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ABSTRACT Caching at wireless edge is a promising way to satisfy the explosively increasing mobile data
demands, if future content popularity is known in advance. However, the time-varying nature of content
popularity makes the popularity prediction far from perfect, which inevitably degrades the gain from caching.
In this paper, we resort to a hybrid proactive and reactive policy to deal with the dynamics of popularity,
in particular the hybrid of proactive probabilistic caching policy and least recently used policy, which are
appropriate respectively for the contents with low and high dynamic popularity. We divide the contents
requested in a region into two classes, where one can be modeled by independent reference model (IRM)
and the other can be modeled by shot noise model (SNM). To maximize the total successful offloading ratio
achieved by caching the two classes of contents, we optimize the hybrid caching policy including both the
cache resource allocation to each class of contents and the probability of caching each IRM content. We find
the optimal solution to the problem for general case, and provide a closed-form solution in a special case
to gain insights. To provide a viable solution for practical use, we propose a heuristic method to obtain the
optimal allocation fraction, and predict the popularity distribution and the allocation fraction using neural
networks with historical data. We validate our analytical results by simulation results via synthetic datasets.
We evaluate the performance of the proposed hybrid caching policy via synthetic data generated by SNM
and two real datasets, and compare it with the proactive policy, the reactive policy and the existing hybrid
proactive and reactive policy.

INDEX TERMS Dynamic popularity, proactive and reactive caching, cache resource allocation, shot noise
model, independent reference model, real datasets.

I. INTRODUCTION
Caching at the wireless edge, e.g., base stations (BSs),
has been shown a promising technique to support the
explosively increasing traffic demand and improve user
experience [1], [2], if future content popularity is known. Due
to the vast number of available contents and the limited
cache sizes at the BSs, proactive caching is believed of great
potential for wireless edge caching [3]. As a consequence,
proactive caching policies have been extensively studied
towards diverse goals, such as minimizing average down-
load delay [4], energy cost [5] or average service cost [6],

The associate editor coordinating the review of this article and approving
it for publication was Walid Al-Hussaibi.

and maximizing cache-hit probability [7], [8] or successful
transmission probability [9].

Existing works on proactive caching have demonstrated
remarkable performance gain. Most works, however, explic-
itly or implicitly assume that the requests for contents are sub-
ject to a so-called independent reference model (IRM) [10]
or simply assume that the popularity is known. IRM assumes
that the content catalogue is fixed, and the popularity distri-
bution (i.e., the probability that a content is requested by all
users in a region) is static. Although widely used and easy for
optimization and analysis, IRMhas been shown inappropriate
to characterize the realistic arrival process of content requests
recently [11], [12]. In practice, the popularity distribution is
always time-varying, which is hard to predict accurately and
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hence cannot be assumed known. This calls for machine
learning techniques to make the prediction.

To deal with the dynamics of popularity distribution, sev-
eral methods are proposed recently, which mainly include the
following three kinds of approaches.

The first approach is to periodically predict the
time-varying popularity distribution for updating proactive
caching policies. In [13], a stacked auto-encoder based tech-
nique was proposed to classify the future popularity by
extracting the spatio-temporal features of requests for con-
tents. In [14], the number of requests in the next update dura-
tion was predicted with a grouped linear prediction method
by taking the dynamic aging of each file into account. The
caching performance of this kind of approach is limited by
the inaccurate prediction of dynamic popularity, especially
for the cold-start contents that will be requested in the
next caching update duration but have never been requested
before.

The second approach resorts to request-driven update of
cache storage to better track the dynamics of popularity dis-
tribution. Different from traditional reactive caching polices,
e.g., least recently used (LRU) or least frequently used poli-
cies, this approach employs reinforcement learning based
methods, which is capable of learning the proactive caching
decisions from past experiences. The works in [15], [16]
directly optimized the caching policies with two kinds of
deep reinforcement learning techniques, respectively. Never-
theless, this kind of approach is with high sample complexity
and computational complexity.

The third approach is to design hybrid proactive and
reactive caching, aimed to take the advantages of proactive
caching meanwhile handle the contents whose request prob-
abilities are hard or even impossible to predict. In [17], popu-
larity distribution was predicted by extreme learning machine
for periodically updating the cache list to initialize the cache
space according to an optimized caching policy. A variation
of LRU was then used to update the cache list in the next
update duration. In [18], the cache resource was divided for
proactive and reactive caching, where linear regression was
used to predict the view counts of the music videos in the next
day for proactive caching, and LRU was employed for reac-
tive caching. The performance of this hybrid caching depends
on how to allocate the cache resource, which however is not
addressed in [18].

As observed in [19], a key feature of real-world con-
tent popularity is the so-called temporal locality, i.e., users’
requests for a content almost all arrive within a short
period, beyond which the content is rarely requested. The
widely-employed IRM in the literature of wireless caching
fails to model the temporal locality and hence is not applica-
ble to characterize dynamic popularity. A novel traffic model,
namely shot noise model (SNM), is more relevant, though
more complicated, to characterize the users’ requests [19].
SNM is able to capture several important content-level traf-
fic features: the temporal locality of requests for a content,
the time-varying content catalogue due to the birth of new

contents and death of old contents and dynamic popular-
ity distribution. In [20], SNM was employed to design the
caching policy with small population of users at the wire-
less edge. In [21], SNM was used to generate synthetic data
of requests for evaluating the caching performance.

Different from most priori works considering IRM
(e.g., [4]–[9], [22]–[25]), which actually assumes that all
contents have long lifespans and follow static popularity
distribution with static catalogue size, we divide the contents
requested in a region into two classes. To take into account
the dynamic popularity distribution, we optimize a hybrid
proactive and reactive caching policy for each BS with both
IRM and SNM. To illustrate the gain of the hybrid caching
policy in cache-enabled cellular networks, we employ the
probabilistic caching policy commonly applied for randomly
located BSs [9], [22] and LRU [19], [26] for the IRM and
SNM contents, respectively, and use successful offloading
ratio (SOR) as the objective for optimization. To remove the
assumption of knowing future content popularity and other
traffic parameters for optimizing the hybrid policy, we resort
to neural networks to predict popularity distribution and the
cache resource allocation with the historical data of requests.

The main contributions are summarized as follows.

• We formulate and solve an optimization problem for
the hybrid caching policy, which jointly optimizes the
fraction of cache resource allocated to each class of con-
tents and the probability of caching each IRM content
to maximize the total SOR. We derive a closed-form
solution in a special case, which provides the guideline
for designing an effective method to obtain the optimal
cache resource allocation.

• We design neural networks to predict popularity distri-
bution and learn the optimal cache resource allocation in
the next update duration from the historical data.

• We evaluate the performance of the optimized hybrid
caching policy with both synthetic and real datasets.
Simulation results demonstrate evident gains of the pro-
posed policy over non-hybrid proactive caching policy
and reactive caching policy as well as the existing hybrid
proactive and reactive caching policy on the datasets
with dynamic popularity.

The remainder of this paper is organized as follows. Sec. II
introduces the system and traffic models. Sec. III optimizes
the hybrid caching policy, and provides a practical method to
allocate cache resource. Sec. IV designs the learning-based
hybrid caching policy. Sec. V evaluates the performance
of the hybrid caching policy with both synthetic and real
datasets. The conclusions are drawn in Sec. VI. The main
parameters of the paper are summarized in TABLE 1.

