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ABSTRACT It is considerable to solve practical fault diagnosis task of gearbox under variable working
conditions by introducing sufficient auxiliary data. For this purpose, a new approach called improved
deep transfer auto-encoder is proposed for intelligent diagnosis of gearbox faults under variable working
conditions with small training samples. First, multi-wavelet is employed as activation function for effectively
learning useful features hidden in the non-stationary vibration data. Second, correntropy is used to modify
the cost function to enhance the reconstruction quality. Third, pre-train an improved deep auto-encoder
using sufficient auxiliary data in the source domain, and transfer its parameters to the target model. Finally,
the improved deep transfer should be fine-tuned by small training samples in the target domain to adapt to
the characteristics of the rest testing data. The proposed approach is used to analyze two sets of experimental
vibration data collected from gearbox under variable working conditions. The results show that the proposed
approach can accurately diagnose different faults of gearbox even the working conditions have significant
changes, which is superior to the existing methods.

INDEX TERMS Improved deep transfer auto-encoder, gearbox fault diagnosis, variable working conditions,

multi-wavelet activation function, modified cost function.

I. INTRODUCTION

Due to great loading capacity, large reduction ratio, high
transmission efficiency and other prominent advantages,
gearbox has a very wide application in aircraft engine, wind
turbine and high speed railway. Different types of fault will
occur in gearbox after long-term working under the condi-
tions with high temperature, high speed, heavy loading and
strong impact, which may lead to safety accidents [1]-[3].
Therefore, gearbox fault diagnosis has become an impor-
tant part in the field of intelligent maintenance and health
management.

Artificial intelligence has attracted increasingly attention
in recent years for enhancing automation monitoring and
inference capabilities of industrial equipment [4]. For gear-
box health monitoring, despite intelligent diagnosis research
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has made gratifying progress [S]-[11], still the following
problems have not been well solved. (1) The raw vibration
signals collected from gearbox are always nonlinear and non-
stationary with a lot of background noise. In addition, differ-
ent fault locations and fault severities lead to the diversity
of fault types, which have put forward high requirements
for signal pre-processing and feature extraction [2]. (2) In
consideration of economic cost and human labor, it is hard
and unrealistic to obtain enough fault data in engineering
practice, which will result in terrible lack of training samples
for intelligent diagnosis model [12]. (3) The complexity of
working conditions (variable speeds and variable loadings)
may lead to significant distribution differences between the
training and testing samples, meaning that the intelligent
diagnosis model trained by the vibration data collected under
a certain working condition is usually not suitable for other
cases [13]. Thus, to automatically learn the characteristic
information hidden in the raw data and realize accurate fault
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identification under different working conditions, new skills
are urgently needed to improve the existing intelligent diag-
nosis methods.

Due the powerful and automatic feature learning ability,
deep learning has become a highly concerned intelligent
method for machinery fault diagnosis in the past few
years [14]-[24]. However, the successful construction of
intelligent diagnosis models designed with deep structures is
still inseparable from sufficient training data [13]. Moreover,
the training data and testing data should meet the demand
of the same distribution. Transfer learning is another great
breakthrough in artificial intelligence area, which aims to
solve the tasks between different but related domains based
on the existed knowledge [25]. By means of transfer learning
and deep learning, distribution differences between the train-
ing data (Source domain) and test data (Target domain) can be
allowed to some degree. To date, transfer learning has made
several academic achievements in the conventional pattern
recognition fields [26]—[28]. For intelligent fault diagnosis of
rotating machinery, some researches have begun to explore
the application of transfer learning in the last three years.
Zhang et al. [29] combined transfer learning and neural net-
work for bearing fault identification under changeable work-
ing conditions. Wen et al. [30] proposed transfer diagnosis
approach using sparse auto-encoder for classifying different
fault types of bearing under variable working conditions.
Qian et al. [31] constructed transfer learning network based
on high-order Kullback-Leibler divergence to achieved intel-
ligent fault diagnosis of gearbox and bearing under variant
working conditions.

Through literature review, it can be seen that transfer learn-
ing has shown some potential to overcome distribution differ-
ence problem of gearbox fault data collected from different
operating conditions. However, in the transfer diagnosis cases
mentioned above, the change range of rotating speed is very
small, thereby making the distribution differences not serious.
However, the rotating speed and working load of gearbox usu-
ally change greatly in practical engineering [32], leading to
significant differences of data samples. Thus, it is of practical
importance to build better deep transfer models to achieve
gearbox fault diagnosis under obvious changes in working
conditions.

