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ABSTRACT Inverter air conditioners (IACs) with considerable total capacity and fast response speed are
ideal demand response resources, which are of significant potential to provide reserve capacity for the
power system frequency regulation. However, due to the complexity and implicitness of the frequency
response models, it is difficult to formulate the optimization problem considering frequency dynamics to
allocate reserve capacity precisely. In this paper, a data-driven method is proposed for reserve allocation
with the frequency security constraint considering IACs. Firstly, the equivalent frequency response model of
aggregated IACs is developed considering electrical-thermal characteristics and then incorporated into the
frequency regulation framework of power systems along with conventional generators. Then, simulations
are implemented to generate massive reserve samples with deterministic frequency security labels. Later,
a support vector machine (SVM) based frequency security classifier is trained to convert the implicit
frequency security constraint into polynomials and reshape the reserve allocation problem into a solvable
general quadratically constrained quadratic program (QCQP). Finally, a heuristic Suggest-and-Improve (SI)
method is adopted to deal with the nonconvex QCQP of interest. It is demonstrated by numerical studies
that the proposed data-driven method enables power systems to operate closer to the frequency security
boundaries and thus achieve lower costs.

INDEX TERMS Reserve allocation, frequency security constraint, inverter air conditioner, classifier,
data-driven.

I. INTRODUCTION
Frequency stabilization is vital for the security and reliability
of power system operation. The large frequency deviation
may result in generator cascade tripping and is one of the
main causes of power system blackout [1]. The power sys-
tem frequency is directly affected by the power generation
and demand [2], which tends to rise when power genera-
tion is larger than demand, and fall when the generation
is insufficient. Due to the fluctuations of the power sup-
ply and demand, the power imbalance cannot be avoided
completely in power systems. Therefore, the frequency reg-
ulation, including primary frequency regulation (PFR) and
secondary frequency regulation (SFR), is widely adopted to
maintain the stability of power systems [3].

The associate editor coordinating the review of this article and approving
it for publication was Md. Apel Mahmud.

Reserve allocation is one of the main issues in the fre-
quency regulation. The frequency dynamics are seldom con-
sidered in previous researches of reserve allocation for PFR
and SFR, which focus more on the power balance of the
systems [4]. Recently, the power system frequency stability
has been greatly threatened by the increasing penetration of
renewable energies [5] andmore researches have followed the
reserve allocation considering the frequency dynamics with
interest. Generally, the frequency response model is funda-
mental to investigate the frequency dynamics. In [6], the PFR
and SFRmodels are formulated based on the swing equations.
In [7], an adaptive frequency response model is proposed,
which is integrated with the load shedding scheme. In [8],
an adaptive multiple-machine frequency response model is
presented incorporating the governor response.

Due to the high nonlinearity and complexity of frequency
response models, the frequency security constraint associated
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with frequency dynamics cannot be incorporated directly in
the power system reserve allocation problem. In [9], lin-
earization is performed to simplify the generation frequency
dynamics, which is relatively inaccurate. In [10], the suffi-
cient condition for frequency security is proposed as an affine
constraint of the unit commitment problem, which is a con-
servative estimation andmay lead to an overestimated reserve
requirement. In [11], the piece-wise linearization is utilized
to transform the frequency limit into a linear arithmetic equa-
tion, whose complexity increases greatly with subject to the
number of system components.

Recently, demand side resources have been widely con-
sidered to have the potential for power system frequency
regulation [12], [13], among which, the inverter air con-
ditioners (IACs) are most concerned. The reasons are as
follows: 1) Air conditioning (AC) is one of the top power-
consuming appliances [14], and most of the newly installed
ACs are IACs [15]; 2) IACs can adjust the input power
very quickly [16]. Moreover, short time adjustment of IAC
power has little effect on users, relatively [17]. As IACs
are considered as an ideal demand response resource, it is
significant to consider the IACs in power system frequency
regulation. In [18], the IACs are modeled as a thermal battery.
In [19], the equivalent frequency response model of IACs
has been presented including equivalent transfer functions,
control parameters, and evaluation criteria. In [20], the IACs
are combined with the conventional generator model for fre-
quency regulation service. However, in these existing studies,
the response characteristics of IACs are mainly supported by
simulation, which have not been integrated into the reserve
allocation optimization problem due to the complexity of the
model of IACs.