II. SYSTEM AND TRAFFIC MODELS
Consider a cache-enabled wireless network, where the loca-
tions of BSs are modeled by a homogeneous Poisson point
process (PPP), and users located according to an independent
stationary point process initiate requests for contents. Each

VOLUME 7, 2019 120789



K. Qi et al.: Learning a Hybrid Proactive and Reactive Caching Policy in Wireless Edge Under Dynamic Popularity

TABLE 1. List of main parameters.

BS is connected to the core network with capacity-limited
backhaul, and is equipped with cache that can store Nc con-
tents. For simplicity, we assume that each content is with
same size, but the results are applicable for the general case
with different sizes by dividing each content into chunks with
equal size.

A. TRAFFIC MODEL
The requested contents can be divided into two classes. One
class of contents can be modeled by IRM (called IRM con-
tents for short), and the other class of contents can bemodeled
by SNM (called SNM contents).

For the IRM class of contents, the requests for contents are
assumed as a stationary Poisson request process with average
request arrival rate ρ0. The popularity distribution, defined as
the request probabilities of contents in a catalogue of size N I

f ,
follows Zipf distribution as in the literature [3], [27]. In par-
ticular, the probability of requesting the f -th most popular

content is expressed as qf = f −δ/
∑N I

f
j=1 j

−δ , where parameter
δ reflects the popularity skewness and a larger value of δ
indicates a more skewed popularity distribution. According
to the analysis from real datasets, the value of δ is typically
within (0, 1) [27].
For the SNM class of contents, the content-level traffic

model proposed in [19] can be employed to characterize both
the request arrival process of each content and the new content
arrival process. In particular, the requests for them-th content
are modeled as an inhomogeneous Poisson process with the
following features: 1) popularity profile 3m(t), which is the
normalized average request arrival rate at time instant t with
3m(t) ≥ 0 and

∫
∞

0 3m(τ )dτ = 1, 2) lifespan Tm, defined
as Tm = 1/

∫
∞

0 32
m(τ )dτ in [19], and 3) volume of requests

Vm, which is the total number of requests received by the
content during its lifespan. One can find that SNM models
the time-varying average request arrival for each content, and
then the instantaneous request arrival rate of the m-th content
at t can be obtained as Vm3m(t − tm), where tm is the time
when the content becomes available in the system and can be

requested by users. The new content arrival is modeled as a
homogeneous Poisson process with average arrival rate λ.
In [19], the request volume Vm is modeled as an indepen-

dent identically distributed (i.i.d.) random variable following
Pareto distribution with parameters β > 1 and Vmin, and the
probability density function is

fVm (v) = βV
β

minv
−(β+1), v ≥ Vmin. (1)

It is proved in [28] that if the values of Vm follow i.i.d.
Pareto distribution, then the sorted volumes of requests in
descending order approximately obey the Zipf distribution
with parameter δS = β−1 for a large content catalogue.
Therefore, we can use parameter δS to reflect the popularity
skewness of the SNM contents.

For the SNM contents, the analyses in [19], [29] indicate
that the performance of LRU policy mainly depends on the
average lifespan of the contents and is not sensitive to the
shape of popularity profile 3m(t). This suggests that we can
employ a simplified SNMproposed in [20]. It assumes that all
the SNM contents have equal lifespan T , which is the average
lifespan of all SNM contents, and assumes a rectangular pop-
ularity profile for all contents with 3(t) = 1/T , t ∈ [0,T ].
With this simplified SNM, we can obtain the average number
of requested contents during the lifespan as NS

f = λT , which
can be regarded as the catalogue size of the SNM contents.

An example of the SNM is provided in Fig. 1, where the
rectangular popularity profile is used for illustration.

FIGURE 1. Illustration of the arrival process of three SNM contents and
their request arrival processes with rectangular popularity profile.

Remark 1: The assumptions in this subsection are only
used for deriving and analyzing the optimal hybrid caching
policy, which are no longer used again later when we learn
the popularity distribution and the cache resource allocation
from the historical data.

B. USER ASSOCIATION AND PERFORMANCE METRIC
We consider densely deployed BSs, where the system is
interference-limited and the impact of noise is negligible. For
cache-enabled cellular networks where only one class of con-
tents are requested, successful offloading probability (SOP) is
often employed as the performance metric for edge caching.
The SOP is defined as the probability that the requested
content from a user can be successfully downloaded from
the cache of a BS. For interference-limited networks, suc-
cessfully downloading means that the received signal-to-
interference ratio (SIR) is larger than a given threshold γ0.
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The SOP depends on user association strategy. Under the
hybrid caching policy, each BS maintains two lists of cached
contents, namely IRM list and SNM list. The IRM list is
generated by the proactive probabilistic caching policy, which
can be updated in off-peak time, say midnight. Thus, it is
reasonable to assume that each BS can share the IRM list
with other BSs. The SNM list is generated by the reactive
LRU policy, which is frequently updated by evicting the least
recently used contents whenever new requests arrive. Due to
the difficulty of sharing the dynamic SNM list among BSs,
we assume that each BS does not know the SNM lists of other
BSs. This leads to the following user association strategy. If a
user requests an IRM content, its local BS (i.e., its nearest
BS) will check the IRM lists of all BSs. If the requested
content is on the lists meanwhile satisfying the SIR threshold,
the user will be associated with the nearest BS that caches
the requested content. Otherwise, the user will be associated
with its local BS to fetch the content via backhaul. If a user
requests a SNM content, it will be associated with its local BS
since the SNM lists of other BSs are unknown. The local BS
fetches the requested content either from its own cache or via
backhaul, depending on whether or not the requested content
is on its SNM list.

Since we consider cellular networks where two classes
of contents are requested, we employ total SOR achieved
by caching both SNM and IRM contents as the objective
function. The SOR is defined as the ratio of the average
numbers of successfully offloaded requests for both classes
of contents to the average number of all received requests in
a caching update duration, which is a weighted sum of the
SOP achieved by each class of contents.

III. OPTIMIZING A HYBRID PROACTIVE AND REACTIVE
CACHING POLICY
The caching policies appropriate for the IRM and SNM
contents differ. For the IRM contents, the static popularity
distribution can be predicted from the historical number of
requests, and hence proactive caching policy can perform
well. For the SNM contents, the popularity distribution is
hard to predict, especially for the newly-arrived contents
(i.e., cold-start contents). This inevitably degrades the per-
formance of proactive caching, and hence reactive caching
policy is often employed [19]. Since both IRM and SNMcon-
tents may be requested in a cell, it is natural to design a hybrid
policy with both proactive and reactive caching, where the
cache resource at a BS is periodically allocated to cache IRM
and SNM contents. To illustrate the benefits of the hybrid
proactive and reactive caching, we take two typical caching
policies as an example, which are the proactive probabilistic
caching policy appropriate for PPP-modeled BSs [9], [22]
and the reactive LRU caching policy.

In this section, we formulate and solve an optimization
problem for the hybrid caching policy, which determines the
cache resource allocation to the two classes of contents and
the probability of caching each IRM content. We then derive
a closed-form solution in a special case.