In this paper, a new approach based on improved deep
transfer auto-encoder is proposed to diagnose different gear-
box faults under variable working conditions with small train-
ing samples. First, multi-wavelet is employed as activation
function for effectively learning useful features hidden in the
non-stationary vibration data. Second, correntropy is used
to modify the cost function to enhance the reconstruction
quality. Then, pre-train an improved deep auto-encoder using
sufficient auxiliary data in the source domain, and transfer
its parameters to the target model. Finally, the improved deep
transfer should be fine-tuned by small training samples in the
target domain to adapt to the characteristics of the rest test-
ing samples. The proposed approach is used to analyze two
sets of experimental vibration data collected from gearbox
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FIGURE 1. The structure of a basic auto-encoder (AE) model.

under variable working conditions. The results show that the
proposed approach can accurately diagnose different health
conditions of gearbox even the working conditions have sig-
nificant changes, which is better than the existing methods.
The rest of this paper is arranged as follows. Section II
shortly introduces basic auto-encoder theory. The proposed
approach is described in Section III. Transfer fault diagno-
sis cases under variable working conditions are designed to
verify the superiority of the proposed approach in Section I'V.
Section V gives the final conclusions and future work.

Il. BRIEF INTRODUCTION OF BASIC AUTO-ENCODER

As shown in Figure 1, auto-encoder (AE) is composed of
an encoder and a decoder, which has become a popular
base model for constructing various deep architectures due
to its good capability for unsupervised feature learning. The
encoder tries to obtain the representative feature representa-
tion of input data, and the decoder aims to recover input from
the representation [33]. Some important formulas of the basic
AE model are presented as following:

h

Se (w“>x+b(‘>) (1

z =5 (Wh+b?) )

in which x € %" denotes an input data sample, h € R
denotes the feature representation, z € RN denotes the
output, {W(l), b, w@, b(z)} represents the parameter set,
including the weights w'"), w® and biases b'"), b® in dif-
ferent layers, s, denotes the activation function of encoder,
usually selected as Sigmoid, sy denotes the activation func-
tion of decoder, which is selected according to the specific
normalized range of the input data.

The training purpose of AE model is to adjust the param-
eters to keep the output as close as possible to the input. The
most widely used cost functions is expressed as [3]
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where x; and z; are the ith dimension elements of x and z,
respectively, rdenotes sparsity penalty coefficient, u denotes
sparsity coefficient, /i; denotes the average activation value
for the jth hidden node, and XA denotes weight decay coeffi-
cient.

lll. THE PROPOSED METHOD

A. MULTI-WAVELET ACTIVATION FUNCTION

Generally, the activation function employed in hidden layer
of basic AE is Sigmoid or Tanh, their main problems are
computational complexity and gradient vanishing, which
will result in low-efficiency weight updating. Rectified lin-
ear unit (ReLU) is fast and can avoid gradient vanish-
ing [13]. However, the non-zero centered output and neuron
dying problem will degrade the training performance [34].
What is more important, the raw vibration signals col-
lected from gearbox are always non-stationary with com-
plex noise, researches have investigated that neural networks
designed with conventional activation functions usually fail
to achieve exact mapping between multiple output patterns
and non-stationary input data [35].

Wavelet neural network (WNN) has good time-frequency
localization property and zoom characteristic. Compared
with conventional neural networks, the superiority of WNN
for analyzing non-stationary signals has been verified in lots
of classification and regression cases. Multi-wavelet neural
network (MWNN) is the extension of WNN, which has
faster convergence and better characteristics in the approx-
imation of non-stationary signals [36]-[38]. To date, few
researches have reported about multi-wavelet activation func-
tions applied in deep learning field, therefore, it is worth try-
ing to design novel deep learning models using multi-wavelet
to solve task.

