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ABSTRACT In target tracking, the tracking process needs to constantly update the data information. For
maneuvering target, model mismatch and loss of high-order moment information disrupt the accuracy of
the state estimation. In this paper, an adaptive high-order unscented Kalman filter (AHUKF) algorithm is
proposed for the case of errors occurring in the capturing of model dynamic behavior using the classical
unscented Kalman filter (UKF) algorithm. By introducing the free parameter, the analytical solution of the
high-order unscented transformation (UT)was obtained, the basis for choosing free parameters was analyzed,
and the stability of the algorithm was discussed. A method for obtaining the optimal adaptive factor based
on the prediction residual estimation covariance matrix was proposed, which reduces the influence of the
dynamic model error and was applied to the target tracking model. In this paper, the proposed AHUKF is
applied to a target tracking problem with state mutation, different sampling intervals, and different turn rates,
respectively. Simulation results for target tracking illustrate that the proposed algorithm is more accurate
and robust than the UKF, high-order unscented Kalman filter (HUKF) and adaptive unscented Kalman
filter (AUKF).

INDEX TERMS UKF, optimal adaptive factor, adaptive filtering, orthogonality principle, high-order UT
sampling.

I. INTRODUCTION
In recent years, the study of dynamic systems has been widely
used in different fields. Nonlinear filtering is an advantageous
method used to deal with dynamic systems, which plays
an important role in target tracking, integrated navigation,
positioning, control, and signal processing [1]–[8]. Since
there is no closed analytical solution for solving nonlinear
problems, nonlinear filtering has been committed to making a
lot of effort to solve the nonlinear state estimation problem by
function approximation and deterministic sampling method
of approximate nonlinear distribution [9]. The most typical
method is the extended Kalman filter (EKF) [10], [11]. Even
though EKF has been used widely, it has several deficiencies
including crude approximations, and it may experience diver-
gence when the filtering problem exhibits highly non-linear
characteristics [12]. So, EKF is a suboptimal filter [13], [14].
Other nonlinear transformation methods mainly include the
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unscented Kalman filter (UKF) [15]–[17], cubature Kalman
filter (CKF) [17], [18], and central difference Kalman filter
(CDKF) [19], there are classified within the range of sigma
points filters (SPFs).

Different rules are used to select sampling points and cor-
responding weights, and the posterior mean and covariance
of the state of the nonlinear system are satisfied. Whatever
the degree of nonlinearity, SPFs can approach the poste-
rior mean and covariance of any nonlinear system at least
with second-order Taylor accuracy. In addition, SPFs don’t
need to calculate the Jacobian matrix in the filtering pro-
cess, so SPFs reduce the number of tedious calculations and
are easier to implement than the EKF [20], [21] and the
nonlinear function is also not required to be continuously
differentiable, which effectively overcomes the limitation of
the EKF [22]. In addition, many experts have seen a surge
of research interest on the H∞ filtering problems for non-
linear systems, while the H∞ theory can be utilized in the
occasion when the disturbances are assumed to have bounded
energy [23]–[25].
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Within the category of SPFs, the UKF uses 2n + 1
sigma points and the unscented transform (UT) to propagate
the mean value and (cross) covariance through nonlinear
mapping using the same sampling points as system state
distribution. The UT is a statistical linear regression (SLR),
whose regression coefficient matrix can be regarded as the
meaningful approximation of the Jacobian matrix, eliminat-
ing the tedious derivation and calculation of the Jacobian/
Hessian matrix and approximates the mean value and covari-
ance of the original distribution of the state. The UKF
based on the UT is far better than the standard EKF
in extensive applications [9], [26]. When compared with
the particle filter [27], the UKF has lower computational
requirements [28], [29]. The CKF can be regarded as a spe-
cial form of UKF [15], [16]. Although H∞ filter performs
well when the prior information is unknown, however, H∞
filtering cannot guarantee the minimum variance of estima-
tion error or the variation is within a certain range [23]–[25].

UKF is usually better than the other filters in computational
complexity and performance. Therefore, the UKF was accu-
racy chosen as a typical nonlinear Gaussian filter to be studied
in this paper.

Considerable improvements have been made on the devel-
opment of UKF. In reference [30], the concept of maximum
a posterior and the random weighting criterion are used
to establish the noise statistics data and present a new a
maximum posterior and random weighting based adaptive
UKF (MRAUKF). The noise statistics of the system are
estimated and adjusted online, and applied to the navigation
system. MRAUKF has a great advantage over the classical
UKF in the case of uncertain system noise. However, for
state mutations with the large impulse response, its filtering
convergence is poor. A nonlinear filtering algorithm based
on UKF for event triggering data transmission and packet
loss in nonlinear dynamic systems is proposed and applied
to wireless sensor networks, the prediction error covariance
is bounded and convergent, and a sufficient condition for the
random stability of the filter is obtained [31]. However, for
motion vehicles with a large run rate, the filtering effect is
poor.

A third-order UKF and a robust third-order UKF are pro-
posed for the state estimation of nonlinear systems with
unknown inputs, and the detailed derivation of the filter is
given. The computational cost is increased relatively, and the
accuracy is improved [32]. However, there is little advan-
tage in the higher dimensional states. In references [33]–[35],
theHuber-M estimationmethod is used to improve the robust-
ness of UKF, by minimizing a Huber cost function that is
a combined and norm. However, the influence function of
Huber will not be reduced, which may reduce the estimation
performance of the filtering algorithm [36]–[39]. The emer-
gence of a marginalized UKF method is applied to the field
of target tracking and integrated navigation. The algorithm
only uses a few sampling points to estimate the deviation of
the inertial sensors, reducing the computational complexity.
However, the ability of sigma points to capture high-order

moment information is limited, so the accuracy is difficult
to guarantee [40], [41].

The above algorithm has been improved to some extent, but
there are still limitations. When the filter is stable, the UKF
loses the ability to track the abrupt state and the strong
maneuvering target. This is due to the poor robustness of
the UKF when the system model is uncertain, decreasing the
estimation accuracy.

To further improve the robustness of the filter in the case
of model mismatch. Xiong et al. designed the robust extended
Kalman Filter (REKF) to ensure that the sufficient conditions
for the filter stability could be fulfilled. Further, automatically
adjust the error covariance matrix in response to the exter-
nal environment interference [42]. However, because of the
inherent defects of EKF, adaptive REKF is not feasible in
real-time. References [43] and [44] apply the adaptive esti-
mation algorithm to the current statistical (CS) model for the
square-root CKF (SCKF) without free parameters, but when
the system has a largemutation ormodelmismatchCk+1 < 1,
the algorithm would fail. An adaptive-horizon iterative unbi-
ased finite impulse response (UFIR) filter was proposed,
and the author applied a real-time Nopt estimation strategy.
Zhao et al. present the concepted of the maximum allowed
horizon and allows the selection of a target horizon in a
single iteration cycle and the design of adaptive horizonUFIR
(AUFIR) [45]. However, for time-varying systems, the choice
of Nopt is complex and difficult to determine quickly. Wang
proposed an adaptive robust UKF (ARUKF), which reduces
system model uncertainty. However, the adaptive and the
equivalent weighting factors are determined by empirical
evidence in ARUKF, this method fails to fundamentally solve
the limitations of UKF [46].

Based on the above mentioned methods, the robustness of
the algorithm is improved to some extent. However, these
methods only improve the accuracy of general algorithms
on the basis of second-order accuracy. In theory, the higher
the order of the filter, the more the higher order moment
information be captured, and the higher the filter accuracy.
UKF is essentially a nonlinear filtering method based on
second-order UT, which can only match the second-order
moment of Taylor series expansion of nonlinear functions,
so the error is limited, and the accuracy needs to be improved.

In recent years, high-order filters have been presented
continuously, such as the fourth order unscented filter [47],
fifth order UKF [9], and a skewed unscented Kalman fil-
ter [48], which achieve higher accuracy than the traditional
second-order filter. However, the abovementioned high-order
methods don’t have an analytic solution and fail to complete
the selection of sigma points and weights of high-order UT
changes, thus they cannot constitute as a high-order UKF.
Ponomareva et al. is proposed which generates sample points
and corresponding probability weights that match exactly the
predicted values of average marginal skewness and average
marginal kurtosis of the unobserved state variables [49].
However, the free parameter is not defined in the UKF, so it
is not a high-order UT in the true sense.
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In this paper, a new adaptive high-order UKF is pro-
posed. Based on a high-order UT form, through a high-order
approximation, more deterministic sampling points and a
more reasonable distribution are obtained. This distribution
was used to match the probability distribution of the state to
obtain the high-order UKF form. Then the error truncation
was kept above the fourth order moment. The high-order
sigma points were produced by using the high-order UT to
improve the filtering accuracy of the UKF. When the filter-
ing effect was optimal, the gain matrix remained stationary.
As the system encountered a strong nonlinear condition or the
model mutation, the gain matrix struggled to keep up with the
required values of the system. The error covariance of state
posterior estimation was seriously inconsistent with the true
covariance matching degree, which led to the difficulty of
the system convergence and even the failure of filtering. The
accuracy improvements also depend on the matching degree
of covariance. To solve this problem, an adaptive adjustment
factor based on the residual vector was introduced to reduce
the weight of covariance of a filter in the stationary state
and to further adjust the influence of the gain matrix on the
system. The effect of state mutations and strong nonlinearity
on the filtering performance was suppressed, and the ill-
conditioned covariancewas avoided to affect the performance
and robustness of the filter.