A. PROBLEM FORMULATION
Let pSoff(η) denote the SOP achieved by caching the SNM
contents, which depends on the fraction of cache resource
η allocated to this class of contents, 0 ≤ η ≤ 1. Then,
the fraction of cache resource allocated to the IRM contents is
1− η. Let pIoff(η, c) denote the SOP of caching the IRM con-
tents with the proactive probabilistic caching policy [9], [22],
which depends on η and the probabilities of caching the IRM
contents, denoted as c = [cf ]f=1,··· ,N I

f
with 0 ≤ cf ≤ 1 and

‖c‖1 ≤ (1− η)Nc, where ‖·‖1 is the l1 norm.
The total SOR achieved by caching both SNM and IRM

contents can be obtained as

ptotoff(η, c) =
E[QS]pSoff(η)+ E[QI]pIoff(η, c)

E
[
QS + QI

]
, wSpSoff(η)+ w

IpIoff(η, c), (2)

whereQS andQI respectively denote the numbers of received
requests for the SNM and IRM contents during each caching

update duration Tu, wS
=

E
[
QS]

E[QS+QI] and w
I
=

E
[
QI]

E[QS+QI] are
respectively the fractions of the average numbers of requests
for the SNM and IRM contents during Tu, and E[·] denotes
the expectation operation. It is clear that wS

+ wI
= 1.

For the SNM contents, the number of new contents in Tu
(i.e., the contents that have never been requested before),
denoted by n, is a random variable, which obeys Poisson
distribution with mean λTu. Since Vm, m = 1, · · · , n are
i.i.d. random variables, the average number of requests for
the SNM contents can be expressed by taking the expectation
over both n and Vm as

E
[
QS]
= EVm

{
En
[ n∑
m=1

Vm
]}

= En
{
nE[Vm]

}
= λTuE[Vm]. (3)

For the IRM contents, the average number of requests
during Tu is E[QI] = ρ0 Tu. Then, we have

wS
=

λE[Vm]
λE[Vm]+ ρ0

, wI
=

ρ0

λE[Vm]+ ρ0
. (4)

To obtain the expression of ptotoff(η, c) for optimization,
we next investigate the SOPs achieved by caching IRM and
SNM contents separately.

Given the considered user association strategy, the SOP
achieved by caching the IRM contents with probabilistic
caching policy in systems subject to Rayleigh fading channel
can be obtained as

pIoff(η, c)=
N I
f∑

f=1

qf P{γf >γ0}
(a)
=

N I
f∑

f=1

qf cf

(1−γ 2/α
0 ε1)cf +γ

2/α
0 ε0

,

(5)

where γf is the SIR at the user when receiving the f -th
IRM content, P{γf > γ0} is the probability of γf being
larger than the SIR threshold γ0, step (a) is derived using
the similar method in [24], α is the path-loss exponent,
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ε0 =
∫
∞

0
1

1+uα/2
du, ε1 =

∫ γ−2/α0
0

1
1+uα/2

du, and the term

1 − γ 2/α
0 ε1 > 0 holds because γ 2/α

0 ε1 =
∫ 1
0

γ0
γ0+vα/2

dv <∫ 1
0 dv = 1.
The SOP for the SNM contents can be expressed as

pSoff(η) = pSh(η)P{γ > γ0}
(b)
=

pSh(η)

1+ γ 2/α
0 (ε0 − ε1)

, (6)

where pSh(η) is the cache-hit ratio of LRU policy, P{γ > γ0}

is the probability of the SIR γ >γ0, and again step (b) can be
obtained by following the derivations in [24] given the user
association strategy.

The cache-hit ratio of LRU policy depends on cache evic-
tion time, which is the duration from the time when a content
enters the cache until the content is evicted. The cache evic-
tion time is a random variable relying on the request arrival
process of the content. To derive the cache-hit ratio of LRU,
Che’s approximation is commonly applied by assuming that
the cache eviction time is constant and independent of spe-
cific contents [10]. Based on this approximation, the cache-
hit ratio for the SNM contents with a single cache can be
approximated as [19]

pSh(η) ≈ 1−
∫
∞

0
3(τ )

φ′Vm

(
−
∫ tc
0 3(τ − θ )dθ

)
E[Vm]

dτ, (7)

where φ′Vm (x) = EVm
[
VmexVm

]
, and tc is the cache eviction

time for the SNM contents, which is the unique solution of
the following equation

ηNc = λ

∫
∞

0
1− φVm

(
−

∫ tc

0
3(τ − θ )dθ

)
dτ, (8)

where φVm (x) = EVm
[
exVm

]
.

The results given by (7) and (8) cannot be directly used
for the optimization of the hybrid caching policy, because
they do not provide an explicit relationship between pSh(η)
and η. In the following, we develop a closed-form expression
of pSh(η) with respect to η by resorting to approximations
under the small-cache scenario, where the cache size of a
BS is far smaller than the content catalogue size, i.e., Nc�

min
{
NS
f ,N

I
f

}
. The approximated cache-hit ratio is given in

the following proposition.
Proposition 1: The cache-hit ratio for the SNM contents

under the small-cache scenario can be approximated as

pSh(η) ≈ 1−
E
[
Vm
∫
∞

0 3(τ )e−
Vm3(τ )
λE[Vm] ηNcdτ

]
E[Vm]

. (9)

Proof: See Appendix A.
Note that Proposition 1 is also applicable to our network with
multiple caches where the traffic load is uniform among cells.

By substituting (9) into (6), we can obtain the SOP of the
SNM contents pSoff(η). Then, substituting it and (5) into (2),
we can approximate the total SOR as

ptotoff(η, c) ≈
wS

1+ γ 2/α
0 (ε0 − ε1)

(
1−

E
[
Vme
−

Vm
NS
f E[Vm]

ηNc]
E[Vm]

)

+wI
N I
f∑

f=1

qf
cf

cf + γ
2/α
0 (ε0 − cf ε1)

, p̂totoff(η, c),

(10)

where the rectangular popularity profile3(τ ) = 1/T for τ ∈
[0,T ] is considered as discussed in Sec. II.
Remark 2: The SOP for SNM contents given in (6)

(and (9)) depends on several traffic parameters, e.g., the aver-
age content arrival rate λ, average lifespan T and Pareto
distribution parameter β. This seems to conflict with the
usage of LRU for SNM contents since LRU policy does not
need any traffic parameters. It should be clarified that these
parameters are only used for optimizing η rather than the
caching policy.

Finally, we can formulate the hybrid caching policy opti-
mization problem as follows,

P1 : max
η,c

p̂totoff(η, c) (11a)

s.t. 0 ≤ η ≤ 1, (11b)

0 ≤ cf ≤ 1, f = 1, · · · ,N I
f , (11c)

ηNc + ‖c‖1 ≤ Nc, (11d)

where (11d) is the constraint on cache resource, the term ηNc
is the cache resource for SNM contents, and the term ‖c‖1 is
the cache resource for IRM contents as proved in [22].

In practice, we need to ensure that the cache resource
allocated to each class of contents is an integer, i.e., ηNc ∈ Z
and ‖c‖1 ∈ Z. Under the integer constraint, we can find
the optimal values of η and c that maximize p̂totoff(η, c) in
two steps: 1) obtain the optimal solution η∗ and c∗ of P1,
2) quantize η∗Nc and ‖c∗‖1 to address the integer constraint
by providing a quantization algorithm. The details are pre-
sented in the next subsection.

