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ABSTRACT The Cauchy loss has been successfully applied in robust learning algorithms in the presence
of large outliers, but it may suffer from performance degradation in complex nonlinear tasks. To address this
issue, by transforming the original data into the reproducing kernel Hilbert spaces (RKHS) with the kernel
trick, a novel Cauchy kernel loss is developed in such a kernel space. Based on the minimum Cauchy kernel
loss criterion, the multikernel minimum Cauchy kernel loss (MKMCKL) algorithm is proposed by mapping
the input data into the multiple RKHS. The proposed MKMCKL algorithm can provide the performance
improvement of the kernel adaptive filter (KAF) based on a single kernel, and also improve the stability of
the multikernel adaptive filter based on the quadratic loss in impulsive noises, efficiently. To further curb the
growth of network of MKMCKL, a novel sparsification method is presented to prune redundant data, thus
reducing its computational and storage burdens. Simulations on different nonlinear applications illustrate the
performance superiorities of the proposed algorithms in impulsive noises.

INDEX TERMS Multikernel algorithm, robust adaptive filter, minimum Cauchy kernel loss criterion, kernel
selection, sparsification.

I. INTRODUCTION
Kernel adaptive filters (KAFs), developed by transforming
the original input data into a high-dimensional reproducing
kernel Hilbert spaces (RKHS), have been widely applied in
chaotic time-series prediction, nonlinear system identifica-
tion, and nonlinear channel equalization [1]. In the study of
KAFs, the important issues are the design of filtering algo-
rithms based on specific loss functions, the kernel selection,
and the sparsification method for curbing the network size
growth of KAFs.

For the loss function, the quadratic loss functions, such
as mean square error (MSE) and least-squares (LS), are
generally used for the design of KAFs thanks to their
simple and convex natures. For example, the kernel least
mean square (KLMS) algorithm is proposed by minimizing
MSE [2] and the kernel recursive least-squares (KRLS) by
minimizing LS of errors [3]. Although the quadratic loss
based algorithms can provide desirable performance under
Gaussian assumptions, they may suffer from performance
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degradation even divergence issues in non-Gaussian noises.
To address these issues, the non-quadratic loss functions
are introduced. The higher order error [4], [5] and lower
order error [6], [7] based loss functions are the sim-
plest two types of non-quadratic loss functions. Generally,
the higher order error based loss can provide the perfor-
mance improvement in light-tailed noises, e.g., uniform
and binary noises, and the lower order error based loss
can combat heavy-tailed noises, e.g., Laplace and α-stable
noises. However, the higher order error based loss is not
suitable for Gaussian and heavy-tailed noises [5], and the
lower order error based loss may provide slow conver-
gence rate in Gaussian noises [6]. Generally, the most
representative correntropic loss (C-Loss) [8]–[10] and gen-
eralized correntropic loss (GC-loss) [11], [12] in informa-
tion theory learning (ITL) [13] can combat non-Gaussian
noises, efficiently. Recently, the kernel risk-sensitive loss
(KRSL) [14] and kernel mean p-power error (KMPE) [15]
have been proposed for robust learning. In addition, the log-
arithmic error loss including the Cauchy loss is another
type of effective non-quadratic loss for non-Gaussian
noises [16]–[20]. It is worth noting that the logarithmic
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loss can provide better performance than C-Loss in specific
environments [17], [18].

For the kernel selection in KAFs, the first issue is to
choose the type of kernel. The commonly used kernels
include Gaussian kernel, Laplace kernel, and polynomial
kernel [21]. Thanks to its universal approximation capability,
the Gaussian kernel is the default choice in the design of
KAFs [1]. For the chosen Gaussian kernel, its bandwidth
needs to be selected to achieve desirable approximation accu-
racy. There are several methods for the selection of kernel
parameters, such as cross validation [22], penalizing func-
tions [23], and plug-in methods [24]. However, these methods
cannot be effectively applied for online learning owing to
their huge computational cost. For efficient online learning,
different methods for adaptively adjusting kernel parame-
ters are introduced, which can change these parameters at
different filtering stages, efficiently [25]. Another effective
kernel selection strategy is the multikernel learning based
method [26]–[28], which can combine several distinct kernels
to achieve desirable performance. It is worth noting that
the multikernel method can use different types of kernels
rather than the same type of kernels with different kernel
parameters. In addition, only a small number of kernels are
needed to achieve desirable performance without incurring a
huge computational burden in multikernel adaptive filtering
algorithms [29]–[32].

For KAFs including multikernel algorithms, their growing
network structures in adaptive filtering processes result in
large computational burden, especially when the size of data
set is very large. Different dimensionality reduction meth-
ods such as sparsification, vector quantization, and random
Fourier features (RFF) are therefore proposed to address
this issue. For the sparsification method, the redundant data
are pruned according to the specific criteria such as novelty
criterion [33], approximate linear dependency [3], surprise
criterion [34], and prediction variance criterion [35] to gener-
ate a more compact network, thus reducing the computational
complexity. The vector quantization method is the improve-
ment of sparsification method, which utilizes the information
of redundant data discarded by the sparsification method at
the cost of increasing computation cost [36], [37]. Unlike
sparsification and vector quantization methods, the RFF
method is data-independent and provides a fixed-dimensional
network structure [38]–[40]. The main drawback of RFF
method is that its approximation accuracy depends on the
dimensionality which needs to be determined for different
applications in advance.

