its bug tracking system
and F = f1, f2, . . . , fj, . . . , fn2 denotes the set of source files
in P where n1, n2 denotes the number of bug reports and
source files respectively. CAST attempts to learn a prediction
function R×F → Y , yij ∈ Y = {+1,−1} indicating whether
a source file fi is related to a bug report rj.

A. CUSTOMIZED AST
To build a customized AST, we first extract the original AST
from a source file, then differ the user-defined methods from
the system-provided ones, and compact the syntactic entities
of the AST. Specifically, we can obtain the original ASTs by
using the Eclipse Java Development Tools (JDT) which can
parse a Java file into different syntactic entities, 92 kinds of
entities in total.

1) DISTINGUISH METHOD INVOCATIONS
In original ASTs, user-definedmethods and system-provided
methods are treated equally though they obviously have
different contribution to defects. In fact, user-defined
methods usually call system-provided methods whose
code may be not available and thus not usable for
bug localization. Moreover, the system methods usually
are tested by wider community and hence with less
bugs than user-defined ones. As a result, we distinguish
them in the customized ASTs. Specifically, user-defined
methods and system-provided methods are expressed as
Method_Invocation in the ASTs extracted by JDT
ASTParser, whereas we replace Method_Invocation
with two refined ones: Method_Invocation_Usr and
Method_Invocation_Sys. This distinction between the
user-defined methods and the system ones provides richer
information than the original ASTs. In current implemen-
tation, CAST adopts a ‘‘whitelist’’ approach which includes
all methods provided by system-provided classes, e.g., from
Java standard library and those third-party libraries imported
by the project under analysis.

2) RECONSTRUCT ASTs
Original ASTs usually contain lots of entities which can
provide little even no help for bug localization. For example,
JDT ASTParser can produce 92 different syntactic entities.

116312 VOLUME 7, 2019

H. Liang et al.: Deep Learning With Customized Abstract Syntax Tree for Bug Localization

We reconstruct the structure of AST by grouping syntactic
entities with same/close meaning and pruning redundant syn-
tactic entities. As a result, we reduce syntactic entities from
92 kinds in original ASTs to 70 kinds by grouping syntactic
entities and further to 54 kinds by pruning redundant syntactic
entities. As a result, the percentage of redundant ones is about
41%.

a: GROUP SYNTACTIC ENTITIES
In original ASTs, entities with the same meaning lead it hard
to learn the hierarchical features well in TBCNN. Therefore,
we divide all entities into multiple equivalence classes (6 in
total) according to the function of each entity, e.g., anno-
tation, loop. The syntactic entities in an equivalence class
are then grouped, for example, Marker_Annotation
and Normal_Annotation are grouped as Annotation,
while For_Statement and While_Statement are
grouped as Loop. Certainly we regard a kind of entity as
unique, e.g.,Modifier, if it could not be groupedwith other
kinds.

b: PRUNE SYNTACTIC ENTITIES
The original ASTs usually include a large number of redun-
dant or unrelated entities. If the original ASTs are fed directly
to a deep neural network, it may lead to longer training time,
the curse of dimensionality, and overfitting of the neural
network. Therefore, we prune those redundant or unrelated
syntactic entities in order to learn the unique structural
features of each AST. Specifically, on one hand, we cut
down common nodes of subtrees based on their semantics.
For example, the child of a kind of entity must be another
kind of entity. e.g., {Simple_Type→ Simple_Name},
which means that the child of Simple_Type nodes
must be Simple_Name nodes in AST, so we prune the
Simple_Name nodes. On the other hand, we prune all
nodes, each of which is the common parent node, for
example, Expression_Statement is the common parent of
nodes Assignment or Method_Invocation_Usr. So, we do not
care Expression_Statement nodes while we are more
concerned their children nodes with rich semantics, hence
we replace {Block → Expression_Statement
→ Method_Invocation_Usr} with {Block →
Method_Invocation_Usr}.

B. DATA PREPROCESSING
A bug report usually contains the summary and descrip-
tion for a found bug. A source file includes both code
and comments. First, each text in bug reports and source
files is filtered for stop words, numbers and punctuation
using the NLTK package [39]. Besides, compound words
are split into single words based on the CamelCase Naming
Convention [36], e.g., ‘‘GetClassName’’ is split into ‘‘Get’’,
‘‘Class’’ and ‘‘Name’’. Finally, all words are reduced to their
stem using the Porter stemmer [38]. For example, ‘‘setting’’
and ‘‘sets’’ has the same stem ‘‘set’’, which will make a
positive impact on the recall performance.

C. WORD EMBEDDING
After preprocessing, all words in bug reports and source
files are converted to feature vectors using a word embed-
ding technique (word2vec [13]). Specifically, we first build
a vocabulary V1 which contains top 5000 words that appear
frequently in bug reports and source files, and thus each word
in bug reports and source files is represented as a one-hot
vector using vocabulary V1. Then we employ word2vec
with skip-gram model [13] to convert each word into a
k-dimensional vector. For words not presented in the V1,
we randomly initialize them.

