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ABSTRACT Graph-based two-stage algorithms have widely developed and achieved good performance
to detect salient objects. For these algorithms, choosing the proper seeds using for saliency propagation
is quite crucial and difficult. In this paper, we consider using background/foreground probability values of
candidate background/foreground seeds as the estimation of the reliable seeds, not considering the refinement
of candidate seeds. Moreover, these probability values are integrated into the proposed saliency models,
which can avoid hard filtering for candidate seeds as well as simplify the procedure of the algorithm.
In addition, considering the manifold structure of an image, we fuse the manifold-preserving term into the
saliency models. Especially, reconstruction matrix A is determined based on the deep features extracted from
FCN-32s, which can further improve detection performance of salient objects. The results of experiments in
which the proposed SBFMP algorithm is applied to four datasets demonstrate SBFMP algorithm is prior to
some existing state-of-the-art algorithms in terms of the different metrics.

INDEX TERMS Salient object detection, saliency map, background, foreground, manifold.

I. INTRODUCTION
Visual saliency aims at identifying the most visually distinc-
tive parts in an image, and has been an important research
topic in computer vision. In recent years, salient object detec-
tion, which can serve as a pre-processing step for a variety
of computer vision, such as object detection and recogni-
tion [1], [2], image classification [3], gaze estimation [4],
content-based image retrieval and editing [5], [6], visual
tracking [7], and person re-identification [8].

Many researchers have studied this topic and pro-
posed many effective algorithms on salient object detec-
tion [9]–[18]. Specially, graph-based propagation algorithms
have developed and achieved good performance to detect
salient objects [9], [12]–[14], [16]. General steps of these
algorithms are summarized as follows, after constructing
corresponding undirected and weighted graph of an image,
reliable seeds are selected as labeled nodes firstly. Then the
saliency information of these labeled nodes is propagated
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to all graph nodes by using the proposed saliency models,
the saliency value of each node in the graph is thus obtained.
Choosing the proper seeds using for propagation is quite
crucial, which will have direct influences on the final detec-
tion results. Generally, seed candidates are firstly selected
based on some prior methods, such as background or center
prior. Then these candidates are further refined by defining
some evaluation metrics, the reliable seeds thus obtained.
Although there exist some refinement methods for candi-
date seeds [10]–[12], it is hard to guarantee the accuracy of
selected seeds. Furthermore, candidates’ refinement process
is separate from the procedure of establishing propagation
models, which is in fact a little trivial.

In this paper, we propose a graph-based two-stage salient
object detection algorithm. For the selection of candidate
seeds, we simply select image boundaries as candidate back-
ground seeds based on background prior [9]. In addition,
candidate foreground seeds can be obtained according to the
first-stage saliency map. Instead of refining candidate seeds,
we consider using background/foreground probability values
of candidate background/foreground seeds as the estimation
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of the reliable seeds. Moreover, these probability values are
integrated into the proposed saliencymodels, which can avoid
hard filtering for candidate seeds, meanwhile, simplify the
procedure of the algorithm.

Similar to [9], [14], our proposed propagation model of
each stage is also attributed to an energy minimization prob-
lem. However, different from [9], some background and
foreground information is fused in the energy minimiza-
tion model. Furthermore, manifold-preserving diffusion fac-
tor is also considered. Specially, reconstruction matrix A in
manifold-preserving diffusion factor is obtained based on
multi-level deep features learned by FCN-32s [19] different
from [14]. As our saliency detection algorithm integrates both
background and foreground information based on manifold
preserving, we call it SBFMP algorithm. Our contributions
in this paper are summarized as follows:

1) Instead of refining candidate seeds, we use probability
values of candidate seeds for further estimation of reliable
seeds.

2) We build a saliency propagation model in which
background and foreground information is fused and
manifold-preserving diffusion factor is also considered. Spe-
cially, reconstruction matrix A in manifold-preserving diffu-
sion factor is obtained based on multi-level deep features.

3) The results of extensive comparisons on four datasets
using different evaluation metrics verify the effectiveness of
SBFMP algorithm.

The remainder of the paper is organized as follows.
Sec. II reviews related work on salient object detection.
Sec. III describes SBFMP algorithm in details, including
graph construction, estimation of reconstruction matrix A and
the two-stage detection algorithm of salient objects. Results
of experiments and comparisons are given in Sec. IV. Finally,
the conclusion is drawn in Sec. V.

II. RELATED WORK
Existing salient object detection methods can be roughly
classified into two categories: hand-crafted features-based
methods and deep learning-based methods.

A. HAND-CRAFTED FEATURES-BASED METHODS
Many existing salient object detection models are established
based on hand-crafted features, including contrast-based
methods, graph-based methods and machine learning-based
methods. Considering the general properties of salient
objects in an image, some prior methods are fused with
the above mentioned hand-crafted feature-based models,
such as center prior, spatial distribution prior, background
prior, boundary prior, objectness prior and focus prior
e.g. [14], [16].