B. OPTIMIZATION OF HYBRID CACHING POLICY
Since the term 1 − γ

2/α
0 ε1 is positive as shown below

(5), we can readily prove that the objective function of
problem P1 is concave by examining its second derivative.
From the Karush-Kuhn-Tucker (KKT) conditions of P1 [30],
the optimal solution η∗ and c∗ of P1 can be derived as (see
Appendix B)

η∗ =
[
g−1s

(
µ∗
(
1+ γ 2/α

0 (ε0 − ε1)
))]1

0
, (12a)

c∗f =
[

1

1− γ 2/α
0 ε1

((γ 2/α
0 ε0wIqf
µ∗

)1/2
− γ

2/α
0 ε0

)]1
0
, ∀f ,

(12b)

where gs(η∗) , wS

NS
f E2[Vm]

E{V 2
m e
−

Vmη∗Nc
NS
f E[Vm]

} monotonically

decreases with η∗, g−1s (·) is the inverse function of gs(·),
[x]10 = min{max{x, 0}, 1} denotes that x is truncated by
0 and 1, and µ∗ can be obtained from the equality η∗Nc +

‖c∗‖1 = Nc by bisection search. It is noteworthy that (12b) is
applicable to the case with any given allocation fraction.
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After obtaining the optimal solution of P1, η∗ and c∗,
we next quantize η∗Nc and ‖c∗‖1 to address the integer
constraint. We first compute the SORs corresponding to the
ceiling and floor of η∗Nc as p̂totoff(η1, c1) and p̂totoff(η2, c2),
respectively, where η1 = dη∗Nce/Nc, η2 = bη∗Ncc/Nc, d·e
and b·c are the ceiling and floor operators, and c1 and c2 that
satisfy ‖c1‖1 = (1 − η1)Nc and ‖c2‖1 = (1 − η2)Nc can be
found by bisection search, respectively. Then, we compare
p̂totoff(η1, c1) and p̂

tot
off(η2, c2), and choose the one (i.e., η1 and

c1, or η2 and c2) with larger SOR as the final solution.

C. SPECIAL-CASE ANALYSIS
To gain useful insights, we derive a closed-form solution of
cache resource allocation in a special case, where the SIR
threshold γ0 is relatively high, say no less than 0 dB, such
that each user needs to be associated with the local BS with
high probability. Given the local BS association strategy, it is
shown in [1] that the optimal proactive caching policy is the
popular caching policy, i.e., deterministically caching the
most popular contents. This means that in this special case
the probabilistic caching policy becomes the popular caching
policy for the IRM contents.

With such caching policy, only the (1−η)Nc most popular
contents are cached, i.e., the caching probabilities are cf = 1
for f =1, · · · , (1−η)Nc and cf =0 for other f . Then, the SOP
of the IRM contents can be obtained as

pIoff(η) =

∑(1−η)Nc
f=1 qf

1+ γ 2/α
0 (ε0 − ε1)

=
pIh(η)

1+ γ 2/α
0 (ε0 − ε1)

, (13)

where pIh(η) ,
∑(1−η)Nc

f=1 qf is the cache-hit ratio.
For notational simplicity, suppose that the SNM contents

and the IRM contents exhibit the same popularity skewness,
i.e., δS = δ, but the analysis for arbitrary δS and δ is similar.

By substituting (13) into P1, we can obtain a problem to
optimize the allocation of cache resource η. Yet because η
locates in the upper limit of the summation in the numerator
of (13), solving the problem is difficult. We thus introduce the
approximation

∑M
i=1 i

−δ
≈
∫ M
0 x−δdx = M1−δ

1−δ for δ ∈ (0, 1),
which is an inverse operation of numerical integration. Then,
pIh(η) can be approximated as

pIh(η) =

∑(1−η)Nc
f=1 f −δ∑N I

f
j=1 j

−δ

≈

(
(1− η)Nc

N I
f

)1−δ

, p̂Ih(η), (14)

which is accurate for small or moderate popularity skewness
δ according to our evaluations.

With (13) and (14), P1 can be rewritten as

P2 : max
η

ptotoff(η) ≈
wSp̂Sh(η)+ w

Ip̂Ih(η)

1+ γ 2/α
0 (ε0 − ε1)

(15a)

s.t. 0 ≤ η ≤ 1. (15b)

It is not hard to prove that P2 is concave. Then, from
the KKT conditions, we can obtain the first-order optimality

condition of P2 as

−
wSNc

NS
f E2[Vm]

E

[
V 2
m e
−

Vmη∗Nc
NS
f E[Vm]

]

+wI(1− δ)

(
Nc

N I
f

)1−δ(
1− η∗

)−δ 
= 0, if 0 < η∗ < 1,
≥ 0, if η∗ = 0,
≤ 0, if η∗ = 1,

(16)

where the third case will not happen for 0 < δ < 1, because
with η∗ = 1 the left-hand side of (16) is positive. It indicates
that only caching SNM contents at BS is not optimal.

Upon substituting δ = δS = β−1 and (4) into (16),
we obtain that

β/(1− β)
E[Vm]T

E

[
V 2
me
−

Vm
NS
f E[Vm]

η∗Nc

]
︸ ︷︷ ︸

gl (η∗)

−
ρ0

N I
f

(
(1− η∗)Nc

N I
f

)− 1
β

︸ ︷︷ ︸
gr (η∗){

= 0, if 0 < η∗ < 1,
≤ 0, if η∗ = 0,

(17)

where two functions gl(η∗) and gr (η∗) are defined as shown
in (17). Then, the optimal solution η∗ can be approximated as
shown in the following proposition.
Proposition 2: The optimal solution η∗ under the

small-cache scenario can be approximated as

η∗ ≈


h−1(DNc), if 1 < β < 2,

max

{
1−

(
ρ0T
E[Vm]

β − 2
β−1

)β(N I
f )
1−β

Nc
, 0

}
, if β > 2,

(18)

where D ,
((AβE[Vm]

ρ0T

)β (N I
f )
β−1

(
λT
)(2−β)β) 1

(β−1)2 > 0 for

1 < β < 2 with Aβ = β
(β−1
β

)β−1
0(2 − β), h(x) =

x
(2−β)β
(β−1)2 /(1− x)

1
(β−1)2 , h−1(·) is the inverse function of h(·),

and h−1(DNc) monotonically increases with Nc.
Proof: See Appendix C.

Remark 3: Based on the closed-form solution (18), we can
observe several monotonic properties of the optimal fraction
of cache resource allocated to SNM contents η∗ as follows.
It can be observed that η∗ increases with the average request
volume of the SNM content E[Vm], and increases with the
average content arrival rate of the SNM contents λ if 1 <
β < 2. In addition, η∗ decreases with the average request
arrival rate of the IRM contents ρ0. From (4), we can see
that wS also increases with E[Vm] and λ, and decreases with
ρ0. This observation is helpful to design a practical cache
allocation fraction method with learned information from
historical number of requests.