In this paper, the Cauchy loss [19], [20] is mainly con-
sidered owing to its robustness to large outliers. To improve
the performance of Cauchy loss in some nonlinear tasks,
a novel Cauchy kernel loss is developed by transforming
the original data into the reproducing kernel Hilbert spaces
(RKHS). In comparison with the conventional Cauchy loss,
the proposed Cauchy kernel loss has a better performance sur-
face, which leads to the performance improvement of Cauchy
loss. Thus, the proposed Cauchy kernel loss can be extended

to various robust learning, such as principal components
analysis [41], face recognition [42], and other real-world
applications [43], [44]. Here, the Cauchy kernel loss is mainly
considered to develop a robust multikernel adaptive filtering
algorithm for combating non-Gaussian noises and address-
ing kernel selection issues. To further reduce the computa-
tional complexity, a novel sparsification method based on the
combination of online vector quantization method [36] and
sliding-window method [45] is presented.

Three contributions of this paper are summarized as fol-
lows: (1) A novel Cauchy kernel loss is developed in RKHS to
improve the performance of Cauchy loss, and some important
properties of Cauchy kernel loss are also provided. (2) Based
on the minimum Cauchy kernel loss criterion, the robust
multikernel minimum Cauchy kernel loss (MKMCKL) algo-
rithm is proposed in a multikernel method. The proposed
MKMCKL algorithm can efficiently combat impulsive noises
including large outliers and freely choose kernel parameters.
(3) A novel sparsification method is introduced inMKMCKL
to generate a sparse MKMCKL (SMKMCKL) algorithm.
SMKMCKL using the online vector quantization method as
well as the sliding-windowmethod can reduce the complexity
of MKMCKL, and thus can be applied for time-varying
systems, efficiently.

The rest of this paper is organized as follows. We present
the Cauchy kernel loss in Section II. Some important prop-
erties and performance surface of Cauchy kernel loss are
also provided in this section. In Section III, the MKMCKL
algorithm is proposed by using a multikernel method, and
its sparsification algorithm is further proposed to reduce the
complexity. In Section IV, simulations conducted in different
applications illustrate the effectiveness of proposed algo-
rithms. Finally, Section V concludes this paper.

II. MINIMUM CAUCHY KERNEL LOSS CRITERION
In this section, we first present the Cauchy kernel loss in
the reproducing kernel Hilbert spaces (RKHS). Then, some
important properties of Cauchy kernel loss and their proofs
are provided. The performance surface of Cauchy kernel
loss is discussed for comparison with that of Cauchy loss.
Furthermore, the minimum Cauchy kernel loss criterion is
introduced for design of robust learning algorithms.

A. CAUCHY KERNEL LOSS
Denote two variables as X and Y , and the Cauchy loss is
defined by [19], [20]

LC (X ,Y ) = E

[
log

(
1+

(X − Y )2

γ 2

)]
, (1)

where γ > 0 is a constant and E[·] denotes the joint expec-
tation of X and Y . The Cauchy loss has been successfully
applied to learning algorithms thanks to its robustness to large
outliers [19], [20]. However, it has been proven that the loss
function developed in RKHS can improve the performance of
the one in the original data space [8]–[10].
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Thus, by using a kernel mapping to transform X and Y into
RKHS, the Cauchy loss can be rewritten as follows:

LCK (X ,Y ) = E

[
log

(
1+
‖ϕ(X )− ϕ(Y )‖2

γ 2

)]
, (2)

where ϕ(·) is a nonlinear mapping induced by aMercer kernel
κ(·, ·), and || · || denotes the Euclidean norm. Note that we use
the Euclidean metric to measure the distance between ϕ(X )
and ϕ(Y ) since they can be high-dimensional vectors.

Since the dimensionality ofϕ(X )− ϕ(Y ) may be very high,
it is difficult to calculate the Euclidean norm (i.e., inner
product) in (2). Thus, the kernel trick [21] is generally used
to derive this inner product as

‖ϕ(X )− ϕ(Y )‖2 = 〈ϕ(X ), ϕ(X )〉 + 〈ϕ(Y ), ϕ(Y )〉

−2 〈ϕ(X ), ϕ(Y )〉

= κ(X ,X )+ κ(Y ,Y )− 2κ(X ,Y ), (3)

where 〈·, ·〉 denotes the inner product operator. Thanks to
its universal approximation capability, the Gaussian kernel is
used here, which is given by

κ(X ,Y ) = exp

(
−
‖X − Y‖2

2σ 2

)
, (4)

where σ > 0 is the kernel bandwidth. Then, by using the
Gaussian kernel and the kernel trick, the Cauchy kernel loss
is defined as follows:

LCK (X ,Y ) = log
(
1+

1
γ 2

)
−E

[
log

(
1+

1− 1
2‖ϕ(X )− ϕ(Y )‖

2

γ 2

)]

= log
(
1+

1
γ 2

)