For customized ASTs which contain 54 nodes types,
we build a vocabulary V2 which thus contains 54 words.
For a given customized AST, CAST represents its nodes by
using a variation of word2vec, which can learn the context
information, i.e., its parent and children nodes, of each node
in the tree. Finally, the AST of each source file is represented
by vec(.) ∈ RNc , where vec(.) is the feature representation of
a node in the AST and Nc is the dimension of vec(.).

D. FEATURE EXTRACTION
Since extracting features from natural language using CNN
has been widely studied [12], we follow the approach to
extract features from bug reports, denoted as xr .
For source files, we capture lexical semantic features using

different sizes of convolution kernels, as shown in Fig.3. Sup-
pose xi ∈ Rk is the k-dimensional word vector corresponding
to the i-th word in a statement, nl is the maximum number
of sentences in the source files, and nw is the maximum
number of words in the sentence. The first convolutional layer
employs a filter, i.e., a window h× k: w ∈ Rh×k , to convolve
the vectors. In order to extract different kinds of information,
we apply m feature maps for each filter. Hence, after the first
convolutional layer, the input dimension converts nl×nw×k
to nl × (nw − h+ 1)× m. Next, the first max-pooling layer
extracts the most important information from all words in
source files and the dimension becomes nl×m. Each row after
convolution and pooling corresponds to a statement in source
files, and then the second convolution and pooling layers
extract the interaction relation between sentences within h
lines. Hence, we represent a source file as (dm) × 1 vector,
denoted as x f , where d is the number of values which h can
take.

To extract structural features from an AST, we use
TBCNN [9], which has shown excellent performance on
extracting the structural features in source code files. Specifi-
cally, we feed the feature vectors of all nodes in the AST (see
section IV-C) to a tree-based convolutional layer. We apply a
set of feature filters with a fixed window size to slide across
the entire tree, as discussed in section III-B. Assume a node
n1 with vector vec1 has children nodes n2, . . . , ni, . . . , nt with
vectors vec2, . . . , veci, . . . , vect respectively, the vector vec1
is updated as:

vec′1 = ReLU (
t∑
i=1

Wconv,i ∗ veci + bconv) (7)

VOLUME 7, 2019 116313

H. Liang et al.: Deep Learning With Customized Abstract Syntax Tree for Bug Localization

FIGURE 3. Extracting lexical-semantic features of source files.

where Wconv,i ∈ RNs×Nc refers to the weight of the vector
veci, bconv ∈ RNs is the bias, Ns is the number of feature
filters. As such, we get a new tree whose shape and size are
the same as the previous one, but the vectors of all nodes are
updated. Finally, through max-pooling operation, we obtain
the maximum value of each dimension of all vectors and thus
form one vector denoted xs.

E. FEATURE COMBINATION
In the feature combination phase, all extracted features are
combined using a fully connected neural network for super-
vised training. Given a bug report ri and a source file fj,
the formulas are as follows:

xi,j = (xri , x
f
i,j, x

s
i,j) (8)

y′i,j = f (wi,j · xi,j) (9)

where xri is the lexical semantics feature of the bug report, x fi,j
is the lexical semantic feature of the source file, and xsi,j is the
structure feature of the source file. xi,j is the fusion of above
features. y′i,j is the output of the fully connected network, f is
the sigmoid function.

F. OPTIMIZATION FUNCTION
In real-world applications, only a few source files are related
to bug reports and most of the source files are irrelevant,
which leads to class imbalance. Class imbalance [27] hurts
the training accuracy, which will make neural networks not
locate the buggy files accurately.

To solve the issue, we follow the optimizaiton function
of [22] to consider the cost of wrongly associating a source
file to a bug report (costn) and the cost of missing a buggy
file that is responsible for the reported bugs (costp). costn
and costp are hyper-parameters set by running the network
with validation set. The optimization function is defined as
follows:

Opt = min
w

∑
i,j

[costnL(y′i,j, yi,j;w)(1− yi,j)

+ costpL(y′i,j, yi,j;w)(1+ yi,j)]+ λ||w||
2 (10)

where L is the cross-entropy loss function, and λ is the
trade-off parameter. The weight w is learned by minimizing
the above objective function based on Adam algorithm [37].

V. EVALUATION
To evaluate the performance of CAST, we focus on four
research questions (RQ) as follows:

RQ1 What effect do the different model settings have on
CAST? When building CAST, we need to deter-
mine the suitable values of hyper-parameters.

RQ2 Can CAST outperform other bug localization meth-
ods? To evaluate the capability of CAST, we com-
pare CAST with four state-of-the-art tools in
bug localization (BugLocator [28], DNNLOC [29],
DeepLocator [35], NP-CNN [22]).

• BugLocator uses a revised vector space
model (rVSM) and considers information
about similar bugs.

• DNNLOC combines the features built from
DNN, rVSM, and takes bug-fixing history into
account.