Machine learning classifier (MLC) is widely utilized [21]
due to its attractive model-free advantage, which has been
successfully applied in power system studies such as com-
ponent fault diagnosis, load forecasting, power quality
evaluation and so on [22]–[24]. From the perspective of
classification, whether the frequency security constraint is
satisfied can be considered as a binary problem. Thus, MLC
does have the possibility to be applied to deal with the implic-
itness of power system frequency security constraint, which
has not been reported yet.

In this paper, a data-driven method for reserve allocation
with frequency security constraint considering IACs has been
proposed. Firstly, the equivalent frequency response model
of IACs is presented and integrated into the power system
model. Then, with the utilization of a machine learning fre-
quency security classifier (MLFSC) based on support vector
machine (SVM), the reserve allocation problem between
IACs and conventional generators considering frequency
security constraint is converted to a general quadratically
constrained quadratic program (QCQP) [25]. The general
QCQP is solved by the heuristic Suggest-and-Improve (SI)
method. The framework of this paper is illustrated
in Fig. 1.

FIGURE 1. Framework of the proposed data-driven power system reserve
allocation.

FIGURE 2. Classical power system frequency response model.

II. MODELLING OF POWER SYSTEM FREQUENCY
RESPONSE INTEGRATED WITH IACS
In this section, the model for power system frequency
response is introduced firstly. Then, the equivalent frequency
response model of IACs is presented. Finally, the aggregated
model of IACs is integrated into the power system frequency
response framework. Note that all the models in this part are
constructed in the frequency domain.

A. POWER SYSTEM FREQUENCY RESPONSE MODEL
The classical frequency response model participated by m
conventional generators is illustrated in Fig. 2 [6].

In Fig. 2, the input 1P is the power imbalance of the
power system; the output 1f is the corresponding frequency
deviation considering the frequency regulation. H is the
equivalent system inertia andD is the load-damping rate. The
frequency regulation provided by the conventional generator
i is illustrated in the dashed line box. Ri and T iG are the
governor speed regulation and time constant of generator i,
respectively. T iCH and T iRH are the steam chest time and reheat
turbine time constants of generator i, respectively. F iHP is the

VOLUME 7, 2019 120015



X. Zhuang et al.: Data-Driven Reserve Allocation With Frequency Security Constraint Considering IACs

high-pressure power fraction of reheat turbine of generator i.
Sat iG(x) is a saturation block representing the reserve capacity
RiG of generator i. It is defined as:

Sat iG(x) =

{
x, 0 < x < RiG
RiG, x ≥ RiG

(1)

B. EQUIVALENT FREQUENCY RESPONSE MODEL OF IACS
The IACs have large regulation capacity and can be regard
as an important resource to maintain the power system fre-
quency stability [20]. The equivalent frequency response
model of an IAC can be constructed based on its thermal and
electrical models.

The thermalmodel of an IAC is built based on themodeling
of the room temperature deviation [26]:

CroomVroomρATroom(s) = Qroom(s)− QAC (s) (2)

Qroom(s) = Hr [Tout (s)− Troom(s)] (3)

where Croom and Vroom are the room thermal mass and room
volume, respectively; ρA is the density of the air; Qroom and
QAC are the room heat gain and the refrigerating capacity
of the IAC, respectively; Tout and Troom are the outdoor and
room temperature, respectively; Hr is the equivalent thermal
conductance between the room and the outdoor air.