−E

log
1+

exp
(
−
||X−Y ||2

2σ 2

)
γ 2

 , (5)

where the minimum value of LCK (X ,Y ) is 0.
In practical applications, the Cauchy kernel loss is esti-

mated using N samples {xi, yi}Ni=1, also called the empirical
Cauchy kernel loss, as follows:

L̂CK (X ,Y ) = log
(
1+

1
γ 2

)

−
1
N

N∑
i=1

log

1+
exp

(
−
‖xi−yi‖2

2σ 2

)
γ 2

. (6)

B. PROPERTIES
Based on the proposed Cauchy kernel loss (5), some impor-
tant properties are provided as follows.
Property 1: The Cauchy kernel loss is symmetric, positive,

and bounded.
Proof: Since κ(X ,Y ) = κ(Y ,X ), LCK (X ,Y ) = LCK (Y ,X )

is straightforward obtained, i.e., LCK (X ,Y ) is symmetric.

Since 0 < κ(X ,Y ) ≤ 1, 0 < LCK (X ,Y ) ≤ log(1+1/γ 2) can
be easily obtained, i.e., LCK (X ,Y ) is positive and bounded.�
Property 2: Some other loss functions can be generalized

by the Cauchy kernel loss, which is specifically described as
follows:

a) The Cauchy kernel loss reduces to the correntropic
loss [8]–[10], when γ is large enough or σ is small enough.
b) The Cauchy kernel loss reduces to the Cauchy loss [19],

[20], when σ is large enough.
c) The Cauchy kernel loss reduces to the mean square

error [2], when σ and γ are large enough.
Proof: a) When γ is large enough or σ is small enough,

using the fact that log(1 + x) ≈ x for small enough x,
we obtain

LCK (X ,Y )≈ log
(
1+

1
γ 2

)
−

1
γ 2E

[
exp

(
−
‖X−Y‖2

2σ 2

)]
,

which is a correntropic loss.
b) When σ is large enough, using the fact that exp(−x) ≈

1− x for small enough x, we obtain

LCK (X ,Y ) ≈ log
(
1+

1
γ 2

)
−E

[
log

(
1+

1− 1
2σ 2
‖X − Y‖2

γ 2

)]
,

which can be seen as a Cauchy loss in the original data space.
c) Combining proofs of a) and b) above, we obtain

LCK (X ,Y )≈ log
(
1+

1
γ 2

)
−

1
γ 2+

1
2σ 2γ 2E

[
‖X − Y‖2

]
,

which is the mean square error regarding X − Y . �
Property 3: Denote the error as e = X − Y =

[e1, e2, . . . , eN ]T with ei = xi − yi, i = 1, 2, . . . ,N . Then,
the convex conditions of empiric Cauchy kernel loss are
summarised as follow:

a) When max
i=1,2,...,N

|ei| ≤ σ , the empiric Cauchy kernel loss

is convex.
b) When min

i=1,2,...,N
|ei| > σ and γ is smaller than a certain

value, the empiric Cauchy kernel loss is convex.
Proof: The Hessian matrix of empiric Cauchy kernel loss

L̂CK (X ,Y ) regarding e can be derived as

HL̂CK (X ,Y )
(e) = diag[θ1, θ2, . . . , θN ], (7)

where

θi = ζi

(
γ 2

(
1−

e2i
σ 2

)
+ exp

(
−

e2i
2σ 2

))
, (8)

with

ζi =

exp
(
−

e2i
2σ 2

)
Nσ 2

(
γ 2 + exp

(
−

e2i
2σ 2

))2 ≥ 0.
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Then, according to (7) and (8), we have
a) HL̂CK (X ,Y )

(e) ≥ 0 when max
i=1,2,...,N

|ei| ≤ σ , i.e., L̂CK

(X ,Y ) is convex at max
i=1,2,...,N

|ei| ≤ σ .

b) HL̂CK (X ,Y )
(e) ≥ 0 when min

i=1,2,...,N
|ei| > σ and

γ ≤ min
|ei|>σ,i=1,2,...,N


√√√√ σ 2

e2i − σ
2
exp

(
−

e2i
2σ 2

) ,
which means that L̂CK (X ,Y ) is convex in this case. �
Remark 1: According to Property 3, we have that the

convexity of L̂CK (X ,Y ) depends on ei, σ , and γ . Especially,
the value of γ can control the convex range of L̂CK (X ,Y ),
and a smaller γ can generate a larger convex range generally.
Thus, we choose an appropriately small γ to guarantee the
convexity of Cauchy kernel loss in practice. In comparison
with C-Loss [8], a larger convex range of Cauchy kernel loss
can be obtained, which is analyzed in the Appendix.

C. MINIMUM CAUCHY KERNEL LOSS CRITERION
We consider the following nonlinear system

dt = f ∗(ut )+ nt , (9)

where ut ∈ Rd is the d-dimensional input vector at discrete
time t , dt is the desired output response, nt is the noise, and
f ∗(·) is the optimal estimate of dt .