Besides, from Proposition 2 we can also obtain the fol-
lowing observations that help understand the behavior of the
optimal cache resource allocation. (1) η∗ increases with the
cache size of BS Nc if η∗ 6= 0. This can be explained as
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follows. With the popular caching policy, the IRM contents
with high request probabilities will be cached first. When
further increasing the cache size, since the remaining IRM
contents are less popular, the fraction of cache resource allo-
cated to them should be less than that allocated to the already
cached popular contents. As a result, the total fraction of
cache resource allocated to the IRM contents will reduce
whenNc increases, i.e., η∗ will increase. (2) η∗ increases with
the catalogue size of the IRM contents N I

f . This is because
once ρ0 is given, the average request arrival rate of each IRM
content decreases with N I

f , leading to the decreasing fraction
of cache resource allocated to the IRM contents.

D. NUMERICAL AND SIMULATION RESULTS WITH
SYNTHETIC DATASET
In this subsection, we first evaluate the accuracy of the intro-
duced approximations. With the observations in Remark 3,
we propose a heuristic but effective method to obtain the
optimal allocation fraction.

To this end, we employ a controllable dataset, which is
synthesized according to the traffic model presented in Sec. II
with the parameters listed in TABLE 2. The parameters are
used throughout this subsection if not otherwise specified.
The simulation results are averaged over 100 Monte-Carlo
trails. In each trial, we synthesize the content requests inde-
pendently, and the SIR distribution for each request is com-
puted by P{γf > γ0} in step (a) of (5) for the IRM content,
orP{γ >γ0} in step (b) of (6) for the SNMcontent. It is shown
that both (5) and (6) are irrelevant to the density and transmit
power of the BSs for the considered interference-limited
network.

TABLE 2. Simulation parameters.

1) ACCURACY OF THE APPROXIMATIONS
In Fig. 2, we evaluate the accuracy of the approximations
used to derive the objective function of problem P1. The leg-
end ‘‘Num’’ denotes the numerical solutions obtained from
(12). The legend ‘‘Simu’’ denotes the solution obtained by
simulation without any approximations, where we employ
exhaustive search with step size 0.02 to find the value of η
achieving the maximal total SOR. As shown in Fig. 2(a),
the values of η∗ obtained by numerical solutions and simu-
lations are close especially for small cache size Nc. As shown

FIGURE 2. Accuracy of the approximations used in problem P1. (a)
Optimal fraction of cache resource allocation. (b) Total SOR achieved by
η∗.

in Fig. 2(b), the simulation and numerical results of the total
SORs achieved by η∗ overlap even for large cache size despite
that in this case the numerically obtained value of η∗ has a gap
from the simulation result without any approximation. This
indicates that the employed approximations, including Che’s
approximation and the approximation applied in Proposi-
tion 1, have negligible impact on the performance of the
hybrid caching policy.

We next evaluate the accuracy of the approximations used
to obtain the closed-form solution in (18) under the special
case in Sec. III-C.

FIGURE 3. Probabilistic v.s. deterministic caching policy.

In Fig. 3, we provide the SOPs of the IRM contents
achieved by using the deterministic popular caching policy
and the probabilistic caching policy, which are denoted by the
legends ‘‘Dete’’ and ‘‘Prob’’, respectively. It can be observed
that the results almost overlap when γ0 = 0 and 5 dB, and
also accurate when γ0 is smaller, say γ0 = −5 dB. This
suggests that the special-case analysis is also applicable for
more general case.
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FIGURE 4. Accuracy of the approximations of the closed-form solution.
(a) β = 1.5, (b) β = 2.5 (γ0 = 0 dB).

In Fig. 4, we provide the approximated results of the
closed-form solution in (18) with β = 1.5 and 2.5 (with
legend ‘‘Appr’’) and the numerical results obtained by (12)
(with legend ‘‘Num’’). It is shown that the approximation
error increases with Nc

NS
f
(i.e., Nc

λT ) as indicated in Appendix C.

Despite that the approximation is not accurate, one can find
that the approximated and numerical results exhibit the same
trends for λ. The same trends can be also observed for ρ0 and
E[Vm], but the results are not shown for conciseness. This
indicates that the insights gained in Remark 3 are valid.

2) A HEURISTIC CACHE RESOURCE ALLOCATION METHOD
Recall from Remark 3 that the fraction of the average number
of requests for the SNM contents wS exhibits the same mono-
tonic properties as η∗ in terms of ρ0, λ and E[Vm]. To avoid
learning every traffic parameter, we heuristically set the opti-
mal fraction η∗ as wS, by ignoring the impacts of Nc, N I

f and
β despite that η∗ also depends on these three parameters as
indicated in (18), which incurs marginal performance loss as
shown in the following results.

In Fig. 5, we show the impacts of Nc, N I
f and β on the

performance of hybrid caching with the heuristic allocation
method (i.e., η∗ ≈ wS, with legend ‘‘Heur’’) by comparing
with the optimal allocation with legend ‘‘Num’’, which is
numerically obtained by (12a), and the total SOR is computed
by (10). It is shown that the hybrid caching with the heuris-
tic allocation has a performance loss from the numerically
optimal allocation when N I

f = 1000 contents, but the perfor-
mance loss is negligible.Nc and β also have marginal impacts
on the performance loss. Therefore, despite that η∗ depends
on Nc, N I

f and β while wS does not, we can safely use wS as
an accurate approximation of η∗. In other words, the heuristic
cache resource allocation, η∗ ≈ wS, is able to perform well.

IV. LEARNING BASED HYBRID CACHING
To implement the hybrid caching in practice, the popu-
larity distribution and the fraction of the cache resource

FIGURE 5. Performance of hybrid caching with heuristic cache resource
allocation.

allocation in the next caching update duration need to be
learned from the historical data of requests. In this section,
we adopt a widely-used neural network, multilayer percep-
tron (MLP) [32], as an illustrative technique to make the
prediction.

A. PREDICTION OF POPULARITY DISTRIBUTION
In practice, the content catalogue varies with time, and the
popularity distribution is non-stationary that is hard to predict
directly. To circumvent this difficulty, we first predict the
number of requests in the next caching update duration (called
popularity for short in the following) for each content, and
then estimate the popularity distribution in the duration.

We set the length of the observation window as To times
of the update duration. For example, if the caching update
duration Tu is one day, then the observation window duration
is To days.
We employ MLP to predict the popularity of each content

in the next update duration by using the number of requests in
the observationwindow, as shown in Fig. 6. In particular, each
sample to train and test the MLP consists of a To-dimension
input vector x and the output y. The input vector x for the f -
th content is x = [r1f , · · · , r

To
f ], where r tf denotes the number

of requests for the f -th content recorded in the t-th update
duration of the observation window, and the output is the
popularity in the next update duration, i.e., y = rTo+1f .

After trying several activation functions such as tanh, sig-
moid andReLU functions [32], we select ReLU function (i.e.,
y = max(x, 0)) as the activation function for hidden layers,
which performs the best according to our simulation. To yield
the non-negative popularity, we select the softplus function
(i.e., y = log(1 + ex)), an activation function commonly
applied for regression problem [32], in the output layer, again
after trying several activation functions.