IACs can adjust the operating frequency in order to control
their operating power. And the electrical model of an IAC is
constructed based on this feature [17]:

PAC (s) =
θP

Tcs+ 1
fAC (s)+ Pc (4)

QAC (s) =
θQ

Tcs+ 1
fAC (s)+ Qc (5)

where θP and θQ are the control parameters of the IAC;
fAC andPAC are the operating frequency and operating power,
respectively; Tc is the compressor time constant of the IAC;
Pc and Qc are the baseline operating power and refrigerating
capacity, respectively.

The mechanism for an IAC to participate in the power
system frequency response is to adjust its operating frequency
based on the system frequency deviation, so that its operating
power is changed correspondingly. The relationship between
the IAC operating frequency and the system frequency can be
obtained by [19]:

1fAC (s) = A1f (s)+ C(s)(1Troom(s)−1Tset (s)) (6)

C(s) = α +
β

s
(7)

where A is the control coefficient that is analogous to the
1/R of generators; C(s) is the temperature controller of IACs,
which is a proportional-integral (PI) controller as illustrated
in (7); Tset is the IAC set temperature. The operating fre-
quency of an IAC is determined jointly by the system fre-
quency and the deviation of room and set temperature.

Based on the thermal and electrical models represented by
(1) – (7), the response of the operating power of IACs to the

power system frequency deviation can be obtained by:

1PAC (s) = F1(s)+ F2(s) (8)

F1(s) =
θp(CroomVroomρAs+Hr )(A1f (s)+C(s)1Tset (s))

(Tcs+1)(CroomVroomρAs+Hr )+θQC(s)
(9)

F2(s) =
θpC(s)(Hr1Tout (s))

(Tcs+ 1)(CroomVroomρAs+ Hr )+ θQC(s)
(10)

It can be seen from (8) – (10) that the IAC operating power
is affected by the system frequency, the room temperature,
and the set temperature. As the primary frequency response
is implemented within seconds [6], it is reasonable to assume
that the room temperature and set temperature remain con-
stant during this process. Consequently, (8) – (10) can be
simplified as follows:

1PAC (s) =
θpA(Tas+ 1)1f (s)

(Tcs+ 1)(Tas+ 1)+8ACC(s)
(11)

Ta =
CroomVroomρA

Hr
(12)

8AC =
θQ

Hr
(13)

It can be seen that (11) – (13) exactly constitute the equiv-
alent frequency response model of a single IAC.

Due to the spreading demand response, more IACs espe-
cially the central types for commercial or factory buildings
have been participating in the power system operation con-
trol. Such IACs are configured with specific control pro-
grams and can be connected to the wireless network, so as
to be monitored and remotely controlled. The manufacturers
accept or proactively promote such programs, and agree to
disclose the necessary IAC parameters, by which they can
increase the added values and popularity of their products and
expand the sales volumes [27], [28]. In some particular cases,
the manufacturers directly participate in the demand response
projects and share the incomeswith the load aggregators. This
paper is based on the above scenario, where the IACmanufac-
turers are associated with the demand response projects and
the necessary information about the equipment are available.

C. POWER SYSTEM FREQUENCY RESPONSE
MODEL WITH AGGREGATED IACS
The operating power of a single IAC has no significance for
a realistic power system. The response of IACs only makes
sense with the simultaneous participation of multiple ones.
Considering the large quantity of existing IACs (like tens
of thousands) and their non-uniform parameters, the cluster-
ing method is utilized in this section to avoid the curse of
dimensionality.

Specifically, the k-means clustering algorithm [29] is uti-
lized to cluster massive IACs. Assume that the IACs are
of different Tc and A. Then the dataset to be clustered is
{(T 1

c ,A
1), (T 2

c ,A
2), · · · , (T dc ,A

d )} where T ic and Ai are the
corresponding parameters of IAC i and d is the total IACs
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number. C = {(T̃ 1
c , Ã

1), (T̃ 2
c , Ã

2), · · · , (T̃ nc , Ã
n)} is the clus-

ter centers, which can be calculated by:

C = argmin
d∑
i=1

(T ic − T
(i)
c )2 + (Ai − A(i))2

(T (i)
c ,A

(i)) = arg
(T (j)
c ,A(j))∈C

min[(T ic − T
(j)
c )2 + (Ai − A(j))2]

(14)

where n is the number of clusters and (T (i)
c ,A(i)) represents

the cluster centroid that (T ic,A
i) belongs to.