When f ∗(·) is modeled by a finite impulse response (FIR)
system with an optimal weight vector wo ∈ Rd , it can be
estimated using weight vector w ∈ Rd and the estimated
output at discrete time t is given by ŷt = wTut with (·)T

being the transpose. Thus, the cost function using the Cauchy
kernel loss can be defined by

J (et ) = log
(
1+

1
γ 2

)
− log

1+
exp

(
−

e2t
2σ 2

)
γ 2



= log
(
1+

1
γ 2

)
− log

1+
exp

(
−

(dt−wT ut )
2

2σ 2

)
γ 2

 ,
(10)

where et = dt−wTut is the estimation error at discrete time t .
Let the value of γ for both Cauchy kernel loss and Cauchy
loss be 1, and the comparison of their cost functions versus
et is shown in Fig. 1, where CL denotes the Cauchy loss
and CKL the Cauchy kernel loss for simplicity. From Fig. 1,
we see that the value of σ can control the shape of Cauchy
kernel loss based cost function, and the Cauchy kernel loss
with an appropriately large σ can lead to a smoother curve
than Cauchy loss when the error is small, which means that
Cauchy kernel loss can provide better smoothness to the
steady-state error than Cauchy loss. In addition, the curve
of Cauchy kernel loss based cost function is smoother than
that of Cauchy loss when the error is large, which implies

FIGURE 1. The cost functions of cauchy kernel loss and cauchy loss
versus et .

that Cauchy kernel loss can provide better robustness to large
outliers. To further show the superiority of Cauchy kernel
loss over Cauchy loss, their performance surfaces versusw =
[w1;w2] are shown in Fig. 2, where the optimal weight vector
is wo = [10; 10]; ut and nt are zero-mean Gaussian variables
with unit variance; γ = 1 is used for Cauchy loss; γ = 1
and σ = 4 are used for Cauchy kernel loss. From Fig. 2,
we see that the Cauchy kernel loss has smaller gradient than
the Cauchy loss near the optimal solution, which implies that
the Cauchy kernel loss can achieve a lower misadjustment
than the Cauchy loss.

Based the cost function of Cauchy kernel loss, the optimal
solution can be obtained by solving the following minimizing
optimization problem:

min
w

log
(
1+

1
γ 2

)
− log

1+
exp

(
−

(dt−wT ut )
2

2σ 2

)
γ 2




⇔ min
w

− log

1+
exp

(
−

(dt−wT ut )
2

2σ 2

)
γ 2


 , (11)

which is also called the minimum Cauchy kernel loss
criterion.

Based on theminimumCauchy kernel loss criterion, differ-
ent robust learning algorithms can be developed. In this work,
we mainly focus on its application for robust multikernel
adaptive filtering.

III. PROPOSED ALGORITHMS
In this section, we first briefly introduce themultikernel adap-
tive filtering. Then, based on the minimum Cauchy kernel
loss criterion, a novel robust multikernel minimum Cauchy
kernel loss (MKMCKL) algorithm is proposed to address the
stability issues of traditional multikernel algorithms. In addi-
tion, a sparsification is further introduced in MKMCKL to
reduce the complexity caused by the growing network size,
generating the sparse MKMCKL (SMKMCKL) algorithm.
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FIGURE 2. Performance surfaces of (a) Cauchy loss and (b) Cauchy kernel
loss.

A. MULTIKERNEL ADAPTIVE FILTERING
For the nonlinear system (9), a kernel adaptive filter
(KAF) [1] is a sequential estimator of f (·) by performing lin-
ear operations in RKHS. Denote ϕ(·) as a nonlinear mapping
induced by a Mercer kernel κ(·, ·). According to the kernel
trick, f (·) can be estimated in a linear form as

f̂ (·) = �Tϕ(·), (12)

where � is the weight vector in RKHS. The Gaussian kernel
is generally used owing to its universal approximation capa-
bility, which is given by

κ(u,u′) = exp

(
−

∥∥u− u′
∥∥2

2h2

)
, (13)

where h > 0 is the kernel bandwidth. Here, we use ker-
nel bandwidth h to distinguish kernel bandwidth σ used in
Cauchy kernel loss (5) to avoid ambiguities.

Using the kernel trick, the estimated output at discrete
time t can be expressed as follows:

f̂ (ut ) =
t−1∑
j=1

ajκ(uj,ut ), (14)

where aj is the coefficient. KAFs can be applied for
online nonlinear tasks but cannot be effectively applied to

non-stationary ones since they only use a single kernel func-
tion. The multikernel adaptive filters using multiple kernels
are therefore introduced to address this issue [29], [30].

For multikernel adaptive filtering, multiple Gaussian ker-
nels with different kernel bandwidths are generally used.
Hence, (14) can be rewritten as

f̂ (ut ) =
k∑
i=1

t−1∑
j=1

a(i)
j
κ (i)(uj,ut ), (15)

where k ≥ 1 is the number of kernels.
Since the quadratic similarity measure, i.e., mean square

error (MSE), is adopted in traditional multikernel adaptive
filters [29], [30], the convergence cannot be guaranteed in
impulsive noise environments. To this end, we present a novel
robust multikernel adaptive filter based on the minimum
Cauchy kernel loss criterion for stability improvement in the
following.