The MLP is trained to minimize the mean square error
between the output and expected output as well as a
regularization term with coefficient ν to reduce overfitting,
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i.e.,

J (W,b) =
1
Ntr

Ntr∑
n=1

(y(n) − ŷ(n))2 +
ν

2
‖W‖2F , (19)

where Ntr is the number of training samples, W is the
weighting matrix between layers and b is the bias vector,
and y(n) and ŷ(n) are the expected output and the output of
the MLP with input x(n), respectively. The backpropagation
algorithm is adopted with the iterative batch gradient descent
optimization [32], and the learning rate is adaptively adjusted
with Adam algorithm [33]. To further reduce overfitting,
we also employ the early stopping technique [32].

After learning the popularities of No contents in the obser-
vation window, i.e., ŷ(1), · · · , ŷ(No), we can estimate the popu-
larity distribution by normalizing the predicted popularities as
p̂fTo+1 =

ŷ(f )∑No
n=1 ŷ

(n)
, f = 1, · · · ,No.

B. PREDICTION OF THE ALLOCATION FRACTION OF
CACHE RESOURCE
Since the popularities of the new contents (i.e., the contents
that are not requested in the observation window) cannot
be predicted, these contents have to be cached in reactive
manner and hence can be regarded as the SNM contents.
Since unpopular contents contribute little to the performance
of reactive caching, we only consider the popular contents
with the numbers of requests in each update duration no less
than a given value. To obtain the cache resource allocated
for reactive caching by learning from the historical data,
we consider the heuristic cache resource allocation method.

We still use MLP to predict wS in the next update duration
using the past values of wS. The input and output of a sample
are denoted as x′ = [wS

1, · · · ,w
S
To ] and y

′
= wS

To+1
, respec-

tively, where wS
t is the ratio of the number of requests for the

contents that are not requested in the observation window but
are requested in the t-th update duration in Ft to the total
number of requests for all contents in Ft . Here, Ft is the set
of contents in the t-th update duration, whose popularities are
no less than a popularity threshold rth.
The structure of MLP is similar to that in Fig. 6, but ReLU

function is adopted as the activation function of the output
layer, since it outperforms the softplus function for learning
wS according to simulations. The training process, learning

FIGURE 6. Structure of the MLP to predict the popularity (i.e., the number
of requests in Tu for a content).

algorithm and the techniques of reducing overfitting are the
same as those for predicting the popularity with MLP.

C. IMPLEMENTATION OF THE LEARNING BASED
HYBRID CACHING POLICY
The procedure to implement the learning based hybrid
proactive and reactive caching policy is summarized as
follows.

In the content placement phase, i.e., at the beginning of
the next update duration, each BS first divides its cache
resource into two parts for proactive caching and reactive
caching according to the predicted wS in Sec. IV-B. Then,
the popularity distribution for the not-new-contents of the
next update duration is predicted as p̂fTo+1, f = 1, · · · ,No
using themethod in Sec. IV-A. Next, the probabilistic caching
policy is optimized with (12b) based on the predicted pop-
ularity distribution. Finally, each BS independently caches
contents in the proactively managed storage according to the
optimized caching probabilities.

In the content delivery phase, when a user requests a
content, the system will first check whether the content has
been cached at the BSs satisfying the SIR threshold. If the
content can be found at the BSs meanwhile satisfying the SIR
threshold, the nearest BS that caches the content will serve the
user directly from its local cache. Otherwise, the nearest BS to
the user will serve the user by fetching the requested content
from the core network via backhaul, and meanwhile updates
its reactively cached contents according to the LRU policy
when the requested content is not cached at the proactively
managed storage of any BS.

V. PERFORMANCE EVALUATION WITH SYNTHETIC
AND REAL DATASETS
In this section, we compare the performance of the proposed
hybrid proactive and reactive caching policy with non-hybrid
proactive caching policy and reactive caching policy as well
as the existing hybrid caching policy via both synthetic and
real datasets.

A. DATASETS
1) REAL DATASETS
Two real datasets are collected from a university campus
during the period from Oct. 29 to Nov. 16 in 2016 covering
consecutive 80 days, which record requests from anonymous
users to the videos from two famous content providers in
China, i.e., Youku and iQiYi. Although the raw datas are not
collected from the BSs, they can reflect the realistic traffic
characteristics of video service in a small region, which is
about 2 km2. According to the statistics, for the two datasets,
there are very few requests from 0:00 a.m. to 8:00 a.m., which
have no impact on the performance evaluation of the caching
policies. Therefore, we filter out the request data during this
period. After the preprocessing, some statistical information
is listed in TABLE 3.
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TABLE 3. Statistics of Youku and iQiYi datasets.

2) SYNTHETIC DATASETS
The synthetic static and dynamic datasets are respectively
synthesized with IRM and SNM models, also covering con-
secutive 80 days, the same as that in the real datasets. Accord-
ing to the statistics about the collected Youku dataset, about
40% of the most popular 100 videos are with different lifes-
pans between 1 day and 20 days, and about 70% of them
are with exponential popularity profile. Hence, we synthe-
size the SNM dataset by setting uniformly distributed lifes-
pans in [1, 20] days and the exponential popularity profile,
i.e., 3m(t) = 2/Tme−2t/Tm , t > 0 [19]. The other traffic
parameters of both the IRM and SNM datasets are set the same
as those in TABLE 2.

B. SAMPLE GENERATION AND FINE-TUNED
HYPER-PARAMETERS
1) PREDICTION OF POPULARITY DISTRIBUTION
Both the synthetic and real datasets consist of massive unpop-
ular contents, e.g., 98.1% and 96.2% of all contents in the
Youku and iQiYi datasets are requested less than 10 times over
80 days, respectively. The training samples generated from
these unpopular contents contribute little to the prediction
performance of MLP. Therefore, in the offline training phase,
we remove the contents requested less than 10 times from
both the synthetic and real datasets, and generate training
and validation samples from the relatively popular contents.
In the prediction phase, however, we evaluate the caching
performance for all contents in the non-filtered datasets.

The first 70 days are used for training and validation.
By sliding the observation window one update duration each
time, the training and validation samples can be successively
generated. Taking the case Tu = 1 day and To = 5 as an
example, the samples with the expected outputs from 6-th day
to 60-th day are taken as the training set, which account for
about 85% of the total number of samples, and the remaining
samples with the expected outputs from 61-st day to 70-th
day are set as the validation set for fine-tuning the hyper-
parameters. Since the generated samples for contents without
any request in the observation window cannot be used for
predicting the popularity, we remove these invalid samples
from the training and validation sets.

After fine-tuning, the MLP models for all datasets are with
one hidden layer, which contains 50 nodes. The learning rate
of Adam algorithm is 10−4. The batch size is 512 and the
regularization coefficient is 0.03.

2) PREDICTION OF ALLOCATION FRACTION OF
CACHE RESOURCE
Given the popularity threshold rth, we can learn wS in an
update duration as described in Sec. IV-B. We also use the
request data in the first 70 days for training and validation.
For example, when Tu = 1 day and To = 5, we can compute
wS from the 6-th day to the 70-th day and obtain totally 65
allocation fractions. By sliding the observation window one
update duration each time, 60 samples can be generated in
turn. We take the first 50 samples with the expected outputs
from the 11-st day to the 60-th day as the training set, and the
remaining samples with expected outputs from the 61-st day
to the 70-th day as the validation set.