The key contributions of this paper are expressed as
follows: First of all, the defects of standard UKF sigma points
sampling method are analyzed, a high-order sampling strat-
egy is proposed to match the probability distribution of the
state to improve the accuracy of target tracking. Furthermore,
according to the principle of orthogonality and the principle
of minimum variance, the optimal adaptive factor is derived,
reduce the error caused by the mismatch of the dynamic
model, the adaptive ability and robustness of the algorithm are
further improved in the whole filtering process. The stability
of the proposed AHUKF algorithm is discussed, and the
rationality of selecting free parameters is proved. Finally,
we verify the superiority of AHUKF under different models
and conditions.

The organization of this paper proceeds as follows: Intro-
duce the UKF algorithm model and the sources of error
were analyzed in Section II. In Section III, intuitively
describe the sigma points selection strategy, and improved of
UKF algorithm and discussed on the stability of algorithm.
In Section IV, simulation results for the target tracking prob-
lem with different models are then presented, to compare the
performance of the proposed AHUKF and the existing filter.
Finally, we draw conclusions and presented future research
work in Section V.

II. UKF ALGORITHM MODEL AND DEFICIENCY
Consider the following discrete-time nonlinear stochastic
system as represented by the state-space model [50], [51]:{

xk = fk−1 (xk−1)+ wk−1
zk = hk (xk)+ vk

(1)

where xk ∈ Rn and zk ∈ Rm denote the state vector
and measurement vector, respectively, with corresponding
dimensions. f (·) and h(·) are any known functions, that denote
the nonlinear dynamic model function and measurement
model function, respectively, with corresponding dimensions.
wk ∈ Rn and vk ∈ Rn are respectively Gaussian process
and measurement noise vectors with zero mean vectors and
covariance matrices Qk and Rk . k is the discrete time. The
following statistical characteristics are used:

E [wk ] = 0 cov
(
wk,wj

)
= Qkδkj

E [vk ] = 0 cov
(
vk , vj

)
= Rkδkj

cov
(
wk , vj

)
= 0

(2)

where Qk and Rk are positive definite matrices, with corre-
sponding dimensions. δkj is the Kroneker − δ function. The
classical UKF filtering algorithm for nonlinear systems is as
follows:

Initialization:{
x̂0 = E [x0]

P0 = E
[(
x0 − x̂0

) (
x0 − x̂0

)T ] (3)

Sigma points calculation:
ξ ik−1 = x̂k−1, i = 0
ξ ik−1 = x̂k−1 + (

√
(n+ κ)Pk−1)i, i = 1 ∼ n

ξ ik−1 = x̂k−1 − (
√
(n+ κ)Pk−1)i, i = n+ 1 ∼ 2n

(4)


ω0
c =

κ

n+ κ
[6pt]ω0

m =
κ

n+ κ
+
(
1− α2 + β

)
ωic = ω

i
m =

κ

2(n+ κ)
, i = 1 ∼ 2n

(5)

where κ = 3 − n is a scaling free parameter, n is the
state dimension with different models. α is usually set to
1e − 4 ≤ α ≤ 1. i denotes the ith sampling points and
(
√
(n+ κ)P)i denotes the ith column of the square root of

the matrix (n+ κ)P. β ≥ 0 denotes a parameter that is to
be selected and is a non-negative weight coefficient. β ≥ 0
can combine the dynamic difference of the high-order in the
equation.

A. TIME UPDATE

ξ ik|k−1 = f
(
ξ ik−1

)
, i = 0 ∼ 2n (6)

x̂k|k−1 =
2n∑
i=0

ωimξ
i
k|k−1 (7)

Pk|k−1 =
2n∑
i=0

ωic(ξ
i
k|k−1 − x̂

i
k|k−1)(ξ

i
k|k−1 − x̂

i
k|k−1)

T
+ Qk

(8)

B. MEASUREMENT UPDATE
ξ ′ik|k−1 = x̂k|k−1, i = 0

ξ ′ik|k−1 = x̂k|k−1 + (
√
(n+ κ)Pk|k−1)i, i = 1 ∼ n

ξ ′ik|k−1 = x̂k|k−1 − (
√
(n+ κ)Pk|k−1)i, i = n+ 1 ∼ 2n

(9)
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γ ik|k−1 = h(ξ ′ik|k−1) (10)

ẑk|k−1 =
2n∑
i=0

ωimγ
i
k|k−1 (11)

Pzzk|k−1 =
2n∑
i=0

ωic(γ
i
k|k−1 − ẑk|k−1(γ

i
k|k−1 − ẑk|k−1)

T
+ Rk

(12)

Pxzk|k−1 =
2n∑
i=0

ωic(ξ
i
k|k−1 − x̂

i
k|k−1)(γ

i
k|k−1 − ẑk|k−1)

T (13)

Kk = Pxzk|k−1(P
zz
k|k−1)

−1 (14)

x̂k|k = x̂k|k−1 + Kk (zk − ẑk|k−1) (15)

Pk|k = Pk|k−1 − KkP
zz
k|k−1K

T
k (16)

According to the linear minimum variance estimation cri-
terion [52], [53], the estimation accuracy of UKF depends
entirely on the calculations of mean and covariance in equa-
tions (7), (8) and (11)-(13), when themeasurement is updated.
Since the system is non-linear, the linear minimum vari-
ance estimation cannot represent the Gaussian distribution
by means of mean and covariance, and cannot obtain the
optimal state estimation output. Note that the state posterior
estimation error increases with the sampling interval. When
the system reaches a stationary state, the gain matrix in
equation (14) reaches a constant value. As mutation or strong
nonlinearity of the system occurs and the target is maneu-
vering at a high turn rate, the gain matrix is difficult to
reach the required value of the system in the first moment.
UKF fails to capture high-order moment information, and
its adaptability to system mutation is also poor. Through the
analysis of nonlinear UKF frame, the accurate calculation of
covariance cannot be ignored. Therefore, this paper started
with the mean and covariance of UKF, by matching high-
order moment information, and introduced adaptive factor to
modify predictive covariance to improve the filtering accu-
racy and robustness.

III. IMPROVED UKF ALGORITHM
Themean and covariance of the sample points to be estimated
are obtained by non-linear function transformations and the
ability of these samples to cover the entire probability dis-
tribution is directly determined by the selection strategy of
the sigma points. The ability of the sigma points to match
the order moment information is proportional to the accuracy.
In classical UKF, equations (4) and (9) represent the selection
of 2n + 1 sigma points. The mean and covariance of the
sample points to be estimated are obtained by non-linear
function transformations and the ability of these samples to
cover the entire probability distribution is directly determined
by the selection strategy of the sigma points. The ability of
the sigma points to match the order moment information is
proportional to the accuracy. In classical UKF, equations (4)
and (9) represent the selection of 2n + 1 sigma points. This
set of sigma points can match the information of the first

FIGURE 1. Standard UT sigma points.

two moments (mean and covariance) of random variables and
maintain symmetry. In Fig. 1 gives the sigma points sampling
strategy of UT in the second order case. The number of
central sigma points and symmetric sigma points are 1 and 2n,
respectively.

Through the above analysis, the standard UT only perfectly
matches the first two moments (mean and covariance). When
the skewness and kurtosis of a random variable have a seri-
ous effect on the probability distribution, the sigma points
obtained by the standard UT mismatch the statistical char-
acteristics of the prior probability distribution well, which
leads to underestimation. Therefore, to keep the accuracy
of first and second moments and to match the third and
fourth moments, a high-order UT was introduced in this
paper, and the derivation process of high-order the UKF was
obtained, thus improving the accuracy of the UKF. To reduce
the influence of the dynamic model error, an adaptive filter
based on the predictive residual estimation covariance matrix
was proposed to improve the accuracy of model mismatch
of state estimation when the target systematic mutation and
maneuvers at high turn rate.