• DeepLocator uses CNN andAST to extract fea-
tures from bug reports and source files that are
preprocessed using a revised TF-IDuF [40].

• NP-CNN leverages both lexical and program
structure information to learn unified features
from natural language and source code in
programming language for bug localization,
as CAST does.
Since these tools are not available, we use the
public available version of BugLocator from
Lee et.al. [3] and we implement our version
of NP-CNN according to its paper [22]. As to
DNNLOC and DeepLocator, their datasets are
same as ours, and thus we directly use the
results provided in the papers [29] and [41].

RQ3 What effect does the customized AST have on
CAST? To answer this question, we conduct
two sets of experiments. In the first group,
we evaluate whether the customized ASTs can

116314 VOLUME 7, 2019

H. Liang et al.: Deep Learning With Customized Abstract Syntax Tree for Bug Localization

TABLE 2. The Java projects in datasets.

improve CAST’s performance over the orig-
inal ASTs for bug localization on the sub-
ject projects. In the second one, we combine
the customized AST with a normal CNN and
evaluate its performance on bug localization.

RQ4 What effect does the word embedding over
customized ASTs have on CAST? To com-
pare the contributions of word embedding and
customized ASTs, we evaluate their effects by
holding-out one another from CAST.

A. EXPERIMENTS PREPARATION
To evaluate the effectiveness of CAST, we use four
open-source Java projects (AspectJ, SWT, JDT, and Tomcat)
shown in TABLE 2, which has been widely studied in
the previous studies. Files and bugs of the projects can be
obtained by using a bug tracking system (e.g., Bugzilla) or
version control system (e.g., Git). Because software bugs are
often found in different versions of the source files, we use
the before-fixed version of the source files for evaluation.
To make the comparison with existing techniques easier,
we use the same splitting strategy as in Lam et al. [29].
For all datasets but Aspectj, we use 10-fold cross valida-
tion. We split the chronologically sorted bug reports of each
datasets into 10 equally sized folds fold1, fold2, . . . , fold10,
where fold1 is the oldest and fold10 is the newest. AspectJ
is the smallest project of the datasets, so we divide AspectJ
into 3 folds. Furthermore, we split fold1 into 60% training and
40% validation, in order to tune CAST’s hyper-parameters,
e.g., the numbers and sizes of filters. CAST is trained on fold
k and tested on fold k + 1, for all k ≤ 9, which means that
we always train on the most recent bug reports, which are
supposed to better match the properties of the bugs in the
current fold. We run all experiments on a server with CPU
Intel Xeon CPU E5-2650 2.00GHz (16 cores), 96 GB RAM.
With the space cost of 16G, CAST can run smoothly.

B. EVALUATION METRICS
To evaluate the performance of CAST, we use Accuracy@k,
Mean Average Precision (MAP) and Mean Reciprocal
Rank (MRR) as metrics, which are frequently used in existing
studies of bug localization [22], [29], [35].

• Accuracy@k measures the percentage of bug reports for
which we make at least one correct recommendation in
the top k ranked files.

• Mean Average Precision (MAP) is a standard metric
widely used in information retrieval [31]. The higher
the values of MAP, the better the performance of

FIGURE 4. Performance of different dimensions of node vectors.

the technique. MAP is formulated as follows:

MAP =
1
n1

n1∑
i=1

n2∑
j=1

Q(j)
j ∗ bool(j)

Ni
(11)

where n1, n2 respectively indicate the number of bug
reports and source files. bool(j) denotes whether the
source file in rank j is buggy or not. Ni is the number of
buggy files for the ith report. Q(j) indicates the number
of buggy files correctly located in top j.

• Mean Reciprocal Rank (MRR) is the mean of the
accumulations of the inverse of the ranks of the first
correctly-located buggy file for each bug report. It is
computed by:

MRR =
1
n1

n1∑
i=1

1
firsti

(12)

where n1 indicates the number of bug reports and firsti
denotes the position of the first correctly-located buggy
file for the ith bug report.

C. EXPERIMENTAL RESULTS AND ANALYSIS
Answer to RQ1: What effect do the different model
settings have on CAST?

The hyper-parameters of CAST include the dimension of
word vectors (k), the dimension of node vectors (Nc), the size
of filters, the number of filters and the depth of the tree
convolution. According to the work [35], the dimension of
word vectors k = 100 can achieve comparable performance.
The depth of the tree convolution is 2, based on the setting
in [9]. Moreover, in our preliminary experiment, we found
that extra low (high) ratio of costp and costn leads to lower
precision (recall) of localizing buggy files. Therefore, we set
costn and costp as 1 and 6 respectively.
First, to observe the effect of different dimensions of node

vectors on the validation set, we test different dimensions
(Nc) from 10 to 50 on four projects as shown in Fig.4.
We consider that Nc = 10 is too small to learn deep-level
features of AST nodes, while Nc = 50 brings a comparable
performance but consumes more time. So we set Nc as 30.