Contrast-based methods include local and global contrast-
based methods. Local contrast-based saliency is computed by
the difference degree between a certain pixel or area and its
neighbor components on some feature space, while global
contrast-based saliency is computed by the difference degree
between a certain pixel or area and other all components

on some feature space. Cheng et al. [17] considered the
global region contrast with respect to the entire image and
spatial relationships across the regions to extract saliency
map. Wang et al. [18] firstly obtained objectness areas using
BING algorithm [20], background information thus deter-
mined. Furthermore, combining background contrast prior,
background connectivity prior and spatial distribution prior
with the obtained background information, saliency map
related to backgrounds was formulated.

As our SBFMP algorithm is in fact proposed based on
graph methods, the detailed crucial steps of graph-based
methodswill be expanded. (1)For the selection of candidate
background seeds, image boundaries from four sides: top,
down, left and right are selected as candidate background
seeds based on background prior in [9]. However, for certain
complex images in which salient objects touch the boundaries
of the images, this selection method is unreliable. Therefore,
some researchers have attempted to filter the error bound-
aries touched by salient objects [10]–[13]. Wang et al. [11]
removed the foreground noise in the image borders by using
image edge information. Xia et al. [10] extracted back-
ground seeds from four side boundaries via divergence infor-
mation, which is based on edge weights and center prior.
Zhai et al. [12] filtered out one of the four boundaries that
most unlikely belong to the background based on color
distribution of the four boundaries. Wang et al. [13] used
probability of boundary superpixels belonging to background
computed by Mahalanobis distance of boundary superpixels
to analyze the properties of boundary. For the selection of
candidate foreground seeds, different from [9], [11], [14]
in which the first-stage saliency map using the adaptive
threshold is simply binarized and candidate foreground seeds
are extracted by selecting the superpixels whose saliency
values were larger than the threshold, foreground regions
were generated by using parametric maxflow based on the
consideration of the spatial compactness of salient objects
in [15]. Xia et al. [10] introduced a regularization rare term
based on [15], thus the foreground regions can be obtained by
solving an optimization problem. However, Zhai et al. [12]
determined foreground seeds by using center prior, with-
out referring to the first-stage saliency map. (2) Methods
for establishing saliency models of each stage are various.
Wang et al. [11] used Euclidean color and spatial distances
between each superpixel and background or foreground seeds
to obtain saliency of the superpixel. Xia et al. [10] utilized
geodesic distance between each superpixel and background
or foreground seeds to establish the two-stage detection mod-
els. Wei et al. [16] proposed the geodesic distance between an
internal node and the given virtual background node viewed
as the saliency of the internal node. Based on the different
types of seeds, Wang et al. [13] used different similarity
metric matrices to obtain the saliency of each superpixel.
Zhai et al. [12] proposed a novel saliency detection frame-
work via multiple random walkers (MRW) method based
on background and foreground seeds. After constructing the
graph of an image, Zhang et al. [21] proposed the travel time
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of the transient nodes being absorbed into absorbing nodes
deemed as the saliency of the transient node. As the expanded
work of [21], Zhang et al. [22] achieved a learnt transition
probability matrix by the sparse-to-full method. In addition,
angular embedding technique was used for refining the initial
saliency maps to enhance the saliency of the whole salient
object. Saliency detection was formulated as an energy func-
tion minimization problem in [9], [14]. Specially, manifold-
preserving diffusion factor was added to the energy mini-
mization model in [14] based on [9]. As the expanded work
of [9], Zhang et al. [23] constructed a multi-scale graph to
simultaneously capture local and global structure information
of an image and proposed the three-stage cascade scheme
for graph labeling. Similar to [23], our SBFMP algorithm
is also proposed based on energy minimization problem.
Different from [23], the graph constructed in SBFMP is single
scale, not multi-scale. Qin et al. [24] introduced Hierarchical
Cellular Automata (HCA)model consisting of twomain com-
ponents: Single-layer Cellular Automata (SCA) and Cuboid
Cellular Automata (CCA). SCA can exploit the intrinsic
relevance of similar regions on a graph. Low-level image
features as well as high-level semantic information extracted
from DNNs were incorporated into the SCA to measure the
correlation between different image patches. Furthermore,
CCA integrated multiple saliency maps generated by SCA
at different scales in a Bayesian framework. (3) The fusion
of two-stage saliency maps. The second-stage saliency map
was regarded as the final saliency map in [9], [12]–[14],
while the final saliency map was obtained by combining the
first-stage saliency map with the second-stage saliency map
via product operation in [11], [15].