A. HIGH-ORDER SIGMA SAMPLING STRATEGY
The implementation of a high-order UKF requires the tech-
nical support of a high order UT. Sigma points cover the
information of high-order moments of random variables as
much as possible, including mean, variance, skewness, and
kurtosis. The high-order UT needs to select a set of sigma
points 2n2 + 1.
To accurately match the first four moments of the stan-

dard Gaussian random variables, the sigma points of high-
order UT and the corresponding weights must satisfy the
following conditions and be divided into three kinds of sigma
points [54]:

ω0 + 2nω1 + 2n(n− 1)ω2 − 1

2ω1s21 + 4(n− 1)ω2s22 − 1

2ω1s41 + 4(n− 1)ω2s42 − 3

4ω2s42 − 1

 = 0 (17)
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FIGURE 2. High-order UT sigma points.

where ω0 is the weight of the central symmetry points.
s1 and ω1 denote the position and weight of symmetric sigma
points, respectively. s2 and ω2 denote the position and weight
of the high-order symmetric sigma points, respectively.

The sigma points and weights are calculated in the
following:

Calculation of sigma point and weight of the first kind:
ξ i0k|k−1 = x̂k−1

ω0 =
−2n2 + (4− 2n)κ2 + (4κ + 4)n

(n+ κ)2(4− n)

(18)

Calculation of sigma point and weight of the second kind:
ξ i1k|k−1 = x̂k−1 ±

√
(4− n)(n+ κ)
(κ + 2− n)

Pk−1ei1

ω1 =
(κ + 2− n)2

2(n+ κ)2(4− n)
i1 = 1, 2, · · · , n

(19)

Calculation of sigma point and weight of the third kind:
ξ i2k|k−1 = x̂k−1 ±

√
(n+ κ)Pk−1e

+

i2

ξ i2k|k−1 = x̂k−1 ±
√
(n+ κ)Pk−1e

−

i2

ω2 =
1

(n+κ)2
i2 = 1, 2, · · · 0.5n(n− 1)

(20)

where ei1, e
+

i2 and e
−

i2 satisfy the following expressions:

ei1 = [0, · · · 0, 1, 0, · · · 0] (21)

e+i2 =

√
1
2
(ek + el) : k < l, k, l = 1, 2 · · · n (22)

e−i2 =

√
1
2
(ek − el) : k < l, k, l = 1, 2 · · · n (23)

In Fig. 2, it is shown that the high-order UKF of
2-Dimensional systems uses symmetric sigma sampling strat-
egy to complete the high-ordermoment informationmatching
for random variables.

Combined with Fig. 2 and the equations (18)-(20), the first
kind of sigma point is located in the center, and the number
of them is 1. The second kind of sigma point is located at s1

from the center point, and the corresponding number is 2n.
The third kind of sigma point is at s2 and the corresponding
number is 2n(n− 1).

Letω2 =
1

(n+κ)2
, then s1 =

√
(4−n)(n+κ)
(κ+2−n) , and s2 =

√
(n+κ)

2 .
The state dimensions n = 4 and n 6= 4 are discussed by
analogy with the standard UT, the analytic solution of the
equation is obtained, and the position of sigma points and the
corresponding weights s1, s2, ω1 and ω2are obtained.
When, n = 4 the corresponding sigma points and weights

are calculated by the above equations (18)-(20). When, let,
the analytic solution of equation (17) is obtained.

The corresponding expression is as follows:
ω0 =

2
n+ 2

ω1 =
(4− n)
2(n+ 2)2

ω2 =
2

(n+ 2)2

s1 =
√
n+ 2 s2 =

√
n+ κ
2

(24)

The form of high-order UT is derived, which is an improve-
ment to the sampling strategy of sigma points. In the frame-
work of standard UKF, time update and measurement update
of the covariance were further adjusted with the sampling
strategy of sigma points. The equation (8) was modified as
follows:

Pk|k−1 = ω0ξ
i0
k|k−1(ξ

i0
k|k−1)

T
+ ω1

n∑
i1=1

ξ i1k|k−1

(ξ i1k|k−1)
T
+ ω2

n(n−1)/2∑
i2=1

ξ i2k|k−1(ξ
i2
k|k−1)

T

− x̂k|k−1x̂Tk|k−1 + Qk (25)

B. OPTIMAL ADAPTIVE FACTOR BASED ON THE
ESTIMATED COVARIANCE MATRIX OF
PREDICTED RESIDUALS
In target tracking, it is difficult for radar to capture the real
state of the target when it is strongly nonlinear, maneuvering,
andmoving at a high turn rate. To solve this problem, an adap-
tive factor was introduced to adjust the error covariance and
further adjust the gain matrix to maintain the stability and
robustness of the filter.

In this paper, the adaptive factor was derived from the idea
of a strong tracking filter. In this method, the fading factor
was introduced into the covariance matrix of state predic-
tion, and the residual sequence is orthogonal to each other.
The estimation error was adaptively adjusted to improve the
tracking ability quickly. The method is robust to uncertain
models and time-varying parameter systems and has good
tracking for state mutations or maneuvering at high turn rate.
By combining the strong tracking method with the proposed
high-order UT sampling strategy, the sufficient conditions for
the strong tracking filter with Gaussian constraints are given:

E
{[
xk − x̂k

] [
xk − x̂k

]T}
= min (26)

E
[
εk+1ε

T
k

]
= 0 (k = 0, 1, 2 · · · ; j = 1, 2, · · · ) (27)
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where εk = zk + ẑk|k−1. Equation (26) points out that the
filtering algorithm has the minimum variance under Gaussian
constraints and equation (27) requires that the residuals at
different time points be orthogonal to each other. If the perfor-
mance of the filtering algorithm satisfies the two conditions,
it can be considered to have a strong tracking ability and
optimal estimation performance. However, in the practical
system, the state estimation of the filter deviates from the
real value due to the mismatch of the model, resulting in
a non-orthogonal output residual sequence. To maintain a
good tracking ability, we introduced the fading factor into
the prediction of the state error covariance matrix. The error
covariance and gain matrix are adjusted online, and the
covariance matrix is expanded by λk times. By increasing
the proportion of observed data in the state estimation of the
system, the forced residuals remain orthogonal to each other,
and this ensures the tracking ability of the filter.

Through the implementation of high-order UT sampling
method, equation (25) is modified to:

P∗k|k−1 = λk (ω0ξ
i0
k|k−1(ξ

i0
k|k−1)

T
+ ω1

n∑
i1=1

ξ i1k|k−1(ξ
i1
k|k−1)

T
+ ω2

n(n−1)/2∑
i2=1

ξ i2k|k−1(ξ
i2
k|k−1)

T
− x̂k|k−1x̂Tk|k−1)+ Qk (28)

where P∗k|k−1 represents the modified state one-step predic-
tion covariance matrix.

From the system equation and measurement equation,
the estimation error and prediction error are defined by:{

x̃k = xk − x̂k
x̃k−1 = xk−1 − x̂k−1

(29)

x̃k|k−1 = xk − x̂k|k−1 = Fk x̃k−1 + wk−1 (30)

From the definition of the innovation vector, we obtain:

εk = zk − ẑk|k−1 = Hk x̃k|k−1 + vk
= Hk

[
Fk x̃k−1 + wk−1

]
+ vk (31)

Without loss of generality:

εk+j = Hk+j
[
Fk+jx̃k+j−1 + wk+j−1

]
+ vk+j (32)

where Fk =
∂fk (xk )
∂xk

|xk=x̂k−1 and Hk =
∂hk (xk )
∂xk

|xk=x̂k|k−1 ,
Fk and Hk refers to the Jacobian matrix fk and hk and can be
solved in the way of the second-order moment or higher order
Taylor series expansion [55].

The covariance matrix of the predicted residual vector in
EKF framework can be expressed as [56]:

Pzzk|k−1 = E[zk − ẑk|k−1][zk − ẑk|k−1]T

= HkP∗k|k−1H
T
k + Rk (33)

Pxzk|k−1 = E[xk − x̂k|k−1][zk − ẑk|k−1]T = P∗k|k−1H
T
k (34)

Let:

ηk,j = E[εk+jεTk ]

= E[Hk+j(Fk+jx̃k+j−1 + wk+j−1)+ vk+j]

× [Hk (Fk x̃k−1 + wk−1)+ vk ]T

= Hk+jFk+j(
k+j−1∏
i=k+1

(I − KiHi)Fi)(P
xz
k|k−1 − Kkη0) (35)

where η0 is the innovation covariance matrix of the actual
output of the UKF algorithm. Let ηk,j = 0, then (Pxzk|k−1 −
Kkη0) = 0. Through calculations and arrangements, we see:

Pxzk|k−1(I − (Pzzk|k−1)
−1η0) = 0 (36)

P∗k|k−1H
T
k (I − (HkP∗k|k−1H

T
k + Rk )

−1η0) = 0 (37)

HkP∗k|k−1H
T
k = η0 − Rk (38)

The modified covariance is brought in:

Hk{λk (ω0ξ
i0
k|k−1(ξ

i0
k|k−1)

T )

+ω1

n∑
i1=1

ξ i1k|k−1(ξ
i1
k|k−1)

T )

+ω2

n(n−1)/2∑
i2=1

ξ i2k|k−1(ξ
i2
k|k−1)

T )− x̂k|k−1

x̂Tk|k−1 + Qk}H
T
k = η0 − Rk (39)

Hk{λk (ω0ξ
i0
k|k−1(ξ

i0
k|k−1)

T )

+ω1

n∑
i1=1

ξ i1k|k−1(ξ
i1
k|k−1)

T )

+ω2

n(n−1)/2∑
i2=1

ξ i2k|k−1(ξ
i2
k|k−1)

T )− x̂k|k−1

x̂Tk|k−1}H
T
k = η0 − Rk − HkQkH

T
k (40)

ηk =


ε1ε

T
1 , k = 1

ρηk−1 + εkε
T
k

1+ ρ
, k ≥ 2

(41)

where ρ denotes the fading factor and whose ρ = 0.95.