B. MKMCKL ALGORITHM
Using the multikernel method, the estimation error can be
described by

et = dt −�T
t 8(ut ), (16)

where�t is the weight vector in RKHS at discrete time t and
8(·) is a nonlinear mapping induced by multiple kernels to
transform ut into RKHS. Thus, the minimum Cauchy kernel
loss criterion (11) is rewritten as

min
�

− log

1+
exp

(
−

(dt−�Tt 8(ut ))
2

2σ 2

)
γ 2


 . (17)

Further, the cost function existing in (17) is written as

J (et ) = − log

1+
exp

(
−

e2t
2σ 2

)
γ 2

 . (18)

Then, taking the gradient of J (et ) regarding �t and using
the stochastic gradient descent method generate the following
weight update form:

�t = �t−1 − µ∇�t J (et ) = �t−1 + µh(et )8(ut ), (19)

where µ > 0 is the step-size parameter and h(et ) is given by

h(et ) =
exp

(
−e2t /(2σ

2)
)
et

1+ exp
(
−e2t /(2σ 2)

)
/γ 2

. (20)

In (19), the dimension of 8(ut ) may be very high such
that it is difficult to derive �t using (19) directly. Thus,
an alternative method in a recursive form is presented as
follows:

�t = �t−1 + µh(et )8(ut )

= �t−2 + µh(et−1)8(ut−1)+ µh(et )8(ut )

· · ·

= �0 + µ

t−1∑
j=1

k∑
i=1

h(ej)8i(uj)
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Algorithm 1 MKMCKL Algorithm

Input: {ut , dt } ∈ Rd
× R (t = 1, 2, . . .).

Initialization: µ > 0, γ > 0, σ > 0,
h > 0, κ (i)(·, ·)(i = 1, 2, . . . , k),

a1(1) = µd1; C1 = {u1}, y1 =
k∑
i=1

a1(1)κ (i)(u1, ·).

Computation:
While {ut , dt } is available, do

yt =
t−1∑
j=1

k∑
i=1

aj(t − 1)κ (i)(uj,ut ),

et = dt − yt ,
Ct = {Ct−1,ut },
at (t) = µ

exp
(
−e2t /(2σ

2)
)
et

1+exp
(
−e2t /(2σ 2)

)
/γ 2

.

end

= µ

t−1∑
j=1

k∑
i=1

h(ej)κ (i)(uj, ·), (21)

where�0 is assumed to be a zero vector in the last line. Then,
the estimated output at discrete time t is given by

yt = �T
t 8(ut ) = 〈�t ,8(ut )〉

= µ

t−1∑
j=1

k∑
i=1

h(ej)
〈
κ (i)(uj, ·), κ (i)(ut , ·)

〉
, (22)

where yt = f̂ (ut ) denotes the estimated output at discrete
time t for simplicity, and 〈·, ·〉 denotes the inner product.
Using the kernel trick [1], 〈κ (i)(uj, ·), κ (i)(ut , ·)〉 = κ (i)(uj,ut )
can be obtained efficiently. Thus, the estimated output can be
rewritten as follows:

yt = µ
t−1∑
j=1

k∑
i=1

h(ej)κ (i)(uj,ut ). (23)

Finally, let a(t) and Ct be the coefficient vector and the
corresponding dictionary at discrete time t , respectively,
and aj(t) the jth element of a(t), then we summarise the
MKMCKL algorithm in Algorithm 1, specifically.
Remark 2: Thanks to the use of Cauchy kernel loss,

the proposedMKMCKL can combat impulsive noises includ-
ing large outliers, efficiently. The used multiple kernels
also lead to the efficiency improvement of MKMCKL in
non-stationary systems. In addition, when a single kernel is
used, the MKMCKL reduces to the standard kernel mini-
mum Cauchy kernel loss (KMCKL) algorithm, which can be
applied to stationary systems, effectively.

C. SMKMCKL ALGORITHM
Similar to the traditional KAFs,MKMCKL generates a grow-
ing network structure. Especially when the size of input data
is very large, MKMCKL results in huge computational and
storage burdens, which leads to the inefficiency ofMKMCKL
in practical applications. Thus, we present a sparsification
method for MKMCKL to reduce the complexity.

Algorithm 2 SMKMCKL Algorithm

Input: {ut , dt } ∈ Rd
× R (t = 1, 2, . . .).

Initialization: µ > 0, δ > 0, γ > 0, σ > 0, D > 0,
h > 0, κ (i)(·, ·)(i = 1, 2, . . . , k), M = 1

a1(1) = µd1, C1 = {u1}, y1 =
k∑
i=1

a1(1)κ (i)(u1, ·).

Computation:
While {ut , dt } is available, do

yt =
size(Ct−1)∑

j=1

k∑
i=1

at−1(j)κ (i)(Ct−1(j),ut ),

et = dt − yt , h(et ) =
exp

(
−e2t /(2σ

2)
)
et

1+exp
(
−e2t /(2σ 2)

)
/γ 2

,

dis = min
j∈size(Ct−1)

dis(Ct−1(j),ut ),

j∗ = argmin
j∈size(Ct−1)

dis(Ct−1(j),ut ),

if dis > δ & M ≥ D
M = D,
Ct = {C̆t−1,ut }, a(t) =

[
ă(t − 1), µh(et )

]T ,
else if dis ≤ δ

Ct = Ct−1, aj∗ (t) = aj∗ (t − 1)+ µh(et ),
else
M = M + 1,
Ct = {Ct−1,ut }, a(t) = [a(t − 1), µh(et )]T .