VOLUME 7, 2019 116315

H. Liang et al.: Deep Learning With Customized Abstract Syntax Tree for Bug Localization

FIGURE 5. Performance of different sizes of filters.

FIGURE 6. Performance of different numbers of filters.

Second, we try different filter sizes from 1 to 10 on four
projects as shown in Fig. 5. Obviously if the filter size is
very small, e.g, [1, 2, 3], the model cannot extract valid
features from one or twowords. If the larger filter size is used,
e.g, [8, 9, 10], in other words, more words are in a group, it is
harder for the model to extract semantic features from a large
group. So we choose [3, 4, 5], in this case we get best MAP
value.

Then, we compare theMAP value to determine the number
of filters on the validation set. We experiment with 50, 100,
200, 300, 400 and 500 filters on four projects respectively.
As shown in Fig.6, when the value is 100, the best MAP
values are gotten in SWT and AspectJ, while near the best
MAP values are in JDT and Tomcat. So we set the number of
filters as 100.

Answer to RQ2: Can CAST outperform other bug
localization methods? CAST is compared to four state-
of-the-art techniques for bug localizaton. Their performances
on four projects are shown in Table 3. We can observe that
for accuracy CAST always performs better than the four
competitors except for Accuracy@1 in Project Tomcat, for
MAP and MRR it always is better than the four competitors
except in Project JDT, but the loss is negligible.

For Accuracy@1,5,10,15, CAST is better than BugLocator
because CAST can extract local abstract features

(e.g., the equal semantic) to bridge the lexical gap between
bug reports (e.g., ‘‘obtain the number of . . . ’’) and source files
(e.g., ‘‘getnumber()’’) while BugLocator cannot.

CAST achieves higher Accuracy@1,5,10,15 on three of
four projects than DNNLOC, because some bug reports
describe with the symbols (e.g., class A, method B) which
DNNLOC cannot handle well.

Compared with DeepLocator, CAST achieves higher
Accuracy@1,5,10,15. DeepLocator also employs CNN and
AST, but it treats equally bug reports in natural language and
source files in programming language. Besides, DeepLocator
directly maps an AST to a vector and thus loses the structure
information of the program. In contrast, CAST handles the
source files in programming language separately and com-
bines a customized AST with TBCNN.

CAST achieves higher Accuracy on all projects than
NP-CNN. In fact, both CAST and NP-CNN deal with bug
reports and source files in the same way. However, CAST
leverages customized ASTs and hence is good at dealing with
nested relationship of sentences and those semantic-unrelated
statements that are neighbors in real code.

The performance comparisons in terms of MAP and MRR
indicate that CAST outperforms than other four competitors
in all data sets except JDT project, where DeepLocator is bet-
ter than CAST because many bug reports in JDT are related to
history fixed bugs and DeepLocator considers history bugs.

Moreover, to show the statistical significance of our
experimental results above, we conduct the effect size test,
i.e., Cliff’s delta or δ [42]. It is a measure that quantifies the
aumount of difference between two groups:

δ =
#(x1 > x2)− #(x1 < x2)

n1n2
(13)

where x1 and x2 are scores from group 1 and group 2, with size
of n1 and n2 respectively. The symbol # indicates counting.
The value of Cliff’s Delta lies in the closed interval [−1, 1],
where −1 or 1 indicates that all scores from one group is
smaller or larger than those from the other. Table 4 shows
the average Cliff’s delta of CAST against BugLocator and
NPCNN approaches on the 10 sets of experiments. Accord-
ing to the table, CAST makes the practical significance of
difference compared with the two approaches.

Answer to RQ3: What effect do the customized ASTs
have on CAST?
Experiment 1: To evaluate the effect of the customized

ASTs, we build a variant CAST (CASTo for short) by
replacing customized ASTs with original ASTs, and conduct
experiments on the datasets. Fig.7, Fig.8, Fig.9, and Fig.10
present their Accuracy@k results for the four projects, with
k ranging from 1 to 20. Fig.11 and Fig.12 show their MAP
and MRR results for the projects respectively. Experiments
results show that CAST performs better than CASTo. This
is because original ASTs have more nodes than customized
ASTs, and thus cause feature redundancy and overfitting. In
addition, we also record the average prediction time required
for CAST and CASTo to locate buggy files per bug report,

116316 VOLUME 7, 2019

H. Liang et al.: Deep Learning With Customized Abstract Syntax Tree for Bug Localization

TABLE 3. Performance comparison with the state-of-the-art techniques.

TABLE 4. Cliff’s delta effect size test results of CAST against BugLocator
and NPCNN approaches.

FIGURE 7. Accuracy graphs on AspectJ.

as shown in Table 5 CAST’s prediction time is much lower
(20%) than CASTo’s, which shows that CAST is more effi-
cient than CASTo. Due to the pruning and grouping AST
entities, customized ASTs help reduce the parameters of the
learning models, thereby improving the performance of bug
localization.
Experiment 2: Although we get better performance by

combining customized ASTs and TBCNN, we want to

FIGURE 8. Accuracy graphs on SWT.