λk = tr(ηk − Rk − HkQkHT
k )/ tr(Hk{(ω0ξ

i0
k|k−1

(ξ i0k|k−1)
T )+ ω1

n∑
i1=1

ξ i1k|k−1(ξ
i1
k|k−1)

T )

+ω2

n(n−1)/2∑
i2=1

ξ i2k|k−1(ξ
i2
k|k−1)

T )− x̂k|k−1x̂Tk|k−1}H
T
k )

(42)

It should be noted that the λk in equation (42) may be
less than 1. To avoid this situation and ensure the stability
of the whole filtering process, the adaptive fading factor can
be further chosen as:

λk = max(1, λk ) (43)
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For λk , the fading factor can take effect, therefore, the fad-
ing factor remains the same sensitivity to state mutation and
stationary.

C. DISCUSSION ON THE STABILITY OF ALGORITHM
Stability is one of the key indicators of practicability. The
accuracy of the proposed high-order UKF depends largely
on the high-order UT strategy. Therefore, the stability of
the algorithm can only be guaranteed by ensuring the sta-
bility of the high-order UT strategy. In addition, the equality
constraints of equations (26), (27) and (43) are satisfied in
the process of solving the adaptive factor, and the global
optimization can be satisfied in model mismatch. In view of
integration, the UT is also considered as a high dimensional
integral method. When the high-order method is adopted, all
the weights corresponding to the sigma points are positive,
so this algorithm is feasible. Therefore, the sum of the abso-
lute values of the weights is used as the technical index of the
numerical stability of the algorithm. By deducing the above
equations, it is found that the sigma points are completely
symmetric. If

∑
| ωi |= 1, the numerical integration is

completely stable. If
∑
| ωi |� 1, the introduction of

large rounding errors will lead to numerical instability [9].
Therefore, when

∑
| ωi |� 0(i = 0, 1, 2), satisfying∑

| ωi |= 1 invariably holds, the higher-order UT is
completely stable. To make the sigma points of high-order
UTmatch the information of high-order moment of a random
function of Gaussian distribution, the stability cost function
of high-order UT transform is constructed [47].

J(si,ωi) = 2ω1s61 + 4(n− 1)ω2s62 − 15 (44)

With the cost function, the minimization problem for equa-
tion (44) is equivalent to: J(si,ωi) = 0. The transformation
is essentially de-biased and consistent. The sigma points
and weights distribution satisfy the stability cost function of
equation (44). So, to capture the high-order moment informa-
tion of Gaussian random function and improve the accuracy
of UT. s1, ω1, s2 and ω2 in equations (19), (20), and (24) are
introduced into J(si,ωi) to obtain new cost function:

G(n,κ)= (n− 1)κ2+
(
2n2−14n

)
κ+n3−13n2 + 60n− 60

(45)

Let the cost function G(n,κ) = 0, the necessary and suf-
ficient condition for satisfaction is: 4 = −96n2 + 480n −
240 ≥ 0, and thus, we have can be 2 ≤ n ≤ 4, it is shown
that the optimal free parameters exist only in 2-4 Dimensional
state spaces.

Then only 1-4 Dimensional state spaces were analyzed and
verified:

In a 1-Dimensional state, n = 1 is substituted into equa-
tions (18), (19), (20), and (45), respectively. Although the
weights corresponding to all the sigma points taken are all
positive, but equation (17) has no analytical solution, so there
is no optimal free parameter selection in a 1-Dimensional
state.

In a 2-Dimensional state, n = 2 is substituted into equa-
tions (18), (19), (20), and (45), and we get κ = 0.835 and
κ = 19.165, respectively. The weights corresponding to all
the sigma points taken are all positive. From the point of view
of numerical stability, κ = 0.835 is selected.

In a 3-Dimensional state, n = 3 is substituted into equa-
tions (18), (19), (20), and (45), and we get κ = 1.417 and κ =
10.583, respectively. Similarly, the weights corresponding to
all sigma points are all positive. From the point of view of
numerical stability, κ = 1.417 is selected.
In the 4-Dimensional state, n = 4 is special. Only the free

parameter κ = 2 can satisfy the weights corresponding to
the sigma points, which are all positive. The following is a
description of the special cases.

D. DETAILED ALGORITHM FOLLOWS
We summarized the implementation of the improvedAHUKF
algorithm as follows:

1) The initial value is given by equation (3) and the
state vector xk−1 is assumed from xk−1 ∼ N (xk−1;
x̂k−1,Pk−1).

x̂0 = E [x0] P0 = E
[
x̃0x̃T0

]
(46)

2) Determine the system state dimension, and select the
optimal free parameter κ .
Time update:

3) Estimate covariance matrix Pk−1 of the state vector by
Cholesky decomposition:

Pk−1 = Sk−1STk−1 (47)

4) High-order sigma points and corresponding weights
construction and by given in equations (18), (19)
and (20).

5) Compute the propagated high-order sigma points
ξ ik|k−1: 

ξ i0k|k−1 = f (ξ i0k|k−1)

ξ i1k|k−1 = f (ξ i1k|k−1)

ξ i2k|k−1 = f (ξ i2k|k−1)

(48)

6) Compute the predicted state x̂k|k−1:

x̂k|k−1 = ω0ξ
i0
k|k−1 + ω1

n∑
i1=1

ξ i1k|k−1

+ω2

n(n−1)/2∑
i2=1

ξ i2k|k−1 (49)

7) Compute the predicted error covariance Pk|k−1:

Pk|k−1 = ω0ξ
i0
k|k−1(ξ

i0
k|k−1)

T
+ ω1

n∑
i1=1

ξ i1k|k−1

(ξ i1k|k−1)
T
+ ω2

n(n−1)/2∑
i2=1

ξ i2k|k−1(ξ
i2
k|k−1)

T

− x̂k|k−1x̂Tk|k−1 + Qk (50)
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8) Compute the adaptive factor λk , and bring into the state
error covariance matrix Pk|k−1 given in equations (41),
(42), and (43).

P∗k|k−1 = λk (ω0ξ
i0
k|k−1(ξ

i0
k|k−1)

T
+ ω1

n∑
i1=1

ξ i1k|k−1(ξ
i1
k|k−1)

T
+ ω2

n(n−1)/2∑
i2=1

ξ i2k|k−1(ξ
i2
k|k−1)

T
− x̂k|k−1x̂Tk|k−1)+ Qk (51)

Measurement-update:
9) Estimate the predictive covariance matrix P∗k|k−1 of the

state vector by Cholesky decomposition:

P∗k|k−1 = S∗k|k−1S
∗T
k|k−1 (52)

10) High-order sigma points and corresponding weights
construction and by given in equations (18), (19),
and (20).