FIGURE 3. Power system frequency response model integrated with IACs
and conventional generators.

The IACs are divided into n aggregated ones with the
centroid parameters C. Then the power system frequency
response model considering the demand response of IACs
can be shown in Fig. 3, where the aggregated IAC can be
considered as a kind of Virtual Power Plants (VPPs) [30].

III. DATA-DRIVEN RESERVE ALLOCATION WITH
FREQUENCY SECURITY CONSTRAINT
A. PROBLEM DESCRIPTION
The main issue of primary frequency regulation is the allo-
cation of power system reserves. Note that the response of
IACs is faster than conventional generators due to the smaller
time constant [19]. The utilization of IAC reserve can nat-
urally restrain the frequency deviation significantly, while
the reserves of IACs are relatively expensive than those of
conventional generators in many circumstances. Therefore,
the allocation of reserves provided by IACs and generators
is indeed an optimization problem, where the frequency
security constraint and the overall reserve cost should be
considered simultaneously.

The objective of the allocation problem fitting the estab-
lished frequency regulation framework in Fig. 3 is formulated
as follows:

min
RG,RAC

CT
GRG + C

T
ACRAC (15)

where CG and CAC are the reserve price vectors of gener-
ators and aggregated IACs, respectively; RG and RAC are

FIGURE 4. Security constraint in terms of the maximum allowed
frequency deviation.

the reserve capacity of generators and aggregated IACs,
respectively.

The maximum allowed frequency deviation 1fmax is uti-
lized to ensure the frequency security as illustrated in Fig. 4.
The system reserve allocation scheme should meet the secu-
rity requirement that the maximum frequency deviation
caused by a specific power imbalance 1P0 is within the
threshold 1fmax. Therefore the frequency security constraint
can be written as follows:

−min[FR(1P0,RG,RAC )] ≤ 1fmax (16)

where FR(·) is the system frequency response model.
However, the frequency security constraint in (16) is

implicit due to the nonlinear and complex frequency response
models as illustrated in Fig. 3, which deters it from being
integrated into a solvable optimization problem. In order
to deal with the difficulty, the MLFSC is utilized in next
section to reconstruct the frequency security constraint in a
data-driven way.

In addition, the allowed range of the reserve capacity of
generators and IACs, as well as the system power flow, should
be considered in the reserve allocation problem:

Rmin
G ≤ RG ≤ Rmax

G (17)

Rmin
AC ≤ RAC ≤ Rmax

AC (18)∣∣∣∣T · A [RGRAC
]∣∣∣∣ ≤ Fmax (19)

whereRmin
G andRmax

G are theminimum andmaximum allowed
reserves of generators, respectively; Rmin

AC and Rmax
AC are the

minimum and maximum allowed reserves of IACs, respec-
tively; T is the power transmission distribution factor (PTDF)
and A is the adjacency matrix; Fmax is the power flow
threshold.
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B. DATA-DRIVEN APPROXIMATION OF FREQUENCY
SECURITY CONSTRAINT
In this paper, the MLFSC is trained to judge whether the
system frequency deviation violates the 1fmax. Firstly, the
feature vector x for the MLFSC is:

x = (1P,R1G,R
2
G, · · · ,R

m
G,R

1
AC ,R

2
AC , · · · ,R

n
AC ) (20)

where RiG and RjAC are the reserve capacities of generator i
and aggregated IAC j, respectively; m and n are the numbers
of generators and aggregated IACs, respectively. The training
dataset {x, y} is composed of multiple feature vectors along
with their labels:

x = {x1, x2, · · · , xk} (21)

y = {y1, y2, · · · , yk} (22)

yi =

{
1, −min(FR(xi)) > 1fmax

−1, −min(FR(xi)) ≤ 1fmax
(23)

As illustrated in Fig. 5, the feature vectors are gener-
ated randomly, and the corresponding labels are provided by
massive simulation results performed on the power system
frequency response model in Fig. 3:

FIGURE 5. Generation of the training dataset.