After fine-tuning, the batch size is 2 for the MLPmodels to
predict the allocation fraction, and the other hyper-parameters
are the same as those in the MLP model to predict the content
popularity.

C. PERFORMANCE COMPARISON
In this subsection, we evaluate the performance of the pro-
posed hybrid caching policy (with legend ‘‘ P-Hybrid’’) by
comparing with the following baselines (respectively with
legends ‘‘LRU’’, ‘‘ MLP’’ and ‘‘E-Hybrid’’) using both syn-
thetic and real datasets.
• LRU: This policy keeps track of the recent request time
for the cached contents, and when the cache is full,
it replaces the least recently requested content with the
newly requested content to satisfy the cache resource
constraint of each BS.

• MLP: This is a purely proactive caching policy. The
policy is obtained by first predicting the popularity dis-
tribution by MLP in Sec. IV-A and then optimizing
the probabilistic caching policy using (12b). With the
optimized caching policy, each BS independently caches
contents in the proactive manner.

• E-Hybrid:1 This is a modified version of the existing
hybrid proactive and reactive caching policy proposed
in [17], where the predictionmodel, proactive policy and
reactive policy are the same as our hybrid policy for a
fair comparison. This policy first predicts the popular-
ity distribution by the MLP in Sec. IV-A, then caches
contents in each BS according to the optimized caching
policy to initialize the whole cache list, and finally the
cache space is updated by LRU during the next update
duration.

We adopt the last 10 days for all datasets as the test
period to evaluate the caching performance. The metric is the
total SOR, i.e., the ratio of the overall successfully offloaded
requests to all requests during the test period, where the
SIR distribution for each request is numerically computed
by P{γf > γ0} in (5) for the proactively cached content or
P{γ > γ0} in (6) for the reactively cached content.

1Due to the optimization of cache resource allocation, the proposed hybrid
caching policy outperforms the hybrid policy in [18] undoubtedly, and hence
we omit the simulation results of the policy in [18].
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FIGURE 7. Performance comparison via synthetic datasets, a) IRM,
b) SNM (γ0 = −10 dB, rth = 3, Tu = 1 day and To = 5).

To show the impact of the density of the randomly-
deployed BSs on the SOR, we assume that the requests are
uniformly generated from users in each cell of a 2 km2 region,
considering that all the datasets do not contain location infor-
mation of the requests. The cache size of each BS is constant
no matter if the BSs are sparsely (i.e., λb = 1 in the legends)
or densely (i.e., λb = 8 in the legends) deployed at this region.
In Fig. 7, we show the performance of the four caching

policies on the synthetic IRM and SNM datasets, where the
maximal cache sizes for IRM and SNM datasets are respec-
tively 500 and 1000 contents, corresponding to about 10% of
the catalogue sizes of both datasets.

It can be observed from Fig. 7(a) that the proposed hybrid
caching policy performs the same as the proactive caching
policy (i.e.,MLP), and outperforms LRU and E-Hybrid. This
is because in the synthetic IRM dataset, the popularity is static
without newly-arrived contents, hence all cache resources are
allocated to proactive caching.

It can be observed from Fig. 7(b) that the proposed hybrid
caching policy outperforms MLP, LRU and E-Hybrid under
the same BS density. This is because in the synthetic SNM
dataset, there are always new contents being requested in
the next update duration, hence we need to reserve some
cache resource for reactive caching. It can be also observed
that with the increasing density of the BSs, the performance
of both LRU and the hybrid caching policies reduces, but
the proposed hybrid caching policy still performs the best
under the same density. This is because as the density of the
BSs increases, the number of requests received at each BS
decreases, which will deteriorate the performance of LRU.
Since the proactive caching policy is optimized according to
the predicted popularity distribution of this region andP{γf >
γ0} is irrelevant to the density of BSs, the performance of the
proactive caching is not affected by the density of BSs.

In Fig. 8, we show the performance of the proposed hybrid
caching policy evaluated with the two real datasets, where
the maximal cache sizes for Youku and iQiYi are respectively

FIGURE 8. Performance comparison via real datasets, a) Youku, b) iQiYi
(γ0 = −10 dB, rth = 3, Tu = 1 day and To = 5).

FIGURE 9. Impact of caching update duration (λb = 8, Nc = 180 contents
for Youku dataset, and Nc = 100 contents for iQiYi dataset, γ0 = −10 dB,
rth = 3, and the length of observation window is five days).

180 and 100 contents, corresponding to about 10% of the
average numbers of daily requested contents as shown in
TABLE 3. We can see that the proposed hybrid caching
policy outperforms the existing hybrid caching policy, LRU
and the purely proactive caching policy. The gain of the
proposed hybrid caching policy over E-Hybrid comes from
avoiding the eviction of popular contents by caching them in
the proactively managed storage. The gain over LRU comes
from predicting the popularity of the not-new contents. The
gain over MLP comes from the quick response to the bursty
popularity by caching the newly-arrived contents that become
popular rapidly.

In Fig. 9, we show the impact of the caching update dura-
tion Tu on the performance of caching. Since the length of
the observation window was defined as multiple times of Tu,
the number of requests in the observation window will be
too few to make the prediction if Tu is small. To observe
the impact of Tu, we ensure that the observed numbers of
requests are identical for different values of Tu by setting
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the length of the observation window as five days. Then,
for a short update duration, say four hours, we can obtain
To = 20. It is shown from the results that the performance of
MLP and P-Hybrid improves with the decrease of the update
duration. This is because by reducing the update duration,
the proactive caching policy can track the time-varying pop-
ularity more quickly. We can also observe that with shorter
update duration, e.g., four hours, MLP exhibits larger gain
over LRU by predicting the popularity quickly and caching
the newly-arrived popular contents in time.

VI. CONCLUSION
In this paper, we optimized a hybrid proactive and reactive
caching policy by taking into account the dynamic popularity
in cache-enabled wireless networks, where the probabilistic
caching policy and LRU were employed to cache contents
that can be respectively modeled by IRM and SNM. Aimed
at maximizing the total successful offloading ratio by caching
both IRM and SNM contents at BSs, we formulated and
solved an optimization problem of the hybrid caching policy
including both the cache resource allocation among the two
classes of contents and the probability of caching each IRM
content. To provide the guideline to design hybrid caching
policy without the assumption of knowing various traffic
parameters, we further derived a closed-form solution of
the optimal allocation fraction of cache resource under a
special case. We proposed a heuristic but effective method
to obtain the optimal allocation fraction, and predicted the
popularity distribution as well as the allocation fraction with
neural networks by using historical data. We evaluated the
performance of the proposed hybrid caching policy via both
synthetic and real datasets. The results demonstrated obvious
gains of the proposed hybrid caching policy over existing
hybrid proactive and reactive caching policy and non-hybrid
policies with the real datasets.

APPENDIX A
PROOF OF PROPOSITION 1
Under the small-cache scenario, we have Nc

NS
f
=

Nc
λT ≈ 0, and

hence ηNc
λT ≈ 0 for 0≤ η≤ 1. Then, we can obtain from (8)

that

1
T

∫
∞

0
1− φVm

(
−

∫ tc

0
3(τ − θ )dθ

)
dτ ≈ 0. (A.1)

Considering that the left-hand side of (A.1) monotonically
increases with tc and equals to zero when tc = 0, we know
that to make equation (A.1) hold, tc should approximate to
zero.With tc ≈ 0, we can further derive that

∫ tc
0 3(τ−θ )dθ≈

3(τ )tc, and that φVm (−3(τ )tc) can be approximated as 1 −
3(τ )tcE[Vm] by the first order Taylor expansion for3(τ )tc ≈
0.