Machine learning methods based on hand-crafted features
are used to detect salient objects from two aspects, one is to
learn weighted coefficients of different hand-crafted features
using some machine learning methods, and saliency values
of an image are then computed by fusing each feature with
regarding corresponding coefficient as its weight; the other is
to explore how to fuse various saliency maps from different
methods by applying somemachine learning methods, so that
better detection results can be obtained. Liu et al. [25] pro-
posed a set of features including the localmulti-scale contrast,
region center-surround histogram distance, and global color
spatial distribution. The final saliency map was obtained by
fusing these features according to CRF method. Meanwhile,
this algorithm was also applied to salient objects detection of
video sequence. Jiang et al. [26] firstly represented an image
by a set of multi-level segmentations. For each segmentation,
93-dimensional feature vector of each area was obtained by
extracting regional contrast, property and backgroundness
descriptors. Furthermore, using random forest method to
learn the regional saliency regressor based on the obtained
regional feature vectors, saliency map for each segmentation
was thus formulated. Lastly, learning weights of different
saliency maps with multi-level segmentations using a least
square estimator, the final saliency map was thus formed
by a linear combinatory of saliency maps with multi-level

segmentations. Mai et al. [27] proposed two methods for
fusing different saliency maps. For the first method, the final
saliency map was defined as a sigmoid function related
to saliency maps obtained by different methods and some
unknown coefficients. Herein, these unknown coefficients
can be determined by using normal logistic regressionmethod
on training data. Inspired by [25], they proposed the sec-
ond method by using CRF method to aggregate saliency
maps obtained by multiple methods, which not only assigned
the contribution of each saliency map to the final saliency
map, but captured the relation between neighboring pixels.
Yan et al. [28] integrated the saliency maps computed on the
multi-level segmentations of an image into a tree-structure
graph model, and the model can be solved by using belief
propagation. Li et al. [29] proposed a salient object detec-
tion algorithm based on reconstruction errors. They firstly
extracted boundary superpixels of an image as background
templates. Dense and sparse reconstruction errors of each
superpixel were then encoded based on these templates,
respectively. Pixel-level saliency measures by dense and
sparse reconstruction error propagation and refinement were
thus obtained. Finally, a clean and uniform saliency map was
formulated by combining the two saliency maps via dense
and sparse reconstruction using the Bayesian integration
method.

B. DEEP LEARNING-BSASED METHODS
Deep learning-based salient object detection models can be
roughly divided into two categories: region-based approaches
and fully convolutional networks (FCNs)-based approaches.

Region-based approaches use each image patch as the
basic processing unit for detecting salient objects. Early deep
learning-based research on salient object detection [30]–[32]
is related to region-based models. Zhao et al. [30] pre-
sented a multi-context deep learning framework for salient
object detection. They employed two different CNNs to
extract global and local context information, respectively.
Li and Yu [31] proposed a visual saliency model by utilizing
multi-scale features extracted from deep CNNs. In addition,
a complete saliency framework is developed by further inte-
grating CNN-based saliency model with a spatial coherence
model and multi-level image segmentations. Wang et al. [32]
predicted saliency maps by integrating both local estimation
and global search. Two different deep CNNs were trained to
capture local information and global contrast. Region-based
approaches are all operated at the patch level instead of the
pixel level, and each pixel is simply assigned the saliency
value of its enclosing patch. As a result, saliency maps are
blurry without fine details, especially near the boundary of
salient objects. Furthermore, all image patches are treated as
independent data samples even when they are overlapping.
Therefore, CNNs are run thousands of times to obtain the
saliency values of every patch, which is very computation-
ally expensive. To overcome the above mentioned problems,
recent research on this field tends to use FCNsmodels trained
end-to-end for detecting salient objects. Here, ‘‘FCNs’’ is
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one of the most popular CNNs, while ‘‘end-to-end’’ means
that deep network only needs to be run on the input image
once to produce a complete saliency map with the same pixel
resolution as the input image. Li and Yu [33] proposed an
end-to-end deep contrast network which was composed of a
pixel-level fully convolutional stream (FCS) and a segment-
level spatial pooling stream (SPS). A fully connected CRF
model can be optionally incorporated in the fused results
from these two streams. Wang et al. [34] proposed a novel
Localization-to-Refinement network for salient object detec-
tion. Global Recurrent Localization Network (RLN), which
included inception-like contextual weighting module and
recurrent module, focused on the location of salient objects
under various scenarios. Inception-like contextual weighting
module exploited contextual information by the weighted
response map, while the recurrent module iteratively refined
each convolutional block over time. Moreover, to effectively
recover salient object boundaries, a local Boundary Refine-
ment Network (BRN) and a refinement module were adopted
to learn local context information by the propagation effi-
cient. Li et al. [35] built internal semantic properties of
salient objects by using multi-task networks based on FCNs,
and fulfilled joint learning of the two tasks (salient object
detection and semantic segmentation). Meanwhile, the graph
Laplacian regularized nonlinear regression was used to refine
the coarse saliency map obtained by FCNs model, which
overcame the fuzzy object boundaries caused by the down-
sampling operations of CNNs.