11) Compute the propagated high-order sigma points
ξ ′ik|k−1: 

ξ ′i0k|k−1 = h(ξ ′i0k|k−1)

ξ ′i1k|k−1 = h(ξ ′i1k|k−1)

ξ ′i2k|k−1 = h(ξ ′i2k|k−1)

(53)

12) Compute the predicted measurement ẑk|k−1:

ẑk|k−1 = ω0ξ
′i0
k|k−1 + ω1

n∑
i1=1

ξ ′i1k|k−1

+ω2

n(n−1)/2∑
i2=1

ξ ′i2k|k−1 (54)

13) Compute the innovation covariance matrix and cross-
covariance matrix:

Pxzk|k−1 = ω0ξ
i0
k|k−1(ξ

′i0
k|k−1)

T
+ ω1

n∑
i1=1

ξ i1k|k−1

(ξ ′i1k|k−1)
T
+ ω2

n(n−1)/2∑
i2=1

ξ i2k|k−1(ξ
′i2
k|k−1)

T
− x̂k|k−1ẑTk|k−1

(55)

Pzzk|k−1 = ω0ξ
′i0
k|k−1(ξ

′i0
k|k−1)

T
+ ω1

n∑
i1=1

ξ ′i1k|k−1

(ξ ′i1k|k−1)
T
+ ω2

n(n−1)/2∑
i2=1

ξ ′i2k|k−1(ξ
′i2
k|k−1)

T

− ẑk|k−1ẑTk|k−1 + Rk (56)

14) Estimate the updated state, the Kalman gain and the
error covariance:

Kk = Pxzk|k−1(P
zz
k|k−1)

−1 (57)

x̂k|k = x̂k|k−1 + Kk (zk − ẑk|k−1) (58)

Pk|k = P∗k|k−1 − KkP
zz
k|k−1K

T
k (59)

IV. SIMULATION ANALYSIS
In this part, we simulated and verified the different target
tracking models. In order to verify the reliability and sta-
bility of the algorithm, we use the same model as refer-
ence [54] for verification. The simulation experiment run on
a platform of an Inter (R) Core (TM) i3-7100 (2.4 GHz)
CPU and MATLAB 2010a. Different methods were com-
pared. Method 1: classical UKF algorithm (UKF) κ = 3− n,
Method 2: based on the principle of the orthogonal UKF
algorithm (AUKF), Method 3: standard CKF algorithm
(CKF), Method 4: UKF based on high-order UT sampling
strategy (HUKF), and Method 5: adaptive high-order UKF
(AHUKF). To compare the performances of the proposed fil-
tering algorithmAHUKF and other algorithms, the root mean
square errors (RMSEs), the averaged RMSEs (ARMSEs),
and the averaged absolute value of biases (AAVBs) of posi-
tion and velocity are chosen as performance metrics. The
RMSE, ARMSE, and AAVB of the position are respectively
defined as follows [35], [57]:

RMSEpos(k) =

√√√√ 1
M

M∑
s=1

((
xsk − x̂

s
k

)2
+
(
ysk − ŷ

s
k

)2) (60)

ARMSEpos =
1
N

N∑
k=1

RMSE (61)

AAVBpos =
1
M

∣∣xsk − x̂sk ∣∣X (62)

where M and N are the total number of Monte Carlo runs
and the simulation time, respectively. xsk , y

s
k and x̂

s
k , ŷ

s
k are the

real and estimated positions of the Monte Carlo simulation
at the sth run. Similar to the RMSE and ARMSE in position,
we can also formulate the RMSE and ARMSE in velocity. | · |
is the absolute value operation, subscript represents relative
to X coordinates, the coordinates relative to Y are similar to
the representation of X .
In this experiment, a large systemmodel mismatch strategy

was used in Scenario 1 to apply it to single target track-
ing. The maneuvering target tracking model is adopted in
Scenario 2 and a small sampling interval and low turn rate,
large sampling interval, and high turn rate, large sampling
interval and low turn rate are used to verify the effectiveness
of the proposed algorithm, respectively.
Scenario 1:A single observation station with a state vector

is used to track the target and the radar position is determined
to be known [54], [58], [59]. The target is moving according
to the motion model of continuous white noise.

xk = Fxk−1 + Gwk−1 (63)

F =
[
3 02×2

02×2 3

]
3 =

[
1 1t
1t 1

]
G =

[
0 02×1

02×1 0

]
0 =

[
0.51t2 1t

]T
(64)

where xk = [ςk ς̇k ηk η̇k ]T , ςk , ηk and ς̇k , η̇k repre-
sent the position and velocity of the Cartesian coordinates,
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TABLE 1. ARMSEs and running times of the different algorithms.

respectively. F and G denote the state transition matrix and
the noise drive matrix, respectively. The parameter 4t=1 s
denotes the sampling interval, 02×x denotes the 2D null
matrix and [·]T is the transpose operation. The target is
observed by a range sensor mounted on the control platform
of the radar observation station, and the position is fixed. The
measurement model is given by the following equation:

zk =
√
(ςk − Xradar)2 − (ηk − Yradar)2 + vk (65)

where (Xrandr ,Yrandr ) denotes position of the radar observa-
tion station, zk is the distance of the target measured by the
radar at time k . {

wk ∼ N (0,Q)
vk ∼ N (0,R)

(66)

where wk and vk denote the process noise and measurement
noise, respectively. N (0,

∑
) denotes zero mean Gaussian

white noise variance is
∑

. where Q = 1e− 4 ∗ diag([0.5 1])
and R = 10. The position of the radar station is fixed on the
coordinate system platform (200m 300m) and the target track
is located in the same plane as the radar.

In this simulation, UKF, CKF, AUKF, HUKF, and AHUKF
are selected for comparison. Parameter selection: κ = 3− n.
In the AUKF and AHUKF, the forgetting factor ρ = 0.95,
the free parameter κ of AHUKF chooses the optimal param-
eter proposed in this paper. The target initial state and covari-
ance are set as follows: x0 = [−150 2 250 20]T and
P0 = diag[1 1 1 1], respectively. The sampling time is
60 s and the total number of Monte Carlo runs is 100.
The target gives a larger state mutation in the 31 s flight,
x31 = [15, 15, 15, 15]T . In Figs. 3-5 show the RMSEs and
AAVBs of the position of the proposed filtering algorithm
and other filtering algorithms, respectively. Table 1 shows the
one-step running time and ARMSE of each filter, as well as
the maximum error. Fig. 3 clearly shows that the RMSEs of
the proposed algorithm are smaller than that of other filter
algorithms. In addition, it can be seen from Table 1 that the
proposed algorithm has better estimation accuracy and per-
formance than the existing algorithms, although the running
time of the proposed algorithm is higher than that of other
algorithms, it still satisfies the engineering requirements.

It can be seen from Fig. 3 and Table 1 that when the
target is in steady flight, the nonlinear radar ranging scheme
is used and the accuracy of the algorithm is better than that
of other algorithms. Especially after 10 s, the peak error and
convergence rate of the algorithm aremuch smaller than those
of the other algorithms. However, given a large mutation
at 31 s, the algorithm proposed in this paper reaches the

FIGURE 3. RMSEs of the different algorithms.

FIGURE 4. AAVBs of the X coordinates of the different algorithms.

FIGURE 5. AAVBs of the Y coordinates of the different algorithms.

maximum peak (Max-Error), however, the next second will
converge quickly. When compared with the other algorithms,
HUKF is accurate than other algorithms but is still not as
accurate as the algorithm proposed in this paper. To clearly
illustrate the superiority of this algorithm, the error curves
are shown in Figs. 4 and 5, respectively. It is not difficult to
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see that the error (AAVB) of this algorithm is lower than that
of other algorithms.

It can be seen from Table 1 that the accuracy of the new
algorithm proposed in this paper is 80% higher than that
of UKF and CKF, and 79.17% higher than that of AUKF.
In addition, when compared with the HUKF algorithm,
the accuracy of the new algorithm is increased by 31.12%.
The estimated trajectory of the proposed filter is closer to
the real trajectory. Although the running time has increased,
we mainly emphasize stability, reliability and convergence
rate.

In this scenario, a large systemmutation was given, and the
proposed AHUKF can deal with the estimation error caused
by state mutation. The high-order UT sampling strategy was
used to capture the high-order moment information under
nonlinear conditions, and the simulation results were also
convincing.
Scenario 2: To further verify the superior the performance

of proposedmethods, which is applied to an agile target track-
ing with time-varying turn rate. This model is widely used to
verify the performance of the nonlinear filter [54], [60], [61].
The computational complexity and nonlinear intensity of
Scenario 2 are both higher than that of Scenario 1, and apply
different sampling interval and turn rate verify the high-order
moment capture capability and adaptive tracking ability of
this algorithm.
Case 1: The state space model is represented as follows:

xk =


1

sin�1T
�

0
cos�1T− 1

�
0 cos�1T 0 − sin�1T

0
1− cos�1T

�
1

sin�1T
�

0 sin�1T 0 cos�1T

 xk−1 + wk−1
(67)

where the state is xk = [ςk ς̇k ηk η̇k ]T , ςk and ηk denote
the positions, ς̇k and η̇k the denote velocities in the x and y
directions, respectively. � = −1.145◦s−1 denotes the con-
stant turn rate. The process noise is ω ∼ N (0,Q) with Q =
diag[0.1 0.01 0.1 0.01] and 1T=1 s denotes the sampling
interval.

The measurement model is represented as follows:

zk =
[
rk
θk

]
=

[ √
x2k + y

2
k

atan 2 (yk , xk)

]
+ vk (68)

where zk is the measurement of the radar at moment k ,
arctan 2 denotes the four quadrant tangent function. It is
assumed that the radar measurement range is r and azimuth
is θ . The measurement noise is vk ∼ N (0,R) with R =
diag[σ 2

r σ
2
θ ], where σr = 100m and σθ = 100mrad.

The initial state is given by:

x0 =
[
100m 20ms−1 500m 30ms−1

]T
(69)

The associated initial state covariance is given by:

P0|0 =
[
100m2 10m2s−2 100m2 10m2s−2

]
(70)

FIGURE 6. RMSEs of the position in 100 independent Monte Carlo runs
for small sampling interval and low turn rate.