FIGURE 9. Accuracy graphs on JDT.

explore whether the customized ASTs can also help other
models in bug location. In this experiment, we implement a
variant (named CASTp) by replacing TBCNN with a normal
CNN and compare it with CAST. Table 6 shows the MAP
values of the two models in four projects. As shown in the
table, CAST performs better than CASTp in all projects,

VOLUME 7, 2019 116317

H. Liang et al.: Deep Learning With Customized Abstract Syntax Tree for Bug Localization

FIGURE 10. Accuracy graphs on Tomcat.

FIGURE 11. MAP comparison on AspectJ, SWT, JDT, and Tomcat.

FIGURE 12. MRR comparison on AspectJ, SWT, JDT, and Tomcat.

TABLE 5. Prediction time of CAST and CASTo.

which indicates that combining TBCNN with customized
ASTs benefits for bug localization.

Answer to RQ4: What effect does the word embedding
over customized ASTs have on CAST?

To explore the contributions of word embedding and
customized ASTs, we evaluate their effect by holding-out
one another from CAST on the datasets. We build a variant

TABLE 6. Performance comparison of CAST and CASTp.

TABLE 7. Performance comparison of CAST, CASTq and CASTo.

CAST (CASTq) by replacing word embedding with vectors
random initialization, and compare it with CAST and CASTo
(built for RQ3). Table 7 shows the MAP values of the three
models on four projects. As shown in the table, CAST obtains
higher MAPs on four projects than CASTq, which indicates
that word embedding can improve the performance of CAST.
CASTq performs better than CASTo on all projects, which
shows that the contribution of customized ASTs is more than
word embedding.

VI. THREATS TO VALIDITY
Although CAST performs well in the experiments, there are
still some potential threats to validity of our study.

A. INTERNAL VALIDITY
Firstly, the performance of our proposed model may be some-
what dependent on the performance of the word embedding
techniques. Hence we checked the property of the adopted
word2vec technique before adopting it in our model. Sec-
ondly, the hyper-parameters configuration set could intro-
duce some bias in the experimental results. However, we set
the parameters according to the suggestions of the existing
studies, which enabled our choices to be reasonable. For
example, the dimension of word vectors k = 100 were set as
the suggestions given in the literature [35]. More fine-tunes
might be needed for our model. We leave it for future studies.
Thirdly, we cannot get the dataset of NP-CNN though we did
contact its authors. We’ll evaluate CAST on the dataset after
it is publicly released.

B. EXTERNAL VALIDITY
We evaluated our model on four dataset from Java projects
as many bug localization studies [22], [28], [29], [35] did and
tried to report the general results. However, the selection of
only four projects may have potentially limited representa-
tiveness. Besides, the performance of CAST on other projects
written in other programming languages is still unknown.
We plan to examine CAST on more projects, especially the
ones written in, e.g. C++, in a future study.

VII. RELATED WORK
A. BUG LOCALIZATION
Bug locating is an essential but still costly activity in software
development. IR-based fault localization techniques can help

116318 VOLUME 7, 2019

H. Liang et al.: Deep Learning With Customized Abstract Syntax Tree for Bug Localization

developers locate faults by exploring the link between bug
reports and source files. Poshyvanyk et al. [15] employed
Latent Semantic Indexing (LSI) to locate bugs, which repre-
sents code files and bug reports as vectors and measures the
cosine similarity between vectors. Lukins et al. [4] located
bugs based on another IR technique, Latent Dirichlet Allo-
cation (LDA), whose properties, which include modularity
and extensibility, provide advantages over LSI. Gay et al. [25]
applied Vector Space Model (VSM) to express each docu-
ment as a vector and compute the similarity between them.
Zhou et al. [28] proposed BugLocator based on a revised
VSM (rVSM), which also utilizes information about similar
bugs that have been fixed before to improve the ranking per-
formance. However, the limitation of these aforementioned
IR-based bug localization methods is a lexical mismatch
between natural language texts in bug reports and terms in
source files. These methods are based on the textual vector
representation of bug reports and source files but ignore the
semantic information in them.

In recent years, bug reports and code files as natural
language text are used in some machine learning and deep
learning models to extract the lexical semantics. Ye et al. [21]
leveraged API descriptions to bridge the lexical gap between
bug reports and source code and they also use domain
knowledge by decomposing source files into methods, using
the bug-fixing history etc. Lam et al. [7] combined rVSM
with Deep Neural Network (DNN) to recommend the poten-
tially buggy files for a bug report. DNN is used to capture
high-level abstractions and compute the relevancy between
a bug report and a source file. Even these approaches con-
vert the heterogeneous data into the same lexical feature
space, but they lose the structural information of the bug
reports and source files. Huo et al. [22] proposed NP-CNN,
to learn the unified features from bug reports and source
files to extract the structural information. They also exploited
the sequential nature of source code to enhance the unified
features [14]. Xiao et al. [35] proposed DeepLocator which
combines an enhanced CNN considering bug-fixing history
with rTF-IDuF method. In CAST, we propose to combine
customized ASTs and TBCNN, which can extract both the
lexical semantics in bug reports and hierarchical structure
features in source files, and thus improve performance and
accuracy for bug localization.