III. THE PROPOSED SBFMP ALGORITHM
As SBFMP algorithm is proposed based on graph method,
the first step of SBFMP algorithm is to construct the cor-
responding undirected and weighted graph of an image.
In addition, similar to algorithms in [10]–[16], SBFMP algo-
rithm is also composed of two-stage salient object detection.
In the first stage, we select four boundaries as candidate
background seeds. Instead of further filtering candidates,
background probability calculated by [36] is used for esti-
mation of reliable background seeds, which is integrated
into a saliency propagation model. Excepting for considering
background information in the proposedmodel, themanifold-
preserving factor is also fused in the propagation model.
Through solving the first-stage propagation model, we obtain
a closed solution which is defined as the first-stage saliency.
In the second stage, partial candidate foreground seeds are
generated by binary segmentation of the first-stage saliency
map. The corresponding first-stage saliency is viewed as
the foreground probability of each candidate foreground
seed. Similar to the first-stage detection, the foreground
probability is integrated into another saliency propagation
model. Excepting for considering foreground information
in the proposed model, the manifold-preserving factor is
also added to the second-stage saliency propagation model.
The second-stage saliency values are obtained by solving
corresponding second-stage optimization model. Specially,
reconstruction matrix A of manifold-preserving term in the

propagation models is learnt by multi-level deep features
extracted from FCN-32s [19]. Finally, the second-stage
saliency map is viewed as the final saliency map.

The greater details of SBFMP algorithm are introduced
in Sec. III A-D. The corresponding undirected and weighted
graph construction for an image is described in Sec. III A.
Reconstruction matrix A used for constructing manifold-
preserving factor of propagation models is estimated in
Sec. III B. The method of the first-stage detection for salient
objects is proposed in Sec. III C. In addition, the second-stage
detection for salient objects is described in Sec. III D.

A. GRAPH CONSTRUCTION
First, we segment an image into superpixels by SLIC
method [37] and suppose that the number of superpixels is N .
Each superpixel, denoted as vi, (i= 1, 2 . . . , N), is viewed as a
node. The node set V is composed of node vi. As neighboring
nodes are likely to have a similar appearance and saliency
values, we use a k-regular graph to reveal the spatial relations
of the nodes. In this paper, k = 2 is selected as the number
of neighboring layers, that is, each node is connected with
its neighboring nodes. Each node is also connected with the
neighboring nodes of these nodes. In addition, the nodes of
the outmost layer from four sides, namely, the top, bottom,
left, and right, are selected as boundary nodes, which are con-
nected with each other since they are very likely to belong to
the same background regions. Suppose neighboring nodes vi
and vj are connected with edge eij, the edge set E is thus
composed of edges eij(i,j = 1,2,. . . , N). The weight of the
edges eij can be defined as

wij = e−
‖ci−cj‖
σ2 (1)

where ci and cj denote the mean color value of nodes vi and
vj in the CIELAB space, respectively. σ is a constant used to
control the strength of the weights. Matrix W = [wij]N×N
(wii = 0) is defined as an affinity matrix. Thus, an undirected
and weighted graph G = (V ,E) can be formed with node
set V and edge set E .
For the undirected and weighted graph G = (V ,E),

the degree of node vi is defined as

di =
∑
j

wij (2)

Degree matrix D is a diagonal matrix, the diagonal entries of
which are di(i = 1, 2. . . , N).

B. ESTIMATION OF RECONSTRUCTION MATRIX A
Similar to [14], supposing that manifold structure of an image
on feature space (high-dimensional space) is similarly pre-
served on saliency space (low-dimensional space), we intro-
duce reconstruction matrix A into the proposed models.
Inspired by locally linear embedding (LLE) [38], matrix A
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is formulated by minimizing the overall as follows,

argmin
aij

N∑
i=1


∥∥∥∥∥∥fi −

∑
j,j∼i

aijfj

∥∥∥∥∥∥
2

2

+ λ
∑
j,j∼i

a2ij


s.t

∑
j,j∼i

aij = 1, aii = 0, ∀i ∧= j, aij = 0 (3)

where j∼i denotes the neighboring label of the node vi and
i ∧= j shows that vi and vj are not adjacent each other. λ
is a small number for regularization which can guarantee
unique solution of (3). N is the number of nodes. Condition∑
j,j∼i

aij = 1 can ensure the reconstruction is linear and shift-

invariant [38].
In (3), fi is the feature vector of the node vi, which is

obtained by adopting different hierarchies of deep features
extracted from FCN-32s [19]. As is well-known, deep fea-
tures are highly versatile and have stronger presentational
power than traditional handcrafted features [39]. Although
the features in the last layers of CNNs encode semantic
abstractions of objects, they cannot precisely capture the
fine-grained low-level information, such as color, edge, and
texture, due to their low spatial resolution. Therefore, we use
low-level and high-level deep cues as the feature vector.
Inspired by [24], fi is determined based on features from
the final pooling layers of Conv1 and Conv5 in FCN-32s.
Specially, feature dimension of the final pooling layers of
Conv1 and Conv5 are 64 and 512, respectively, by concate-
nating these features from multiple levels, the feature vector
fi of the superpixel i thus is obtained.