end
end

end

Owing to the improved computational efficiency and track-
ing performance, the online vector quantization method [36]
and the sliding-window method [45] are combined into
MKMCKL to generate the SMKMCKL algorithm. LetD > 0
be the sliding-window size, M > 0 the dictionary size, and
dis(Ct−1,ut ) the distance (Euclidean metric) between input
ut and dictionary Ct−1. Then, the following sparsification
criterion is presented: min

j∈size(Ct−1)
dis(Ct−1(j),ut ) > δ

M ≥ D,
(24)

where δ > 0 is the quantization size and Ct−1(j) denotes the
jth element of Ct−1. Thus, when the input ut arrives, if (24) is
satisfied, the sliding-window method [45] is used, and other-
wise the traditional online vector quantization method [36] is
used. Specifically, the SMKMCKL algorithm is described as
follows.
Case 1: When (24) is satisfied, the first element of dic-

tionary Ct−1 is removed and ut is added as the Dth element,
i.e., Ct = {C̆t−1,ut } with C̆t−1 being the dictionary obtained
by removing the first element from Ct−1. And the coefficient
is updated as

a(t) =
[
ă(t − 1), µh(et )

]T
, (25)

where ă(t − 1) denotes the coefficient obtained by removing
the first element from a(t − 1).
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Case 2:When (24) is not satisfied, if min
j∈size(Ct−1)

dis(Ct−1(j),
ut ) ≤ δ, keep the dictionary unchanged, i.e., Ct = Ct−1, and
update the coefficient as

aj∗ (t) = aj∗ (t − 1)+ µh(et ), (26)

where j∗ = argmin
j∈size(Ct−1)

dis(Ct−1(j),ut ). Otherwise, ut is added

into the dictionary, i.e., Ct = {Ct−1,ut }, and the coefficient is
updated as

a(t) = [a(t − 1), µh(et )]T . (27)

Finally, the SMKMCKL algorithm is summarised in
Algorithm 2, specifically.
Remark 3: The SMKMCKL algorithm is obtained by

combining the online vector quantization method [36] and
the sliding-window method [45], leading to the improve-
ment of computational efficiency and tracking performance.
In addition, the other sparsification methods [3], [33]–[35]
and fixed-budget methods [46], [47] can also be applicable
for MKMCKL, which is beyond the scope of this work.

IV. SIMULATIONS RESULTS
Monte Carlo (MC) simulations on the prediction of a
Mackey-Glass (MG) chaotic time-series and the nonlin-
ear regression are performed to validate the effectiveness
of the proposed MKMCKL and SMKMCKL algorithms,
and the other typical algorithms are used for perfor-
mance comparison. Specifically, KLMS [2], KLMP [7],
KMC [10], and MKLMS [30] are used for comparison with
MKMCKL, andQKLMP [7] andQKMC [37] for comparison
with SMKMCKL. The mean square error (MSE) defined
by MSE (dB) = 10log10

(∑L
t=1 (dt − yt )

2/L
)
, where dt

denotes the desired output, yt denotes the predicted output,
and L is the length of testing data, is used for performance
evaluation. To demonstrate the robustness against impulsive
noises, the desired output is contaminated by the noise mod-
eled with nt = n1,t + btn2,t , where n1,t is an ordinary
zero-mean Gaussian noise with variance σ 2

1 = 0.01, n2,t is an
α-stable noise with parameters {1.2, 0, 1, 0} [48] to generate
large outliers, and bt is a Bernoulli random process with
Pr {bt = 1} = c, Pr {bt = 0} = 1 − c, and 0 ≤ c ≤ 1
(c = 0.1 is chosen here) [16]. In the following simulations,
the Gaussian kernels with different bandwidths are used to
represent multiple kernels, and all the results are obtained as
averages over 50 independent runs.

A. MG TIME-SERIES PREDICTION
Mackey-Glass time-series is used for prediction tasks in
KAFs thanks to its periodic and chaotic natures, which is
decribed from the following differential equation [1]:

dx(t)
dt
= −bx(t)+

ax(t − τ )
1+ x(t − τ )n

, (28)

with a = 0.2, b = 0.1, and n = 10. In (28), the value of
time lag τ can reflect its dynamic nature, and we use τ =
30 to generate a chaotic time-series discretized at a sampling

period of 6 seconds for prediction. And the prediction task
is to use the previous seven time-series to predict the current
one, i.e., the input-output pair is denoted by {ut , dt }with ut =
[x(t − 7), x(t − 6), . . . , x(t − 1)]T and dt = x(t). The noisy
MG time-series of length 2000 are used for training and the
other clean time-series of length 200 for testing.

1) PERFORMANCE OF MKMCKL
We first validate the influence of the number of kernels on the
performance of MKMCKL. For fair comparison, free param-
eters γ = 1 and σ = 1, and step-size µ = 0.1 are configured
in MKMCKL with different kernels. The testing MSEs of
MKMCKL with different kernels are shown in Fig. 3. From
Fig. 3, we see that the number of kernels can affect the
convergence speed and filtering accuracy of MKMCKL, and
MKMCKL using two kernels can achieve desirable perfor-
mance. Especially, Fig. 3 illustrates that MKMCKL using
multiple kernels outperforms MKMCKL using a single ker-
nel (i.e., a standard KAF). Therefore, in the following simu-
lations, two kernels are used in multikernel algorithms unless
otherwise specified.