B. CONVOLUTIONAL NEURAL NETWORK
CNN has outstanding performance not only in the field
of image processing but also in the natural language
processing. Kim [8] applied CNN for sentence classifica-
tion tasks with pre-trained word vectors resulted from the
word embedding technique and achieved excellent results
on multiple benchmarks. Kalchbrenner et al. [1] proposed
a convolutional architecture dubbed the Dynamic Convolu-
tional Neural Network (DCNN) which adopts the semantic
modeling of sentences. These approaches work well with
generic data, but if we directly fed AST structure to a net-
work, we may lose rich structural information of a program.

Mou et al. [9] applied an unsupervised approach to learn
vector representations of a program and proposed a tree-based
CNN to detect structural information from programs.

VIII. CONCLUSION
In this paper, we propose CAST for bug localization, which
combines tree based convolutional neural network with cus-
tomized ASTs to locate buggy files effectively. CAST can
capture both lexical semantic in bug reports and source files,
and hierarchical structure information in AST. The proposed
customized ASTs have richer semantics with the help of
refining method invocations and less nodes types by pruning
and grouping entities in AST, and hence help CAST gain
improved performance and accuracy. Experimental results
on four open-source projects show that customized ASTs
do improve the performance of the model. Moreover, CAST
achieved higher MAP (at most 0.044) and MRR (at most
0.033) than the best results of the four current state-of-the-
art techniques (BugLocator, DNNLOC, DeepLocator and
NP-CNN).

In future, we will evaluate the performance of our models
in more Java projects, and explore to add more program
information in our models, e.g., control dependency and data
dependency. Besides, to further improve the CAST’s predic-
tion time, we will explore the combination of the customized
AST and relatively simple models.

REFERENCES
[1] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, ‘‘A convolutional neural

network for modelling sentences,’’ in Proc. 52nd Annu. Meeting Assoc.
Comput. Linguistics, Baltimore, MD, USA, vol. 1, Jun. 2014, pp. 655–665.

[2] S. Wang, T. Liu, and L. Tan, ‘‘Automatically learning semantic features for
defect prediction,’’ in Proc. IEEE/ACM 38th Int. Conf. Softw. Eng. (ICSE),
May 2016, pp. 297–308.

[3] J. Lee, D. Kim, T. F. Bissyandé, W. Jung, and Y. Le Traon, ‘‘Bench4BL:
Reproducibility study on the performance of IR-based bug localization,’’
in Proc. 27th ACM SIGSOFT Int. Symp. Softw. Test. Anal. (ISSTA),
Amsterdam, The Netherlands, Jul. 2018, pp. 61–72.

[4] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, ‘‘Bug localization
using latent Dirichlet allocation,’’ Inf. Softw. Technol., vol. 52, no. 9,
pp. 972–990, Sep. 2010.

[5] Y. Xiao, J. Keung, Q. Mi, and K. E. Bennin, ‘‘Bug localization with
semantic and structural features using convolutional neural network and
cascade forest,’’ in Proc. 22nd Int. Conf. Eval. Assessment Softw. Eng.,
Christchurch, New Zealand, Jun. 2018, pp. 101–111.

[6] S. Wang, D. Chollak, D. Movshovitz-Attias, and L. Tan, ‘‘Bugram: Bug
detection with n-Gram language models,’’ in Proc. 31st IEEE/ACM Int.
Conf. Automated Softw. Eng., Sep. 2016, pp. 708–719.

[7] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, ‘‘Combining
deep learning with information retrieval to localize buggy files for bug
reports (N),’’ in Proc. 30th IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), Nov. 2015, pp. 476–481.

[8] Y. Kim, ‘‘Convolutional neural networks for sentence classification,’’
in Proc. Conf. Empirical Methods Natural Lang. Process. (EMNLP),
Doha, Qatar, Oct. 2014, pp. 1746–1751.

[9] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, ‘‘Convolutional neural
networks over tree structures for programming language processing,’’
in Proc. 13th AAAI Conf. Artif. Intell., Phoenix, AZ, USA., Feb. 2016,
p. 1287–1293.

[10] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
no. 7553, p. 436, 2015.

[11] Q. V. Le and T. Mikolov, ‘‘Distributed representations of sentences and
documents,’’ in Proc. 31st Int. Conf. Mach. Learn., Beijing, China, vol. 32,
Jan. 2014, pp. 1188–1196.

VOLUME 7, 2019 116319

H. Liang et al.: Deep Learning With Customized Abstract Syntax Tree for Bug Localization

[12] R. Johnson and T. Zhang, ‘‘Effective use of word order for text catego-
rization with convolutional neural networks,’’ in Proc. Conf. North Amer.
Chapter Assoc. Comput. Linguistics, Hum. Lang. Technol., Denver, CO,
USA, 2015, pp. 103–112.