Supposing that the number of neighboring nodes for the
node vi is τ (i), j∼i denotes the neighboring label of the node
vi, j = n1, n2, . . .nτ , (n1 < n2 <. . .< nτ ). Through these
definitions such as,

aij =


0, i = j

0, i ∧= j,
bij, j = n1, n2, · · · , nτ , j ∼ i,

, bi = (bi,n1 , bi,n2 , · · · , bi,nτ )
T ,

Hi = (fi − fn1 , fi − fn2 , · · · , fi − fnτ ), Zi = HT
i Hi,

Equation (3) is also described with vectors as,

argmin
bi

N∑
i=1

{
bTi Zibi + λb

T
i bi
}

s.t bTi 1τ = 1, i = 1, 2, · · · , n (4)

where 1τ is an all-one vector. Equation (4) is solved by using
Lagrange Multiplier method, and its solution is described as
follows,

bi = Norm
[
(Zi + λI )−1 · 1τ

]
, i = 1, 2, · · · ,N (5)

where I denotes τ dimensional identity matrix, and Norm(·)
represents the normalized function. It is worth noting that
a graph is commonly constructed by using k-NN method
in [38], the number of nonzero elements contained in each

row vector of matrix A is identical. However, the graph
obtained by using k-regular method in this paper determines
that the number of nonzero elements for each row vector of
matrix A is different.

C. THE FIRST-STAGE DETECTION FOR SALIENT OBJECTS
In the first-stage detection, candidate background seed infor-
mation is used to establish salient object detection model. For
SBFMP algorithm, selecting simply four boundaries of an
image as the first-stage candidate background seeds without
further considering the refinement of candidates is because
background probability as the estimation of reliable back-
ground seeds would be included in the following propagation
model.

Relative to candidate background seeds, Y b =

diag(yb1, y
b
2, · · · , y

b
N ) is the corresponding index diagonal

matrix of the node set V , and it is defined as following,

ybi =

{
1, vi ∈ BG
0, vi /∈ BG

(6)

where BG denotes boundary superpixel set of an image. For
the selected candidate background seeds, using boundary
connectivity method proposed by [36] to calculate the back-
ground probability pbgi of the node vi, and p

bg
i is defined as

follows, where σbndCon is empirically set as 1.

pbgi = 1− exp(−BndCon2(vi)
/
2σ 2

bndCon) (7)

BndCon(vi) is the boundary connectivity of the node vi and
its detailed calculation is explained in [36].

As the first-stage detection is related to candidate back-
ground seeds, the proposed first-stage model contains some
background information. Meanwhile, considering smooth-
ness and manifold-preserving terms, the first-stage detection
model is described as follows,

min
s

N∑
i=1

∑
j,j∼i

1
2
wij(si − sj)2 +

N∑
i=1

(si −
∑
j∼i

aijsj)2

+

N∑
i=1

pbgi y
b
i
s2i +

N∑
i=1

(1− pbgi )(1− ybi )(si − 1)2 (8)

where pbgi is determined by (7). wij and aij are obtained by
solving (1) and (3), respectively. ybi is assigned by (6). The
solution s of (8) represents the first-stage saliency.

Now, we analyze the meanings of (8). In (8), the first term
is the penalty to enforce the smoothness assumption so that
nodes connected by large weights wij should have similar
saliency values. The second term is the penalty to enforce the
local reconstruction assumption where manifold structure of
an image on feature space (high-dimensional space) is sim-
ilarly preserved on saliency space (low-dimensional space).
The third and fourth terms in (8) embody background and
saliency information of graph nodes. If superpixel i is a can-
didate background seed, corresponding index value ybi is set
as 1. As the value of the fourth term in (8) is zero, the fourth
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term is ignored and the third term is remained in (8). If back-
ground probability pbgi is larger for the superpixel i, the energy
function of (8) punishes the saliency of the superpixel i to
be smaller, which is obviously reasonable. On the contrary,
if the computed background probability pbgi is smaller for the
superpixel i, that is, the selected superpixel i is likely to be a
non-background superpixel, which implies the saliency value
of the superpixel i can be a little larger. Nevertheless, the
conclusion can exactly be drawn by analyzing the proposed
saliency model of (8). Similarly, if superpixel i is a non-
background seed, corresponding index value ybi is set as 0.
As the value of the third term in (8) is zero, the third term is
ignored and the fourth term is remained in (8). If background
probability pbgi is smaller for the superpixel i, the energy
function of (8) punishes the saliency of the superpixel i to
be larger, which is obviously reasonable. On the contrary,
if the computed background probability pbgi is larger for the
superpixel i, that is, the selected superpixel i is likely to be a
background superpixel, which implies the saliency value of
the superpixel i can be a little smaller. Nevertheless, the con-
clusion can exactly be drawn by analyzing the proposed
saliency model of (8). The above analysis results show that
the first-stage saliency model has implied the idea of filtering
candidate background seeds, which is different from some
methods on filtering boundaries [10]–[12], [35]–[37].