FIGURE 3. Testing MSEs of MKMCKL with different kernels in MG
time-series prediction.

Then, we validate the influence of γ on the performance
of MKMCKL. Two kernel parameters are set to h1 = 0.5
and h2 = 1.5, and σ = 1 and µ = 0.1 are configured in
MKMCKL. The testingMSEs of MKMCKLwith different γ
are shown in Fig. 4. It can be seen from Fig. 4 that a large γ
can improve the convergence rate and reduce the steady-state
error. However, when γ is larger than a certain value (γ =
1.5), the performance of MKMCKL is not changed. The
effect of σ on the performance ofMKMCKL is also validated.
γ = 1 is configured in MKMCKL, and other parameters are
the same as those in Fig. 4. The testing MSEs of MKMCKL
with different σ are shown in Fig. 5. From Fig. 5, we see
that σ = 0.5 can achieve desirable performance. Hence,
in practical applications, we choose the values of γ and σ
of MKMCKL to achieve desirable performance by trials.

To show the superiority of MKMCKL over other algo-
rithms, we compare the MSE performance of MKMCKL,
KLMS, KLMP, KMC, and MKLMS. The same two kernels
as those in Fig. 4 are configured in MKMCKL and MKLMS,
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FIGURE 4. Testing MSEs of MKMCKL with different γ in MG time-series
prediction.

FIGURE 5. Testing MSEs of MKMCKL with different σ in MG time-series
prediction.

FIGURE 6. Testing MSEs of KLMS, KLMP, KMC, MKLMS, and MKMCKL in
MG time-series prediction.

and the Gaussian kernel with kernel bandwidth h = 1 is con-
figured in KLMS, KLMP, and KMC. The other parameters
of algorithms are chosen such that each algorithm achieves
desirable performance, which are specifically set as: step-size
µ = 0.1 for all algorithms; p = 1.2 for KLMP; σ = 1.8 for
KMC; γ = 2 and σ = 0.5 for MKMCKL. The compared
testing MSEs are shown in Fig. 6. From Fig. 6, we see
that the quadratic loss based algorithms (i.e., KLMS and
MKLMS) cannot combat impulsive noises, and the proposed

FIGURE 7. Testing MSEs of QKLMP, QKMC, and SMKMCKL in MG
time-series prediction.

MKMCKL can combat impulsive noises efficiently and pro-
vides the fastest convergence speed and best filtering accu-
racy in all the compared algorithms. Therefore, we only
use the robust algorithms or their sparsification forms for
performance comparison in the following simulations.

2) PERFORMANCE OF SMKMCKL
Since SMKMCKL only prunes the redundant data in
MKMCKL, the influence of kernels on the performance
in SMKMCKL is the same as that in MKMCKL. Hence,
we only perform the performance comparison of SMKMCKL
with other robust sparse KAFs (i.e., QKLMP and QKMC).
For fair comparison, the parameters of all algorithms are cho-
sen such that each algorithm achieves desired performance.
Specifically, quantization size δ = 0.1 is configured for
QKLMP, QKMC, and SMKMCKL, and sliding-window size
D = 100 for SMKMCKL. And the other parameters are
the same as those in Fig. 6. The compared testing MSEs are
shown in Fig. 7, and we see from this figure that SMKM-
CKL outperforms QKLMP and QKMC from the aspects of
convergence speed and filtering accuracy.

In addition, to further illustrate the superiority of SMKM-
CKL in terms of the choice of kernel parameters, we com-
pare the steady-state MSE performance of SMKMCKL,
QKLMP, and QKMC under different kernel parameters.
InQKLMP andQKMC, the kernel parameter is changed from
0.1 to 2, and in SMKMCKL, h1 is fixed to 0.5 and h2 is
changed in the same way as that in QKLMP and QKMC.
The other parameters are the same as those in Fig. 7. Fig. 8
shows the compared steady-state MSEs of all algorithms,
where the steady-state MSEs are calculated as averages over
the last 200 iterations.We see from Fig. 8 that the steady-state
MSE of SMKMCKL is less sensitive to kernel parameters and
SMKMCKL has the best filtering accuracy in the compared
algorithms.

B. NONLINEAR REGRESSION
The example of nonlinear regression is considered, which
can be described as the following dynamic nonlinear
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FIGURE 8. Testing steady-state MSEs of QKLMP, QKMC, and SMKMCKL
under different kernel parameters in MG time-series prediction.

system [49]:

x(t) = (0.8− 0.5 exp(−x(t − 1)2))x(t − 1)

−(0.3+ 0.9 exp(−x(t − 1)2))x(t − 2)

+0.1 sin(x(t − 1)π ), (29)

with x(1) = 0.1 and x(2) = 0.1. The input-output pair of this
example is given by {ut , dt } with ut = [x(t − 2), x(t − 1)]T

and dt = x(t). In the following simulations, the noisy
time-series of length 2000 are used for training and the other
clean time-series of length 200 for testing.