[13] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation
of word representations in vector space,’’ in Proc. 1st Int. Conf. Learn.
Represent. (ICLR), Scottsdale, AZ, USA, May 2013, pp. 1–12.

[14] X. Huo and M. Li, ‘‘Enhancing the unified features to locate buggy
files by exploiting the sequential nature of source code,’’ in Proc. IJCAI,
Aug. 2017, pp. 1909–1915.

[15] D. Poshyvanyk, Y.-G. Gueheneuc, A. Marcus, G. Antoniol, and V. Rajlich,
‘‘Feature location using probabilistic ranking of methods based on execu-
tion scenarios and information retrieval,’’ IEEE Trans. Softw. Eng., vol. 33,
no. 6, pp. 420–432, Jun. 2007.

[16] F. Yamaguchi, M. Lottmann, and K. Rieck, ‘‘Generalized vulnerability
extrapolation using abstract syntax trees,’’ in Proc. 28th Annu. Comput.
Secur. Appl. Conf. (ACSAC), Orlando, FL, USA, Dec. 2012, pp. 359–368.

[17] T. Dao, L. Zhang, and N. Meng, ‘‘How does execution information help
with information-retrieval based bug localization,’’ in Proc. 25th Int. Conf.
Program Comprehension, (ICPC), Buenos Aires, Argentina, May 2017,
pp. 241–250.

[18] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry, ‘‘Improving bug local-
ization using structured information retrieval,’’ in Proc. 28th IEEE/ACM
Int. Conf. Automated Softw. Eng. (ASE), Nov. 2013, pp. 345–355.

[19] Z.-W. Zhang, X.-Y. Jing, and T.-J. Wang, ‘‘Label propagation based semi-
supervised learning for software defect prediction,’’ Automated Softw.
Eng., vol. 24, no. 1, pp. 47–69, Mar. 2017.

[20] P. Loyola and Y. Matsuo, ‘‘Learning graph representations for defect
prediction,’’ in Proc. 39th Int. Conf. Softw. Eng. Companion, May 2017,
pp. 265–267.

[21] X. Ye, R. Bunescu, and C. Liu, ‘‘Learning to rank relevant files for bug
reports using domain knowledge,’’ inProc. 22nd ACMSIGSOFT Int. Symp.
Found. Softw. Eng., Nov. 2014, pp. 689–699.

[22] X. Huo, M. Li, and Z.-H. Zhou, ‘‘Learning unified features from nat-
ural and programming languages for locating buggy source code,’’ in
Proc. 25th Int. Joint Conf. Artif. Intell., New York, NY, USA, Jul. 2016,
pp. 1606–1612.

[23] K. P. Murphy,Machine Learning: A Probabilistic Perspective. Cambridge,
MA, USA: MIT Press, 2012.

[24] D. Ciresan, U. Meier, and J. Schmidhuber, ‘‘Multi-column deep neural
networks for image classification,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Providence, RI, USA, 2012, pp. 3642–3649.

[25] G. Gay, S. Haiduc, A. Marcus, and T. Menzies, ‘‘On the use of relevance
feedback in IR-based concept location,’’ in Proc. IEEE Int. Conf. Softw.
Maintenance, Sep. 2009, pp. 351–360.

[26] Y. Bengio, A. Courville, and P. Vincent, ‘‘Representation learning:
A review and new perspectives,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[27] Z.-H. Zhou and X.-Y. Liu, ‘‘Training cost-sensitive neural networks with
methods addressing the class imbalance problem,’’ IEEE Trans. Knowl.
Data Eng., vol. 18, no. 1, pp. 63–77, Jan. 2006.

[28] J. Zhou, H. Zhang, and D. Lo, ‘‘Where should the bugs be fixed?
More accurate information retrieval-based bug localization based on bug
reports,’’ in Proc. 34th Int. Conf. Softw. Eng. (ICSE), Jun. 2012, pp. 14–24.

[29] A. N. Lam, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, ‘‘Bug
localization with combination of deep learning and information retrieval,’’
in Proc. IEEE/ACM 25th Int. Conf. Program Comprehension (ICPC),
Buenos Aires, Argentina, May 2017, pp. 218–229.

[30] H. Peng, L. Mou, G. Li, Y. Liu, L. Zhang, and Z. Jin, ‘‘Building program
vector representations for deep learning,’’ in Proc. Int. Conf. Knowl. Sci.,
Eng. Manage., Chongqing, China, Oct. 2015, pp. 547–553.

[31] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information
Retrieval. Cambridge, U.K.: Cambridge Univ. Press, 2008.