Equation (8) can be rewritten equivalently in a matrix form
as,

min
s
sT
[
W bgY b + B+ D−W + (I − A)T (I − A)

]
s

− 2bs+8TB8 (9)

where W bg
= diag(pbg1 , p

bg
2 , · · · , p

bg
N ), B = (I − W bg)

(I − Y b), 8 is an N-dimension and all-one column vector,
b = 8TB, and I denotes N-dimension unit matrix. By taking
the derivative on (9) and setting it equal to zero, the closed
solution of (9) is obtained as,

sb =
[
W bgY b + B+ D−W + (I − A)T (I − A)

]−1
bT (10)

where we denote sb as the saliency values obtained by
background seeds in order to distinguish the saliency values
obtained by foreground seeds. Similar to [9], [14], Equa-
tion (10) can also be unified as the form s=Ky, yet there exist
two different points from [9], [14]: firstly, some background
information of an image is reflected in matrix K as (10),
while no background information is reflected inK as [9], [14]
when background seeds are selected as queries. Secondly,
the model determined by (8) should ensure that the first-stage
saliency values can directly be computed by (10). However,
in [9], [14], the first-stage saliency values are indirectly
obtained by computing s = Ky.

D. THE SECOND-STAGE DETECTION FOR
SALIENT OBJECTS
As the final saliency map is the second-stage saliency map,
we firstly introduce the second-stage saliency detection in

this section. To capture the candidate foreground seeds, the
first-stage saliency map is binary segmented using the mean
value θ of the first-stage saliency map. The nodes that are
larger than threshold value θ are viewed as candidate fore-
ground seeds. We suppose that the set of candidate fore-
ground seeds is FG. Relative to these foreground candidates,
Y f = diag(yf1, y

f
2, · · · , y

f
N ) is the corresponding index diag-

onal matrix for the node set V , and it is defined as,

yfi =

{
1, vi ∈ FG
0, vi /∈ FG

(11)

Based on the foreground seed candidates and their
corresponding saliency values in the first-stage detection,
foreground probability pfgi of the node vi is defined as,

pfgi = sbi (12)

Similar to the first-stage model, the second-stage model con-
tains some foreground information. Meanwhile, considering
smoothness and manifold-preserving terms, the second-stage
detection model is described as follows,

min
s

N∑
i=1

∑
j,j∼i

1
2
wij(si − sj)2 +

N∑
i=1

(si −
∑
j∼i

aijsj)2

+

N∑
i=1

pfgi y
f
i
(si − 1)2 +

N∑
i=1

(1− pfgi )(1− y
f
i )s

2
i (13)

where wij and aij are obtained by solving (1) and (3), respec-
tively. yfi is assigned by (11). p

fg
i is determined by (12). Now,

we analyze the meanings of (13). As the meanings of the
first and second terms (smoothness and manifold-preserving
terms) in (13) are the same as (8), we only analyze the third
and fourth terms in (13) embodying foreground information
and saliency of graph nodes. If superpixel i is a foreground
seed candidate, corresponding index value yfi is set as 1.
As the value of the fourth term in (13) is zero, the fourth
term is ignored and the third term is remained in (13). If fore-
ground probability pfgi is larger for the superpixel i, the energy
function of (13) punishes the saliency of the superpixel i to
be larger, which is obviously reasonable. On the contrary,
if the computed foreground probability pfgi is smaller for the
superpixel i, that is, the selected superpixel i is likely to be
a non-foreground superpixel, which implies that the saliency
value of the superpixel i can be a little smaller. Nevertheless,
the conclusion can be exactly drawn by analyzing the pro-
posed saliency model of (13). Similarly, if superpixel i is a
non-foreground seed, corresponding index value yfi is set as 0.
As the value of the third term in (13) is zero, the third term is
ignored and the fourth term is remained in (13). If foreground
probability pfgi is smaller for the superpixel i, the energy
function of (13) punishes the saliency of the superpixel i to
be smaller, which is obviously reasonable. On the contrary,
if the computed foreground probability pfgi is larger for the
superpixel i, that is, the selected superpixel i is likely to
be a foreground superpixel, which implies that the saliency
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value of the superpixel i can be a little larger. Nevertheless,
the conclusion can exactly be drawn by analyzing the pro-
posed saliencymodel of (13). The above analysis results show
that the second-stage saliency model has implied the idea of
filtering candidate foreground seeds obtained by segmenting
the first-stage saliency map.

Equation (13) can be rewritten equivalently in a matrix
form as,

min
s
sT
[
(I−W fg)(I−Y f )+F+D−W+(I−A)T (I−A)

]
s

− 2fs+8TF8 (14)

where W fg
= diag(pfg1 , p

fg
2 , · · · , p

fg
N ), F = W fgY f , 8 is an

N -dimension and all-one column vector,f = 8TF and I
denotes N -dimension unit matrix. By taking the derivative
on (14) and setting it equal to zero, the closed solution of (14)
is obtained as,

sf =
[
(I−W fg)(I−Y f )+F+D−W+(I−A)T (I−A)

]−1
f T

(15)

where we denote sf , the second-stage saliency, as the saliency
values obtained by foreground seeds in order to distinguish
the saliency values obtained by background seeds. Herein, the
second-stage saliency map formulated by the second-stage
saliency is in fact the final saliency map.