1) PERFORMANCE OF MKMCKL
Similar to Fig. 3, the performance of MKMCKL under differ-
ent numbers of kernels is validated, of which results are not
presented here to conserve the space. The simulation results
show that theMKMCKL using two kernels can achieve desir-
able performance. Then, we compare the MSE performance
of MKMCKL with those of KLMP and KMC. The selection
of kernel in this simulation is the same as that in Fig. 6,
and the other parameters are chosen such that each algorithm
achieves desirable performance, which are specifically as
follows: µ = 0.05 and p = 1.2 for KLMP; µ = 0.1 and σ =
1.4 for KMC; µ = 0.1, γ = 3, and σ = 0.5 for MKMCKL.
The compared results are shown in Fig. 9. From Fig. 9, we see
thatMKMCKL provides the fastest convergence rate and best
filtering accuracy in all the compared algorithms

2) PERFORMANCE OF SMKMCKL
The MSE performance of SMKMCKL is compared to those
of QKLMP andQKMC. For fair comparison, the quantization
size δ = 0.02 is configured in these three algorithms, and
the other parameters are the same as those in Fig. 9. The
compared MSEs are shown in Fig. 10, and the obtained
simulation results also show that SMKMCKL provides the
best performance in terms of convergence rate and filtering
accuracy in all the compared algorithms.

The influence of the selection of kernel parameters on
the performance of SMKMCKL, QKLMP, and QKMC is
also validated in this example. The same simulation settings

FIGURE 9. Testing MSEs of KLMP, KMC, and MKMCKL in nonlinear
regression.

FIGURE 10. Testing MSEs of QKLMP, QKMC, and SMKMCKL in nonlinear
regression.

FIGURE 11. Testing steady-state MSEs of QKLMP, QKMC, and SMKMCKL
under different kernel parameters in nonlinear regression.

as those in Fig. 9 are used and the kernel parameters are
set in the same way as those in Fig. 8. The steady-state
MSEs of SMKMCKL, QKLMP, and QKMC versus kernel
parameters are shown in Fig. 11. From Fig. 11, we have that
the steady-stateMSE of SMKMCKL is not sensitive to kernel
parameters while these of QKLMP and QKMC are sensitive.
And, SMKMCKL provides the best filtering accuracy in all
the compared algorithms under different kernel parameters.
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FIGURE 12. Testing MSEs of QKLMP, QKMC, and SMKMCKL in a
non-stationary system.

Finally, the tracking performance of SMKMCKL,
QKLMP, and QKMC in a non-stationary system is validated.
To model such a non-stationary system, the nonlinear sys-
tem (29) is changed to Mackey-Glass chaotic system (28)
at the 2001th iteration. The other settings are the same as
those in Fig. 10, and the testing MSEs of SMKMCKL,
QKLMP, andQKMCare shown in Fig. 12. It can be seen from
Fig. 12 that SMKMCKL can track the time-varying system
efficiently and provides the best tracking performance in all
the compared algorithms.

V. CONCLUSION
A novel Cauchy kernel loss is presented in this paper. Under
the minimum Cauchy kernel loss criterion, a multikernel
minimumCauchy kernel loss (MKMCKL) algorithm is there-
fore proposed for robust learning. The proposed MKMCKL
algorithm can combat impulsive noises including large out-
liers in non-stationary systems, effectively. To further reduce
the complexity of MKMCKL, a new sparsification method
is presented using the combination of online vector quanti-
zation method and sliding-window method for MKMCKL,
generating a sparse MKMCKL (SMKMCKL) algorithm.
By applying MKMCKL and SMKMCKL to the prediction of
Mackey-Glass chaotic time-series and the nonlinear regres-
sion in the presence of impulsive noises, the proposed algo-
rithms show the superiorities over other traditional algorithms
from the aspects of robustness, filtering accuracy, choice of
kernel parameters, and tracking performance.

APPENDIX
The correntropic loss (C-Loss) using a Gaussian kernel is
defined by [8]

LC−Loss(X ,Y ) = 1− E

[
exp

(
−
(X − Y )2

2σ 2

)]
. (30)

Thus, the Cauchy kernel loss (5) can be seen as a logarithmic
C-Loss. In addition, from Property 2 a), we have that the
Cauchy kernel loss can reduce to the C-Loss when γ is large
enough or σ is small enough. Hence, compared with the
C-Loss, the Cauchy kernel loss is a more general loss.

To further show the superiority of Cauchy kernel loss over
C-Loss, we derive the Hessian matrix of C-Loss by using the
same method as that in the proof of Property 3 as follows:

HL̂C−Loss(X ,Y )
(e) = diag[θ1, θ2, . . . , θN ], (31)

where

θi =
1

Nσ 2

(
1−

e2i
σ 2

)
exp

(
−

e2i
2σ 2

)
. (32)

Thus, to guarantee the convexity of C-Loss, 1−
e2i
σ 2
> 0 should

be satisfied. Compared with the convex condition of Cauchy

kernel loss, i.e., γ 2
(
1−

e2i
σ 2

)
+ exp

(
−

e2i
2σ 2

)
> 0, a larger

convex range of Cauchy kernel loss is directly obtained,
especially when a small γ is chosen.
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