FIGURE 7. RMSEs of the velocity in 100 independent Monte Carlo runs for
small sampling interval. and low turn rate.

In each run, the initial state estimation x̂0|0, was randomly
selected from N (x̂0|0; x0,P0|0), and all filters were initialized
under the same conditions. To compare the performance of
the filter, the RMSE of the position and velocity was chosen
as the performance metric, and 100 independent Monte Carlo
runs were performed. To verify the importance of the derived
adaptive adjustment factor and the selection of UKF free
parameters, UKF (κ = 3 − n), UKF (κ = 1), UKF (κ = 2),
HUKF and UKF with adaptive adjustment factor (AUKF)
were compared with the algorithm proposed in this paper.
The RMSE of the different filter positions and velocities
are shown in Figs. 6 and 7, respectively. The ARMSE of
the different filter positions and velocities and the one-step
running time are shown in Table 2. It can be seen from
Figs. 6 and 7 that in the proposed algorithm, the RMSE is
lower than the other filters. Within 20 s, the RMSE stability
of the UKF and AUKF was not ideal and had fluctuations,
and then the error increased sharply. Although the error of
the AUKF was reduced after 60 s, it was still larger than
the HUKF and AUKF. For the HUKF and AHUKF with
lower error, the error of the AHUKF was always smaller than
that of the HUKF. Table 2 shows that the average tracking
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TABLE 2. RMSEs of different filters position and velocity with small
sampling interval and low turn rate.

FIGURE 8. RMSEs of the position in 100 independent Monte Carlo runs
for large sampling interval and low turn rate.

FIGURE 9. RMSEs of the velocity in 100 independent Monte Carlo runs for
large sampling interval and low turn rate.

accuracy of this algorithm is also better than that of the other
algorithms. The position accuracy of the proposed algorithm
was 31 % higher than that of the UKF (κ = 3 − n), UKF
(κ = 1),UKF (κ = 2), 8% and 14% higher than that of the
HUKF and AUKF, respectively.
Case 2: To verify the robustness of the proposed algorithm,

we deliberately increased the sampling interval and kept
the other parameters unchanged. Sampling interval 1T=3 s,
the algorithm was further tested in Case 2. Figs. 8 and 9
show the position and velocity of the RMSEs, respectively.
Table 3 shows the different filter position and velocity of
ARMSE and one-step running time. From Figs. 8 and 9,
due to the mismatch of higher-order moment information

TABLE 3. ARMSEs of different filters position and velocity with large
sampling interval and low turn rate.

TABLE 4. ARMSEs of different filter position and velocity with large
sampling interval and high turn rate.

in the state estimation, the UKF (including different free
parameters) and AUKF contain a large jump. For the AUKF,
it is difficult to adjust the estimation of covariance in a weak
maneuvering state, which can result in the gain difficult to
reach the required value, but it is still superior to themethod of
the UKF (including different free parameters). Under the con-
dition of capturing the information of high-order moments,
AHUKF adjusts the prediction error covariance effectively
by using an adaptive adjustment factor, so the error accu-
racy is better than that of AUKF, and the robustness is very
good. The proposed algorithm is superior to other algo-
rithms in large sampling intervals. Compared with the UKF
algorithm, the accuracy of the AHUKF was improved by
63.6%. Compared with the AUKF algorithm, the accuracy of
AHUKF is improved by 55.2%. For HUKF, AHUKFwas still
a great improvement, and the accuracy of the improvement
of 18.9%.
Case 3: On the basis of Case2, the simulation test was car-

ried out again, and the maneuvering tracking test was carried
out under the condition of high turn rate, where� = −9◦s−1.
Figs. 10 and 11 show the position and velocity of the RMSEs,
respectively. Table 4 shows the error statistics of the test.

In this simulation, the superiority of the proposed algo-
rithm can be better explained. As can be clearly seen
in Figs. 10 and 11, HUKF tends to be stationary, but the
error is higher than all filters. This is because the tracking
information is too smooth to capture the real information,
leading to the gradual deviation of the tracking trajectory,
which reduces the tracking performance of the radar system,
precision reduction by 45% compared with AHUKF. When
compared with AUKF, under the condition of high turn rate
and large sampling interval, the adaptive factor played amajor
role in adjusting, but it was still not better than the algorithm
proposed in this paper, and comparedwith AHUKF, the track-
ing accuracy decreases by 20.7%.

In this scenario, a large sampling interval was easy to lose
sampling information, and the high turn rate led to increased
maneuverability of the target. AHUKF can more accurate
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FIGURE 10. RMSEs of the position in 100 independent Monte Carlo runs
for large sampling interval and high turn rate.

FIGURE 11. RMSEs of the velocity in 100 independent Monte Carlo runs
for large sampling interval and high turn rate.

matching of the high-order moment information, reducing
the error caused by the model mismatch. Thus, the proposed
AHUKF had better filtering precision than the existing filter-
ing in a target tracking application with the different sampling
interval and turn rate, respectively, and can achieve the global
optimal.

The above experiments and analysis demonstrated the pro-
posed AHUKF enhances the robustness of the classical UKF
and outperforms other filtering methods in accuracy under
model mismatches, large sampling interval and high running
rate.

V. CONCLUSION
In this paper, a new adaptive high-order unscented Kalman
filter (AHUKF) was proposed by using the orthogonal prin-
ciple and high-order UT sampling strategy based on an online
estimation method, and it was applied to the target track-
ing model. For the standard UKF algorithm, only the first
two moments can be captured. In this paper, a high-order
UT sampling strategy with free parameters was proposed to
capture the information of high-order moments and improve
the estimation accuracy. The rationality of the selection of

free parameters was analyzed theoretically. Based on the
orthogonal principle, the adaptive factor was introduced into
the prediction covariance, and the gain matrix was further
adjusted, which effectively restrains the influence of strong
nonlinear and maneuvering target as well as large abrupt
changes on the filter. AHUKF had a good effect on different
sampling intervals and different turning rates, and the effect
of the dynamic model error was reduced. The experimen-
tal results show that the proposed method was robust in
suppressing the uncertainty of the model and had a good
ability to capture high-order moment information. The esti-
mation accuracy was improved, the global optimization was
achieved, and the stability of the whole filtering process was
improved. The results show that the AHUKF algorithm had
advantages over the other filtering algorithms. The computa-
tional complexity was slightly higher than the other Gaussian
approximation algorithms. We believe the AHUKF would be
still useful in engineering applications.

Future research on AHUKF might extend the field of non-
linear singularly perturbed complex networks [62], discrete
time-delayed genetic regulatory networks under stochas-
tic communication protocols [63], [64], and non-stationary
heavy tailed noises [65], [66].

ACKNOWLEDGEMENT
The authors would like to thank coordinating editor and
anonymous reviewers for very useful and constructive
feedback.

REFERENCES
[1] N. Sadeghzadeh-Nokhodberiz and J. Poshtan, ‘‘Distributed interacting

multiple filters for fault diagnosis of navigation sensors in a robotic sys-
tem,’’ IEEE Trans. Syst., Man, Cybern. Syst., vol. 47, no. 7, pp. 1383–1393,
Jul. 2017.

[2] W. Liu, P. Shi, and J.-S. Pan, ‘‘State estimation for discrete-time Markov
jump linear systems with time-correlated and mode-dependent measure-
ment noise,’’ Automatica, vol. 85, no. 11, pp. 9–21, Nov. 2017.

[3] M. Gupta, S. Kumar, L. Behera, and V. K. Subramanian, ‘‘A novel
vision-based tracking algorithm for a human-following mobile robot,’’
IEEE Trans. Syst., Man, Cybern. Syst., vol. 47, no. 7, pp. 1415–1427,
Jul. 2017.

[4] S. Zhao, Y. S. Shmaliy, P. Shi, and C. K. Ahn, ‘‘Fusion Kalman/UFIR filter
for state estimation with uncertain parameters and noise statistics,’’ IEEE
Trans. Ind. Electron., vol. 64, no. 4, pp. 3075–3083, Apr. 2017.

[5] L. Wang, Z. Liu, C. L. P. Chen, Y. Zhang, S. Lee, and X. Chen, ‘‘A UKF-
based predictable SVR learning controller for biped walking,’’ IEEE Trans.
Syst., Man, Cybern. Syst., vol. 43, no. 6, pp. 1440–1450, Nov. 2013.

[6] Y. Huang, Y. Zhang, Z. Wu, N. Li, and J. Chambers, ‘‘A novel adaptive
Kalman filter with inaccurate process and measurement noise covariance
matrices,’’ IEEE Trans. Autom. Control, vol. 63, no. 2, pp. 594–601,
Feb. 2018.