IV. EXPERIMENTAL RESULTS
The proposed SBFMP algorithm is evaluated on four datasets.
The first dataset is the MSRA-10K dataset [43], which con-
tains 10,000 images. The second one is the DUT-OMRON
dataset [17], which contains 5,168 images. The third dataset
is the ECSSD dataset [44], which contains 1,000 images.
The fourth dataset is the PASCAL-S dataset [45], which
contains 850 natural images. The accurate salient objects
of the four datasets are marked manually. We compares the
performance of the proposed SBFMP algorithm with that of
the 19 state-of-the-art methods on the four datasets, namely,
CA [46], DSR [29], FES [47],MC [21], RBD [36], COV [48],
SEG [49], SIM [50], SR [51], SS [52], SWD [53], MR [9],
SF [54], GS [16], HS [44], MPDS [14], Neuro [55], the algo-
rithm proposed by [56] and MILPS [57]. Now, we briefly
introduce these comparison methods. Goferman et al. [46]
proposed a new type of saliency-context-aware saliency
which was based on four principles observed in the psy-
chological literature. Tavakoli et al. [47] proposed a new
saliency detection algorithm based on estimating saliency
of local feature contrast in a Bayesian framework. Zhu
et al. [36] proposed a robust background measure called
boundary connectivity and combined this metric with the
contrast to build a contrast function weighted by the back-
ground coefficients. Erdem and Erdem [48] used covari-
ance matrices of simple image features as meta-features
for saliency estimation. Rahtu et al. [49] proposed a saliency
measure formulated by using a probabilistic framework,
where different features were fused together in joint distri-
butions. A saliency model was obtained by generalizing an

efficient model of color appearance including a principled
selection of parameters as well as an innate spatial pooling
mechanism in [50]. By analyzing the log-spectrum of an
input image, Hou and Zhang [51] proposed a fast saliency
detection method based on the spectral residual of image.
Hou et al. [52] used the image signature as a descriptor of nat-
ural scenes to highlight sparse salient regions. Duan et al. [53]
defined the saliency of each patch drawn from an image
through three elements: dissimilarity, spatial distance and
central bias. Yang et al. [9] proposed a two-stage saliency
detection algorithm by using graph-based manifold ranking.
Perazzi et al. [54] firstly decomposed an image into per-
ceptually homogeneous elements and then derived saliency
estimations from two well-defined contrast measures based
on the uniqueness and spatial distribution of those elements.
Shi et al. [44] constructed multi-scale saliency maps based
on local contrast location heuristic and obtained the final
results by feeding these saliency maps into a hierarchical
inference model. Fu et al. [14] built a saliency propaga-
tion model based on the manifold smoothness and the local
reconstruction assumptions and proposed two-stage detection
scheme in which boundary prior, Harris convex hull and foci
convex hull were integrated. Fu et al. [55] applied Ncut to
a superpixel graph to obtain hierarchical spectral segments.
For these segments, three effective cues were incorporated to
estimate the regional saliency of each segment. Multi-layer
saliency maps were formed by propagating the saliency of
foreground seeds obtained using contrast prior and center
prior and background seeds obtained using boundary prior
in [56]. Huang et al. [57] took the proposals as the bags of
instances of multiple instances learning (MIL) and formu-
lated saliency detection problem as an MIL task. In addition,
DSR [29], MC [21] and GS [16] algorithms have been briefly
introduced in Sec. II.

A. PARAMETER SETTINGS AND EVALUATION METRICS
The number N of superpixels using SLIC method in all the
experiments is 300. Parameter σ 2 determined using (1) is
equal to 0.1 to construct affinity matrixW . While estimating
reconstruction matrix A, we set λ = 1× 10−4 in (4).

The above mentioned salient object detection algorithms
are evaluatedwith the help of the precision, recall, F-measure,
and the mean absolute error (MAE) metrics. Here, binary
mask Q is formed based on the predicted saliency map S
normalized between 0 and 255. G means the binary mask of
the ground-truth of the salient objects. In terms of the binary
mask, | · | indicates the number of non-zero entries in the
mask.

precision =
|Q ∩ G|
|Q|

, recall =
|Q ∩ G|
|G|

(16)

As quality of a saliency map can not be well evaluated only
using the precision and the recall values, the F-measure is
assumed as another evaluationmetric according to a weighted
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FIGURE 1. P-R curves generated by each stage detection on four datasets.

harmonic of the precision and recall,

Fβ =
(1+ β2)precision× recall
β2precision+ recall

(17)

where β2 = 0.3 can emphasize the importance of the
precision [58].

In addition, the MAE metric is also adopted to evaluate
the algorithm proposed in this paper. Here, S and G are
normalized within the range of [0, 1] as S̄ and Ḡ, respectively.
The MAE metric can be defined as,

MAE =
1

W × H

∑W

x=1

∑H

y=1

∣∣S̄(x, y)− Ḡ(x, y)∣∣ (18)

whereW andH are the width and height of the saliency map.

B. VALIDATION OF THE PROPOSED SBFMP ALGORITHM
To verify the effectiveness of the proposed two-stage detec-
tion, we compare the performance of the first-stage detec-
tion and the second-stage detection on the mentioned four
datasets. For convenience, the algorithm only containing the
first-stage detection is remarked as SBFMP-stage1. Results
in Fig.1 show that the performance of the second stage is
better than that of the first stage on four datasets by analyzing
the P-R curves.