Then, (8) can be approximated as

ηNc ≈ λtcE[Vm]
∫
∞

0
3(τ )dτ = λtcE[Vm]. (A.2)

Finally, by substituting (A.2) into (7) and considering∫ tc
0 3(τ − θ )dθ ≈ 3(τ )tc, (9) is derived.

APPENDIX B
The KKT conditions of problem P1 can be derived as

−
gs(η)Nc

1+ γ 2/α
0 (ε0 − ε1)

+ µNc + λ1 − ν1 = 0, (B.1a)

−gi(cf , qf )+ µ+ λ
f
2 − ν

f
2 = 0, ∀f (B.1b)

µ(ηNc + ‖c‖1 − Nc) = 0, (B.1c)

λ1(η − 1) = 0, ν1η = 0, (B.1d)

λ
f
2(cf − 1) = 0, vf2cf = 0, ∀f (B.1e)

(11b), (11c), (11d), µ, λ1, ν1, λ
f
2, ν

f
2 ≥ 0, ∀f (B.1f)

where gs(η) , wS

NS
f E2[Vm]

E{V 2
m e
−

VmηNc
NS
f E[Vm]

} monotonically

decreases with η, and gi(cf , qf ) ,
γ
2/α
0 ε0wIqf

((1−γ 2/α0 ε1)cf+γ
2/α
0 ε0)2

.

To find the optimal solution from the KKT conditions,
we first prove µ∗ > 0.
Assume that µ∗ = 0. Since gi(c∗f , qf ) > 0 and νf ∗2 ≥ 0,

we have λf ∗2 > 0,∀f according to (B.1b). Then, c∗f = 1,∀f
can be obtained from (B.1e). Similarly, η∗ = 1 can be
obtained from (B.1a) and (B.1d), which violates the con-
straint in (11d). Therefore, µ∗ > 0.

Then, (B.1c) can be reduced to

η∗Nc + ‖c∗‖1 = Nc. (B.2)

When g−1s [µ∗(1+ γ 2/α
0 (ε0 − ε1))] > 1, we have gs(η∗) ≥

gs(1) > µ∗(1+γ 2/α
0 (ε0−ε1)). In this case, λ∗1 > 0 according

to (B.1a) and η∗ = 1 according to (B.1d). When g−1s [µ∗(1+
γ
2/α
0 (ε0 − ε1))] = 1, gs(η∗) > µ∗(1 + γ 2/α

0 (ε0 − ε1)) if
0 ≤ η∗ < 1, which however results in η∗ = 1 according to
(B.1a) and (B.1d), contradicting to 0 ≤ η∗ < 1. Therefore,
η∗ = 1.
When g−1s [µ∗(1+ γ 2/α

0 (ε0 − ε1))] < 0, we have gs(η∗) ≤
gs(0) < µ∗(1+γ 2/α

0 (ε0−ε1)). In this case, ν∗1 > 0 according
to (B.1a) and η∗ = 0 according to (B.1d). When g−1s [µ∗(1+
γ
2/α
0 (ε0 − ε1))] = 0, gs(η∗) < µ∗(1 + γ 2/α

0 (ε0 − ε1)) if
0 < η∗ ≤ 1, which however results in η∗ = 0 contradicting
to 0 < η∗ ≤ 1. Therefore, η∗ = 0.
When 0 < g−1s [µ∗(1 + γ 2/α

0 (ε0 − ε1))] < 1, we have
gs(1) < µ∗(1+γ 2/α

0 (ε0−ε1)) < gs(0). In this case, if η∗ = 0,
then λ∗1 > 0 according to (B.1a) which results in η∗ = 1,
contradicting to η∗ = 0. Similarly, if η∗ = 1, then ν∗1 > 0
according to (B.1a), which results in η∗ = 0, contradicting to
η∗ = 1. Therefore, 0 < η∗ < 1 and λ∗1, ν

∗

1 = 0 according
to (B.1d). We further have η∗ = g−1s [µ∗(1+ γ 2/α

0 (ε0 − ε1))]
according to (B.1a).
With similar derivations, we can obtain the optimal caching

probability as c∗f =
[ 1
1−γ 2/α0 ε1

((
γ
2/α
0 ε0wIqf

µ
)
1
2 − γ

2/α
0 ε0)

]1
0,∀f .

Finally, according to the solution of η∗ and c∗, µ∗ can be
solved from (B.2).
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APPENDIX C
PROOF OF PROPOSITION 2
With fV (v) =

βV βmin
vβ+1

, gl(η∗) can be expressed as

gl(η∗) =
β2 V βmin

(β − 1)E[Vm]T

∫
∞

Vmin

e
−

vη∗Nc
NS
f E[Vm]

vβ−1
dv. (C.1)

Considering that
∫
∞

x
e−av

vb dv = ab−10(1− b, ax) for posi-
tive a, b and x, where 0(s, y) is the upper incomplete Gamma
function, we can rewrite gl(η∗) by substituting E[Vm] =
βVmin
β−1 into the left-hand side of (C.1) as

gl(η∗)=β
(β−1
β

)β−1E[Vm]
T

(η∗Nc

NS
f

)β−2
0
(
2−β,

η∗Nc

NS
f

β−1
β

)
.

(C.2)

For 1< β < 2, we can obtain that 0
(
2 − β, η

∗Nc
NS
f

β−1
β

)
≈

0(2 − β) in the small-cache scenario where Nc
NS
f
≈ 0, which

leads to the result in (C.3). For β > 2, given that 0(s, y) ≈
−ys/s when y≈ 0 and s< 0, gl(η∗) can be approximated as
(C.4). In summary, we can obtain

gl(η∗) ≈


AβE[Vm]

T

(
η∗Nc

NS
f

)β−2
, if 1 < β < 2, (C.3)

β − 1
β − 2

E[Vm]
T

, if β > 2, (C.4)

where Aβ = β
(
β−1
β

)β−1
0(2− β).

The approximations of gl(η∗) in (C.3) and (C.4) are
obtained based on Nc

NS
f
≈ 0. Therefore, they are more accurate

when Nc
NS
f
decreases.

By substituting (C.3) and (C.4) into (17), we obtain

η∗ ≈


h−1(DNc), if 1 < β < 2,

max

{
1−

(
ρ0T
E[Vm]

β−2
β−1

)β (N I
f )
1−β

Nc
, 0

}
, if β > 2,

(C.5)

where D ,
((AβE[Vm]

ρ0T

)β (N I
f )
β−1

(
λT
)(2−β)β) 1

(β−1)2 > 0 for

1<β < 2, h(x)= x
(2−β)β
(β−1)2 /(1− x)

1
(β−1)2 , h−1(·) is the inverse

function of h(·). For 1 < β < 2, it is easy to show that
h(η∗) monotonically increases with η∗ by examining its first
derivative. Thus, h−1(DNc) monotonically increases with Nc
when D>0.
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