[7] G. Hu, W. Wang, Y. Zhong, B. Gao, and C. Gu, ‘‘A new direct filter-
ing approach to INS/GNSS integration,’’ Aerosp. Sci. Technol., vol. 77,
pp. 755–764, Jun. 2018.

[8] B. Gao, G. Hu, S. Gao, Y. Zhong, and C. Gu, ‘‘Multi-sensor optimal data
fusion for INS/GNSS/CNS integration based on unscented Kalman filter,’’
Int. J. Control Autom. Syst., vol. 16, no. 1, pp. 129–140, Feb. 2018.

[9] Y. Wu, D. Hu, M. Wu, and X. Hu, ‘‘A numerical-integration perspec-
tive on Gaussian filters,’’ IEEE Trans. Signal Process., vol. 54, no. 8,
pp. 2910–2921, Aug. 2006.

[10] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Englewood Cliffs,
NJ, USA: Prentice-Hall, 1979.

VOLUME 7, 2019 118495



W. Zhou, J. Hou: New AHUKF for Improving the Accuracy and Robustness of Target Tracking

[11] Y. Huang, Y. Zhang, B. Xu, Z. Wu, and J. A. Chambers, ‘‘A new adaptive
extended Kalman filter for cooperative localization,’’ IEEE Trans. Aerosp.
Electron. Syst., vol. 54, no. 1, pp. 353–368, Feb. 2018.

[12] G. Hu, S. Gao, and Y. Zhong, ‘‘A derivative UKF for tightly cou-
pled INS/GPS integrated navigation,’’ ISA Trans., vol. 56, pp. 135–144,
May 2015.

[13] B. D. O. Anderson, J. B. Moore, and M. Eslami, ‘‘Optimal filtering,’’
IEEE Trans. Syst., Man, Cybern. Syst., vol. 12, no. 2, pp. 235–236,
Mar./Apr. 1982.

[14] X. Liu, H. Qu, J. Zhao, P. Yue, and M. Wang, ‘‘Maximum correntropy
unscented Kalman filter for spacecraft relative state estimation,’’ Sensors,
vol. 16, no. 9, pp. 1530–1546, Sep. 2016.

[15] S. Julier, J. Uhlmann, and H. F. Durrant-Whyte, ‘‘A new method for
the nonlinear transformation of means and covariances in filters and
estimators,’’ IEEE Trans. Autom. Control, vol. 5, no. 3, pp. 477–482,
Mar. 2000.

[16] S. J. Julier and J. K. Uhlmann, ‘‘Unscented filtering and nonlinear estima-
tion,’’ Proc. IEEE, vol. 92, no. 3, pp. 401–422, Mar. 2004.

[17] Y. Huang, Y. Zhang, N. Li, and J. Chambers, ‘‘Robust Student’s t based
nonlinear filter and smoother,’’ IEEE Trans. Aerosp. Electron. Syst.,
vol. 52, no. 5, pp. 2586–2596, Oct. 2016.

[18] I. Arasaratnam and S. Haykin, ‘‘Cubature Kalman filters,’’ IEEE Trans.
Autom. Control, vol. 54, no. 6, pp. 1254–1269, Jun. 2009.

[19] K. Ito and K. Xiong, ‘‘Gaussian filters for nonlinear filtering prob-
lems,’’ IEEE Trans. Autom. Control, vol. 45, no. 5, pp. 910–927,
May 2000.

[20] Z. Duan, A. Jahanzeb, G. Imran, J. Muhammad, K. Ikramullah, and
A. Khurram, ‘‘Improving the tracking of subatomic particles using the
unscented Kalman filter with measurement redundancy in high energy
physics experiments,’’ IEEE Access, vol. 7, no. 5, pp. 61728–61737,
May 2019.

[21] S. Gao, G. Hu, and Y. Zhong, ‘‘Windowing and random weighting-based
adaptive unscented Kalman filter,’’ IEEE Trans. Autom. Control, vol. 29,
no. 2, pp. 201–223, Jan. 2014.

[22] P. J. Costa and W. H. Moore, ‘‘Extended Kalman-Bucy filters for radar
tracking and identification,’’ in Proc. IEEENat. Radar Conf., Los Angeles,
CA, USA, Mar. 1991, pp. 127–131.

[23] L. Ma, Z. Wang, Q.-L. Han, and H.-K. Lam, ‘‘Variance-constrained dis-
tributed filtering for time-varying systems with multiplicative noises and
deception attacks over sensor networks,’’ IEEE Sensors J., vol. 17, no. 7,
pp. 2279–2288, Apr. 2017.

[24] L. Ma, Z. Wang, Q.-L. Han, and H.-K. Lam, ‘‘Envelope-constrained
H∞ filtering for nonlinear systems with quantization effects: The finite
horizon case,’’ Automatica, vol. 93, pp. 527–534, Jul. 2018.

[25] L. Ma, Z. Wang, H.-K. Lam, and N. Kyriakoulis, ‘‘Distributed event-
based set-membership filtering for a class of nonlinear systems with sensor
saturations over sensor networks,’’ IEEE Trans. Cybern., vol. 47, no. 11,
pp. 3772–3783, Nov. 2017.

[26] T. Lefebvre, H. Bruyninckx, and J. De Schuller, ‘‘Comment on ‘a new
method for the nonlinear transformation of means and covariances in
filters and estimators,’’’ IEEE Trans. Autom. Control, vol. 47, no. 8,
pp. 1406–1409, Nov. 2002.

[27] J. Hou andW. Zhou, ‘‘Application of improved UPF algorithm in nonlinear
non-Gauss system,’’ in Proc. 14th IEEE Int. Conf. Signal Process. (ICSP),
Aug. 2018, pp. 84–89.

[28] J. Loxam and T. Drummond, ‘‘Student-t mixture filter for robust, real-
time visual tracking,’’ in Proc. 10th Eur. Conf. Comput. Vis. (ECCE), 2008,
pp. 372–385.

[29] Y. Huang and Y. Zhang, ‘‘Robust Student’s t-based stochastic cubature
filter for nonlinear systems with heavy-tailed process and measurement
noises,’’ IEEE Access, vol. 5, pp. 7964–7974, 2017.

[30] Z. Gao, D. Mu, S. Gao, Y. Zhong, and C. Gu, ‘‘Adaptive unscented Kalman
filter based on maximum posterior and random weighting,’’ Aerosp. Sci.
Technol., vol. 71, pp. 12–24, Dec. 2017.

[31] L. Li, D. Yu, Y. Xia, and H. Yang, ‘‘Event-triggered UKF for nonlinear
dynamic systems with packet dropout,’’ Int. J. Robust Nonlinear Control,
vol. 27, no. 18, pp. 4208–4226, Dec. 2017.

[32] M. Xiao, Y. Zhang, and H. Fu, ‘‘Three-stage unscented Kalman
filter for state and fault estimation of nonlinear system with
unknown input,’’ J. Franklin Inst., vol. 354, no. 18, pp. 8421–8443,
Dec. 2017.

[33] X. Cheng, M. Bi, and H. Liu, ‘‘A new prediction unscented Kalman filter
based on robust model and its application,’’ in Proc. 3rd IEEE Inf. Technol.
Mechatronics Eng. Conf. (ITOEC), Oct. 2017, pp. 895–903.

[34] L. Chang, B. Hu, G. Chang, and A. Li, ‘‘Huber-based novel robust
unscented Kalman filter,’’ IET Sci. Meas. Technol., vol. 6, no. 6,
pp. 502–509, Nov. 2012.

[35] Y. Huang, Y. Zhang, Z. Wu, N. Li, and J. Chambers, ‘‘A novel robust
Student’st-based Kalman filter,’’ IEEE Trans. Aerosp. Electron. Syst.,
vol. 53, no. 3, pp. 1545–1554, Jun. 2017.

[36] X. Wang, N. Cui, and J. Guo, ‘‘Huber-based unscented filtering and its
application to vision-based relative navigation,’’ IET Radar Sonar Navi-
gation, vol. 4, no. 1, pp. 134–141, Feb. 2010.

[37] F. El-Hawary and Y. Jing, ‘‘Robust regression-based EKF for tracking
underwater targets,’’ IEEE J. Ocean. Eng., vol. 20, no. 1, pp. 31–41,
Jan. 1995.

[38] Y. Wang, S. Sun, and L. Li, ‘‘Adaptively robust unscented Kalman filter
for tracking a maneuvering vehicle,’’ J. Guid. Control Dyn., vol. 37, no. 5,
pp. 1696–1701, Jun. 2014.

[39] Y. Huang and Y. Zhang, ‘‘A new process uncertainty robust Student’s
t based Kalman filter for SINS/GPS integration,’’ IEEE Access, vol. 5,
pp. 14391–14404, 2017.

[40] L. Chang, B. Hu, G. Chang, and A. Li, ‘‘Marginalised iterated unscented
Kalman filter,’’ IET Control Theory Appl., vol. 6, no. 6, pp. 847–854,
Apr. 2012.