Later the MLFSC is established with SVM. The main idea
is to find a hyperplane represented by parameters {w, b} to
separate the data with different labels. With the obtained
hyperplane, we can get the label of any new feature vector
by judging which side of the hyperplane it is located in. With
the training dataset {x, y}, the SVM can be trained by solving
the following optimization problem [21]:

min
w,b,δ

1
2
‖w‖2 + C

k∑
i=1

δi (24)

s.t. ∀i, yi[wTϕ(xi)+ b] ≥ 1− δi (25)

δi ≥ 0 (26)

where ϕ(·) is amapping from the feature space to a new space,
which is of great significance to improve the performance of
SVM [21]. δ and C are slack variables and the corresponding
cost parameters utilized to penalize feature vectors that are
misclassified or too close to the hyperplane.

Assume that λ∗ is the optimal Lagrange multipliers asso-
ciated with (25). It can be obtained by solving the Lagrange
dual problem of the original problem (24) – (26) [31].
Then the parameters of the optimal hyperplane can be

calculated by:

w∗ =
k∑
i=1

λ∗i yixi (27)

b∗ = yj −
k∑
i=1

yiλ∗i (xi · xj) (28)

where yj is the label of any point that satisfies 0 < λ∗j < C .
With the optimal hyperplane, the frequency security con-

straint (16) can be converted by the trained MLFSC into the
following form:

k∑
i=1

λ∗i yiK (xi, x)+ b∗ + α ≤ 0 (29)

x(1) = 1P0 (30)

where x(1) represents the first element of x; α is the shift
coefficient;K (xi, x) is the kernel function of the mapping ϕ(·)
that satisfies:

K (xi, x) = ϕ(xi) · ϕ(x) (31)

It’s clear that the kernel function represents the mapping
ϕ(·) implicitly in the form of vector inner products. The poly-
nomial kernel function is a widely used kernel function [21]
which is adopted in this paper:

K (xi, x) = (a0xi · x + a1)2 (32)

where a0 and a1 are the polynomial kernel coefficients. It can
be seen from (29) and (32) that the original frequency security
constraint (16) is converted into a quadratic constraint.

As can be seen, the adoption of polynomial kernel function
is a necessary step to enable the general QCQP formulation.
Therefore, it is utilized in the SVMmodel instead of the radial
basis function (RBF) [21] or other kernel functions.

C. SUGGEST-AND-IMPROVE METHOD FOR QCQP
The reserve allocation QCQP is nonconvex because yi in (29)
is not ensured to be positive. Consequently, the global optima
the problem cannot be solved by the general polynomial-time
method for convex QCQP [32]. In this paper, the heuristic SI
method [33] is utilized to deal with the nonconvex QCQP of
interest.

The main idea of the SI method is to find a candidate which
is the lower bound of the original nonconvex QCQP (Suggest
procedure) and shift the candidate point to the approximated
optima (Improve procedure).

1) SUGGEST PROCEDURE BY SEMIDEFINITE RELAXATION
In the Suggest procedure, semidefinite relaxation (SDR) is
utilized to relax the problem and solve it to get the lower
bound of the original problem. We first introduce a new
variable S and rewrite (29) as:

tr(PS)+ qT x + r ≤ 0 (33)

S = xxT (34)
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P =
k∑
i=1

λ∗i yia
2
0x

T
i xi (35)

q =
k∑
i=1

2λ∗i yia0a1xi (36)

r =
k∑
i=1

λ∗i yia
2
1 + b

∗
+ α (37)

where tr() represents the trace of a matrix. Note that with
the reformulated constraints above, all the objective and con-
straints are convex except (34). In order to accomplish a
convex relaxation, (34) is substituted with:

S ≥ xxT (38)

S(r1) = 1P0xT

S(c1) = 1P0x (39)

where S(r1) and S(c1) are the first row and first column of S,
respectively.