[32] H. K. Dam, T. Pham, S. W. Ng, T. Tran, J. Grundy, A. Ghose, T. Kim, and
C.-J. Kim, ‘‘A deep tree-basedmodel for software defect prediction,’’ 2018,
arXiv:1802.00921. [Online]. Available: https://arxiv.org/abs/1802.00921

[33] M. Allamanis, M. Brockschmidt, and M. Khademi, ‘‘Learning to represent
programs with graphs,’’ in Proc. 6th Int. Conf. Learn. Represent. (ICLR),
Vancouver, BC, Canada, Apr./May 2018, pp. 1–17.

[34] A. Fass, R. P. Krawczyk, M. Backes, and B. Stock, ‘‘JaSt: Fully syntactic
detection of malicious (obfuscated) JavaScript,’’ in Proc. 15th Int. Conf.
Detection Intrusions Malware, Vulnerability Assessment. Saclay, France:
Springer, Jun. 2018, pp. 303–325.

[35] Y. Xiao, J. Keung, Q. Mi, and K. E. Bennin, ‘‘Improving bug local-
ization with an enhanced convolutional neural network,’’ in Proc. 24th
Asia–Pacific Softw. Eng. Conf., (APSEC), Nanjing, China, Dec. 2017,
pp. 338–347.

[36] D. W. Binkley, M. Davis, D. Lawrie, and C. Morrell, ‘‘To camelcase or
under_score,’’ in Proc. 17th IEEE Int. Conf. Program Comprehension,
(ICPC), Vancouver, BC, Canada, May 2009, pp. 158–167.

[37] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), San Diego, CA, USA,
May 2015, pp. 1–15.

[38] M. F. Porter, ‘‘An algorithm for suffix stripping,’’ Program, vol. 40, no. 3,
pp. 211–218, Jul. 2006.

[39] S. Bird, E. Klein, and E. Loper,Natural Language ProcessingWith Python.
Newton, MA, USA: O’Reilly, 2009.

[40] J. Beel, S. Langer, and B. Gipp, ‘‘TF-IDuF: A novel term-weighting
scheme for user modeling based on users’ personal document collections,’’
in Proc. 12th Conf., Wuhan, China, Mar. 2017, pp. 1–7.

[41] Y. Xiao, J. Keung, K. E. Bennin, and Q. Mi, ‘‘Improving bug localization
with word embedding and enhanced convolutional neural networks,’’ Inf.
Softw. Technol., vol. 105, pp. 17–29, Jan. 2019.

[42] N. Cliff, ‘‘Dominance statistics: Ordinal analyses to answer ordinal ques-
tions,’’ Psychol. Bull., vol. 114, no. 3, pp. 494–509, 1993.

HONGLIANG LIANG (M’14) received the Ph.D.
degree in computer science from the Univer-
sity of Chinese Academy of Sciences, Beijing,
China, in 2002. He is currently an Associate Pro-
fessor with the Beijing University of Posts and
Telecommunications, Beijing. His research inter-
ests include system software, program analysis,
software security, and artificial intelligence. He is
a member of the ACM and a Senior Member of the
CCF.He serves as a Reviewer for some prestigious

journals, including the IEEE TRel, ACM TIST, and JSS.

LU SUN received the B.E. degree in computer
science from the Beijing Electronic Science and
Technology Institute, in 2014. She is currently pur-
suing the master’s degree with the Beijing Univer-
sity of Posts and Telecommunications. Her main
research interests include deep learning and trusted
software.

MEILIN WANG received the B.E. degree in elec-
tronic science and engineering from the University
of Electronic Science and Technology of China,
in 2003, and the master’s degree in informa-
tion science and technology from the University
of International Relations, in 2009. She is cur-
rently a Researcher with the China Information
Technology Security Evaluation Center. Her main
research interests include software security and
trusted software.

YUXING YANG received the B.E. degree in com-
puter science from the Beijing University of Posts
and Telecommunications, in 2016, where he is
currently pursuing the master’s degree. His main
research interests include deep learning and trusted
software.

116320 VOLUME 7, 2019

	INTRODUCTION
	MOTIVATION
	PRELIMINARIES
	CONVOLUTIONAL NEURAL NETWORK (CNN)
	TREE-BASED CONVOLUTIONAL NEURAL NETWORK (TBCNN)

	APPROACH
	CUSTOMIZED AST
	DISTINGUISH METHOD INVOCATIONS
	RECONSTRUCT ASTs

	DATA PREPROCESSING
	WORD EMBEDDING
	FEATURE EXTRACTION
	FEATURE COMBINATION
	OPTIMIZATION FUNCTION

	EVALUATION
	EXPERIMENTS PREPARATION
	EVALUATION METRICS
	EXPERIMENTAL RESULTS AND ANALYSIS

	THREATS TO VALIDITY
	INTERNAL VALIDITY
	EXTERNAL VALIDITY

	RELATED WORK
	BUG LOCALIZATION
	CONVOLUTIONAL NEURAL NETWORK

	CONCLUSION
	REFERENCES
	Biographies
	HONGLIANG LIANG
	LU SUN
	MEILIN WANG
	YUXING YANG