[41] L. Chang, B. Hu, A. Li, and F. Qin, ‘‘Strapdown inertial navigation system
alignment based onmarginalised unscentedKalman filter,’’ IET Sci., Meas.
Technol., vol. 7, no. 2, pp. 128–138, Mar. 2013.

[42] K. Xiong, H. Zhang, and L. Liu, ‘‘Adaptive robust extended Kalman filter
for nonlinear stochastic systems,’’ IET Control Theory Appl., vol. 2, no. 3,
pp. 239–250, Mar. 2008.

[43] H. Zhang, J. Xie, J. Ge, W. Lu, and B. Zong, ‘‘Adaptive strong tracking
square-root cubature Kalman filter for maneuvering aircraft tracking,’’
IEEE Access, vol. 6, pp. 10052–10061, 2018.

[44] H. Zhang, J. Xie, J. Ge, W. Lu, and B. Liu, ‘‘Strong tracking
SCKF based on adaptive CS model for manoeuvring aircraft track-
ing,’’ IET Radar, Sonar Navigat., vol. 12, no. 7, pp. 742–749,
Jul. 2018.

[45] S. Zhao, Y. S. Shmaliy, C. K. Ahn, and F. Liu, ‘‘Adaptive-horizon iterative
UFIR filtering algorithm with applications,’’ IEEE Trans. Ind. Electron.,
vol. 65, no. 8, pp. 6393–6402, Aug. 2008.

[46] Q. Wang, ‘‘The theory and application research of adaptive-robust UKF
for satellite integrated navigation system,’’ Huazhong Univ. Sci. Technol.,
Wuhan, China, 2010, pp. 68–72.

[47] S. J. Julier and J. K. Uhlmann, ‘‘A consistent, debiased method for convert-
ing between polar and cartesian coordinate systems,’’ in Proc. AeroSense,
11th Int. Symp. Aerosp./Defense Sens., Simulation Contr., Orlando, FL,
USA, Jun. 1997, pp. 110–121.

[48] J. Rezaie and J. Eidsvik, ‘‘A skewed unscented Kalman filter,’’ Int. J. Con-
trol, vol. 89, no. 12, pp. 2572–2583, Apr. 2016.

[49] K. Ponomareva, P. Date, and Z. Wang, ‘‘A new unscented Kalman filter
with higher order moment-matching,’’ in Proc. 19th Int. Symp. Math.
Theory Netw. Syst., Jun. 2010, pp. 1609–1613.

[50] B. Gao, G. Hu, S. Gao, Y. Zhong, and C. Gu, ‘‘Multi-sensor optimal data
fusion based on the adaptive fading unscented Kalman filter,’’ sensors,
vol. 18, no. 2, p. 488, Feb. 2018.

[51] B. Gao, S. Gao, Y. Zhong, G. Hu, and C. Gu, ‘‘Interacting multi-
ple model estimation-based adaptive robust unscented Kalman filter,’’
Int. J. Control, Automat. Syst., vol. 15, no. 5, pp. 2013–2025,
Oct. 2017.

[52] B. Jia and M. Xin, ‘‘Sparse-grid quadrature H∞ filter for discrete-time
systems with uncertain noise statistics,’’ IEEE Trans. Aerosp. Electron.
Syst., vol. 49, no. 3, pp. 1626–1636, Aug. 2013.

[53] M.-J. Yu, ‘‘INS/GPS integration system using adaptive filter for estimating
measurement noise variance,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 48,
no. 2, pp. 1786–1792, Apr. 2012.

[54] X. R. Li and V. P. Jilkov, ‘‘Survey of maneuvering target tracking.
Part I. Dynamic models,’’ IEEE Trans. Aerosp. Electron. Syst., vol. 39,
no. 4, pp. 1333–1364, Oct. 2003.

[55] W. Zhou, J. Hou, L. Liu, T. Sun, and J. Liu, ‘‘Design and simulation of
the integrated navigation system based on extended Kalman filter,’’ Open
Phys., vol. 15, no. 1, pp. 182–187, Jan. 2017.

[56] W. Zhou and J. Hou, ‘‘A new adaptive robust unscented Kalman filter
for improving the accuracy of target tracking,’’ IEEE Access, vol. 7,
pp. 77476–77489, 2019.

[57] Y. Huang, Y. Zhang, P. Shi, Z. Wu, J. Qian, and J. A. Chambers, ‘‘Robust
Kalman filters based on Gaussian scale mixture distributions with appli-
cation to target tracking,’’ IEEE Trans. Syst., Man, Cybern. Syst., to be
published.

118496 VOLUME 7, 2019



W. Zhou, J. Hou: New AHUKF for Improving the Accuracy and Robustness of Target Tracking

[58] Y. Huang andY. Zhang, ‘‘Design of high-degree Student’s t-based cubature
filters,’’ Circuits Syst. Signal Process., vol. 37, no. 5, pp. 2206–2225,
May 2018.

[59] Y. Huang, Y. Zhang, N. Li, and L. Zhao, ‘‘Design of sigma-point Kalman
filter with recursive updated measurement,’’ Circuits Syst. Signal Process.,
vol. 35, no. 5, pp. 1767–1782, May 2016.

[60] B.-T. Vo, B.-N. Vo, and A. Cantoni, ‘‘Bayesian filtering with random
finite set observations,’’ IEEE Trans. Signal Process., vol. 56, no. 4,
pp. 1313–1326, Apr. 2008.

[61] J. Liu, Z. Wang, and M. Xu, ‘‘A Kalman estimation based rao-
blackwellized particle filtering for radar tracking,’’ IEEE Access, vol. 5,
pp. 8162–8174, 2017.

[62] X. Wan, Z. Wang, M. Wu, and X. Liu, ‘‘H∞ state estimation for discrete-
time nonlinear singularly perturbed complex networks under the round-
robin protocol,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 2,
pp. 415–426, Jul. 2018.

[63] X.Wan, Z.Wang, Q.-L. Han, andM.Wu, ‘‘Finite-timeH∞ state estimation
for discrete time-delayed genetic regulatory networks under stochastic
communication protocols,’’ IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 65, no. 10, pp. 3481–3491, Oct. 2018.

[64] X. Wan, Z. Wang, M. Wu, and X. Liu, ‘‘State estimation for dis-
crete time-delayed genetic regulatory networks with stochastic noises
under the round-robin protocols,’’ IEEE Trans. Nanobiosci., vol. 17,
no. 2, pp. 145–154, Apr. 2018.

[65] Y. Huang, Y. Zhang, Y. Zhao, and J. A. Chambers, ‘‘A novel robust
Gaussian–Student’s t mixture distribution based Kalman filter,’’ IEEE
Trans. Signal Process., vol. 67, no. 13, pp. 3606–3620, Jul. 2019.

[66] Y. Huang, Y. Zhang, B. Xu, Z. Wu, and J. Chambers, ‘‘A new outlier-
robust Student’s t based Gaussian approximate filter for cooperative local-
ization,’’ IEEE/ASME Trans. Mechatronics, vol. 22, no. 5, pp. 2380–2386,
Oct. 2017.

WEIDONG ZHOU received the bachelor’s and
master’s degrees from the Harbin Institute of Tech-
nology, Harbin, China, in 1988 and 1991, respec-
tively, and the Ph.D. degree from the College
of Automation, Harbin Engineering University,
Harbin, in 2016. In October 2004, he visited
BacoCompany, Belgium, and participated inmany
international academic conferences. He is cur-
rently a Professor of navigation, guidance, and
control with Harbin Engineering University. His

current research interests include signal processing, information fusion, and
their applications in navigation technology, such as inertial navigation and
integrated navigation.

JIAXIN HOU received the B.S. degree from the
Department of Automation, Northeast Petroleum
University, Daqing, China, in 2006, He is cur-
rently pursuing the Ph.D. degree in control science
and engineering with Harbin Engineering Univer-
sity, Harbin, China. His current research interests
include signal processing, information fusion, and
their applications in navigation technology, such
as inertial navigation and integrated navigation.

VOLUME 7, 2019 118497


	INTRODUCTION
	UKF ALGORITHM MODEL AND DEFICIENCY
	TIME UPDATE
	MEASUREMENT UPDATE

	IMPROVED UKF ALGORITHM
	HIGH-ORDER SIGMA SAMPLING STRATEGY
	OPTIMAL ADAPTIVE FACTOR BASED ON THE ESTIMATED COVARIANCE MATRIX OF PREDICTED RESIDUALS
	DISCUSSION ON THE STABILITY OF ALGORITHM
	DETAILED ALGORITHM FOLLOWS

	SIMULATION ANALYSIS
	CONCLUSION
	REFERENCES
	Biographies
	WEIDONG ZHOU
	JIAXIN HOU