Except for considering background and foreground infor-
mation in the propagation models, manifold-preserving term
is also fused into our proposed models. To directly show
the effects of the manifold-preserving term on saliency
models, we compare the performance with and without
manifold-preserving term on four datasets. For conve-
nience, the algorithm removing manifold-preserving terms
of (8) and (13) is remarked as SBFMP-wm. Results
in Fig.2 show that SBFMP algorithm achieves better per-
formance than SBFMP-wm algorithm on four datasets by
analyzing the P-R curves, which demonstrates that the fusion
of manifold-preserving term into the saliency models is
efficient.

C. COMPARISONS WITH OTHER STATE-OF-THE-ART
ALGORITHM
The proposed SBFMP algorithm is compared with the 19
state-of-the-art algorithms mentioned above, on the four

FIGURE 2. P-R curves generated by without and with manifold-preserving
term on four datasets.

FIGURE 3. Comparison results of SBFMP algorithm and other 19
algorithms on MSRA-10K dataset. (a) P-R curves of 11 algorithms, (b) P-R
curves of 10 algorithms, and (c) precision, recall and F-measure metrics
of 20 algorithms.

FIGURE 4. Comparison results of SBFMP algorithm and other 19
algorithms on DUT-OMRON dataset. (a) P-R curves of 11 algorithms,
(b) P-R curves of 10 algorithms, and (c) precision, recall and F-measure
metrics of 20 algorithms.

FIGURE 5. Comparison results of SBFMP algorithm and other 19
algorithms on ECSSD dataset. (a) P-R curves of 11 algorithms, (b) P-R
curves of 10 algorithms, and (c) precision, recall and F-measure metrics
of 20 algorithms.

datasets in terms of various evaluation measures. It can be
seen from the P-R curves in Fig.3. (a)-(b), Fig.4. (a)-(b),
Fig.5. (a)-(b), Fig.6. (a)-(b) that the SBFMP algorithm is
prior to the state-of-the-art algorithms on the four datasets.
In addition, the precision, recall, and F-measure metrics on
the four datasets are shown in Fig.3. (c), Fig.4. (c), Fig.5. (c),
Fig.6. (c). It is worth to noting that F-measure score still
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FIGURE 6. Comparison results of SBFMP algorithm and other
19 algorithms on PASCAL-S dataset. (a) P-R curves of 11 algorithms,
(b) P-R curves of 10 algorithms, and (c) precision, recall and F-measure
metrics of 20 algorithms.

performs commensurate or even worse than some methods
on DUT-OMRON and ECSSD datasets. On DUT-OMRON
dataset, even though F-measure score of SBFMP algorithm
is commensurate with the SEG algorithm and is worse than
GS algorithm, precision score of SEG algorithm is too poor
and precision and recall scores of GS perform worse than
SBFMP. On ECSSD dataset, even though F-measure score of
SBFMP algorithm is commensurate with the GS, HS, Neuro
algorithms and is worse than the algorithm in [56], precision
score of the algorithm in [56] is a bit low and precision and
recall scores of GS, HS and Neuro algorithms perform worse
than SBFMP. Therefore, we think SBFMP is prior to other
methods through overall evaluations on four datasets. The
MAE values of these algorithms on the four datasets are listed
in Table 1. Although SBFMP algorithm does not achieve the
top rank by analyzing these MAE values, it achieves a high
level of performance compared to the other algorithms. A few
saliency maps on the four datasets are illustrated in Fig.7.

TABLE 1. Mean absolute error results of 20 algorithms on the four
datasets.

We find that SBFMP algorithm can suppress backgrounds as
well as highlight the salient objects well.

V. CONCLUSION
Graph-based two-stage salient object detection algorithm is
proposed in this paper. In the first stage, as not all boundary
superpixels coming from four sides for an image are reliable
background seeds, background information is integrated into
the first-stage saliency model to improve the robustness of

FIGURE 7. Saliency detection results of different methods. The images in rows 1–3, 4–6, 7–9, and 10–12 are from the MSRA-10K, DUT-OMRON,
ECSSD, and PASCAL-S datasets, respectively.
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the proposed algorithm. In the second stage, as not all fore-
ground seeds obtained by segmenting the first-stage saliency
map are flawless, foreground information is fused into the
second-stage saliency model. Meanwhile, considering the
manifold structure of an image, manifold-preserving term
is also added to the two-stage saliency models, respec-
tively. Specially, reconstruction matrix A is learnt by using
multi-level features extracted from FCN-32s, which is more
reasonable than only using color features for the estimation of
A. Therefore, the two-stage saliencymodels for SBFMP algo-
rithm include background and foreground information as well
as fully consider manifold-preserving property of an image.
The experimental results demonstrate that SBFMP algorithm
can achieve satisfactory detection results compared with the
state-of-the-art algorithms in terms of different metrics.
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