Due to the convexity, the relaxed problem can be solved
easily. Here, the candidate in the Suggest procedure is
denoted as the solution x̃.

2) IMPROVE PROCEDURE BY COORDINATE DESCENT
The first step of the Improve procedure is to find a feasible
point of the original nonconvex QCQP based on the candidate
x̃ obtained in Suggest procedure. We iterate each element x̃(j)
of x̃ to solve the following problem:

min
t,x̃(j)

t

∀i, fi(x) ≤ t (40)

where fi(x) ≤ 0 represents all the constraints of the reserve
allocation problem. It is obvious that when t ≤ 0, the fea-
sible point is obtained and the iteration is terminated. As all
elements are fixed except one, the problem (40) can be easily
solved by the bisection method proposed in [34].

The second step of Improve procedure is to improve the
solution.We iterate each element of the feasible point to solve
the nonconvex QCQP until no more improvements can be
achieved. Similarly, as only one element is variable during the
iteration, the nonconvex QCQP can be solved by the bisection
method [34].

The pseudocodes of the SI method are given in Table 1.

IV. CASE STUDIES
In this section, a realistic 12-bus system in Haining,
China [35] is utilized to verify the proposed data-driven
reserve allocation method, whose topology is illustrated
in Fig. 6. The total load of the system is 405 MW. Besides
4 conventional generators, 5104 commercial IACs in the
testing system are considered to participate in the frequency
regulation. TCH of the four generators are 0.43s, 0.52s,
0.51s and 0.59s, respectively. TRH of the four generators are
4.9s, 4.8s, 5.1s, 4.8s, respectively. Other parameters of the
generators are listed in Fig. 6.

TABLE 1. Pseudocodes of the suggest-improve method.

FIGURE 6. Topology of the testing system.

FIGURE 7. Objective value of the k-means clustering with number of
clusters.

A. AGGREGATION OF IACS
Considering the fact that most of the thermal characteristics
of the commercial IACs in the same testing area are roughly
homogeneous, two parameters named Tc and A are utilized
to identify the IACs. The widely utilized elbow method is
introduced to determine the cluster number in the k-means
algorithm [29], [36], which coordinates the clustering accu-
racy with the computation efficiency. As indicated in Fig. 7,
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FIGURE 8. IAC aggregation result by k-means clustering.

the objective value shown in (14) which indicates the error
of the clustering, drops with the increase of the number of
clusters while the dropping speed gradually slows down.
Specifically, the value of the objective has become already
quite low since the number of clusters reaches 4. And further
significant decrease of the objective value cannot be achieved
by adopting more clusters. Therefore, the number of clusters
is selected as 4 to ensure the satisfactory accuracy and consid-
erable computation efficiency of the k-means simultaneously.
The aggregation result of the IACs with n = 4 is presented
in Fig. 8, where the black dots represent the four cluster
centroids. Note that the parameters of the IACs in Fig. 8 are
normalized to [0, 1] for better clustering performance in
advance by the following min-max normalization:

T iCN =
T iC −min(T c)

max(T c)−min(T c)
(41)

AiN =
Ai −min(A)

max(A)−min(A)
(42)

where T iCN and AiN are the normalized T iC and Ai, respec-
tively; T c and A are the sets of Tc and A to be clustered,
respectively.

B. RESERVE ALLOCATION RESULTS
In this section, the numerical results of reserve allocation are
studied. The maximum allowed frequency deviation1fmax is
set as 0.4 Hz. The power imbalance 1P0 is 81 MW (20% of
the total load). In order to build the training dataset for the
MLFSC, 12000 feature vectors are randomly generated sub-
ject to Gaussian distributions. The labels of feature vectors
are obtained from frequency dynamic simulations. The result
from cross-validation [37] indicates that the adoption of poly-
nomial kernel function can achieve higher accuracy (98.91%)
than that of RBF (94.17%).

The performance of the utilized SI method is compared
with the commercial Gurobi solver in terms of the QCQP
presented in Section III. Table 2 illustrates the obtained objec-
tives and CPU time of the two methods. It is indicated that the
reserve cost obtained from the SI method are slightly lower

TABLE 2. Performances of the SI and the gurobi solver.

FIGURE 9. Maximum frequency deviations and the overall costs achieved
by the two methods.

FIGURE 10. Reserve allocation results obtained from the two methods.

than that of the Gurobi solver. Besides, the CPU calculation
time by the SI method is shorter than that by Gurobi solver,
which proves that the SI method are more efficient than the
latter.

In order to verify the proposed data-driven method better,
the numerical comparison with the state-of-the-art method
presented in [9] is also implemented. Specifically, the state-
of-the-art or the benchmark method linearizes the frequency
response of generators and ensures the frequency security
constraint by proposing its sufficient condition, which may
lead to rather conservative results. The reserve allocation
results are illustrated in Fig. 9 and Fig. 10.

As can be seen, the proposed data-driven method is
superior to the benchmark method, because the benchmark
method is obviously too conservative. Specifically, it is
shown in Fig. 9 that the maximum frequency deviation
obtained by the benchmark method is more deviated to1fmax
than that of the data-driven method. It indicates that the
benchmark method tends to overestimate the impact of the
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power imbalance on the frequency deviation. The total cost
obtained from the data-driven method is only 75% of that of
the benchmark method.

It can be seen from Fig. 10 that the proposed data-driven
method tends to allocate less reserve to IACs. The reason is
that IACs are of faster response speed but higher reserve cost
in this testing system, which are prone to be more utilized in
conservative schemes. Due to the more precise estimation of
frequency response results, the proposed data-driven method
enables power system to operate closer to frequency security
boundary and thus achieves lower cost. It can be concluded
from the comparisons that the reserve allocation suggested
by the data-driven method is more optimal than that of the
benchmark method.

FIGURE 11. Maximum frequency deviation with different power
imbalances.

In order to demonstrate the adaptability of the proposed
method, the maximum frequency deviations under different
power imbalances are shown in Fig. 11. It is clear that with
the proposed method, the frequency security constraints can
be satisfied quite well. Specifically, the maximum frequency
nadir can be kept close to but within the threshold of 0.4 Hz
with the increase of 1P0. In addition, to illustrate the impact
of IACs on the frequency security, the system in which the
IACs are excluded from the frequency regulation is also
studied. Its maximum frequency deviation values are also
shown in Fig. 11. The result shows that there are no solutions
satisfying the frequency security constraint in the investigat-
ing horizon of 1P0. With the reserve completely provided
by the conventional generators, the system frequency nadir
deviates greatly from 1fmax and rises significantly with the
increase of 1P0.

V. CONCLUSION
In this paper, a data-driven reserve allocation method to deal
with implicit frequency security constraint is proposed con-
sidering IACs. The equivalent frequencymodel of aggregated
IACs is established and incorporated into power system fre-
quency regulation framework. The reserve allocation is then
converted by the MLFSC into a solvable nonconvex QCQP,
which is handled by a heuristic SI method. The proposed

method is data-driven as the MLFSC is trained by the labeled
dataset of frequency dynamics obtained from the frequency
simulations. Compared with the state-of-the-art method, the
data-driven method estimates the system frequency dynamics
more precisely and obtains lower reserve allocation cost.
It can also be concluded that the reserves provided by IACs
can significantly improve the frequency security of power
system.

Considering the participation of increasing demand-side
resources in power system operation, the proposed method is
of great significance to improvemodel-free frequency control
and handle big data in smart grids. However, other kinds
of flexible resources such as the electric vehicles (EV) are
also feasible to participate in power system frequency regula-
tion [38], [39]. In the future work, a more general framework
of frequency regulation is to be studied by integrating EVs
and other flexible resources. Moreover, advanced machine
learning models besides SVM and state-of-the-art optimiza-
tion algorithms are worth trying in the proposed framework
including the MLFSC for better performance.
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