Currently, there have been developed some multi-wavelets
with excellent properties, such as GHM multi-wavelet,
CL multi-wavelet and SA4 multi-wavelet. However, the scal-
ing functions of these multi-wavelets have no explicit expres-
sions, which will greatly increase the difficulty of calculating
and updating the parameters of auto-encoder model. The scal-
ing functions of the multi-wavelet developed by Plonka and
Strela not only have very approximate expressions, but also
hold some good properties such as orthogonality, regularity,
symmetry and compact support [38], which are good choices
to be used as activation functions of auto-encoder to improve
the analysis performance for non-stationary vibration signal
collected from gearbox. In this paper, the two scaling func-
tions of the multi-wavelet are given in Figure 2, and defined
as follows

—23 + 312 tef0,1)

p1() = 12—t —1) te[l,2] “4)
0 otherwise
—12(3t — 3) te0,1)

@) = 1 -2 —0?@Br=3) t€[l,2] ©)
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115370

0.6,
0.4
0.2
,(1) 0
-0.2]
0.2 0.4

1
0.8

» (1) e
0.4

0
0

0 0.5 1 15 2 0 0.5

~
~a

[ttt i
X1 : Uil—l'hlom : Z]
+
1 out2
Lf]_fl_z'_’_ll__:\i
22
X2 \
{'L;"';’Zuﬁ': :
1 Yino :
! + t2 ’
U 127
Zi
Xi .
Ul 1m======-=
:Ulel 'h:;” J
+ out2
X Wiy ZN
N | I 4
Ui

FIGURE 3. The structure of improved AE designed with multi-wavelet
activation function.

The structure of improved AE model designed with multi-
wavelet activation function can be seen in Figure 3. Based
on the two multi-wavelet scaling functions, for an input data
sample x, the output expression for the hidden node is

—273 4+ 372 T €[0, 1)
h}’”tl =10 otherwise 6)
Q-12Qr—-1 tell,?2]
—12 (31 —3) 7€[0,1)
h;’“tz =10 otherwise @)
—2-1*@Br-3) re€[l,2]
with
N
r = Zi:l Wijxi B Cj (8)
aj
h]()ut — Uij—l . h;)utl + Uij—z A hj@ut2 (9)

in which h]‘?“tl and h]‘.’“‘2 refer to the output portions of ¢1(¢)
and ¢;(¢) for hidden node j, respectively, and hj(.’“t is the final
output of multi-wavelet functions, x; is the ith dimension
element of x, W;; is weight between hidden node j and input
node i, U;j_1 and Uj;_, are weights between hidden node j
and output node i based on ¢(¢) and ¢;(¢), respectively, a;
and ¢; are scale factor and shift factor, respectively.
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The activation function of output layer is selected as Tanh,
and then the reconstructed output can be calculated as

M
z; = Tanh Z (Uij—l . h;’ml + Uij—2 . h](_)ut2) (10)
j=1
Tanh(x) = (¢ — ™) /(" + ) (11)

where z; refers to the ith dimension element of z, and M refers
to the number of hidden nodes.

B. MODIFIED COST FUNCTION

The widely used cost function of basic AE model given
in (3) is sensitive to learn features from non-stationary signals
with complex noise [3]. Correntropy, a robust measure cri-
terion [39], focuses on local similarity between two random
vectors, which has shown advantages for dealing with com-
plex signals with noise. Here, correntropy is used to modify
the cost function to further reduce the reconstruction error,
defined as

1 N . Z')2
Coppp = —— - 12
corr ,—27_[0 ;exp < 752 ) ( )

in which ois the kernel size of Gaussian kernel. To avoid
over-fitting, a weight decay term is usually suggested to add
into the cost function as well, and finally the cost function is
modified as

N 2
1 (xi — zi)
V2ro Eexp ( 202 >

M
1 —
+r2<ulog%+(l—u)log M)

J 1_1&1'
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The weight parameters of the improved AE can be adjusted
through iterative stochastic gradient descent by minimizing
the modified cost function in (13), listed as follows

Wi = Wy —n (€™ [awy) (14)
Uj-1 = Uj-1—1 (3CM°d/3Uij—1) (15)
Uj—o = Ujor—n (3CM°d/3Uij—2) (16)

where 7 refers to the learning rate.

C. IMPROVED DEEP TRANSFER AUTO-ENCODER

It is necessary to add the depth of the improved AE model
and introduce softmax classifier into the highest level, so as
to refine the quality of the learned features and achieve
classification ability meanwhile. Specifically, each individ-
ual improved AE model is pre-trained in unsupervised way
through minimizing the modified loss function, then the
learned features of previous improved AE model are fed into
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FIGURE 4. The construction of improved DAE with three improved AEs.

the input layer of the next improved AE model. The feature
representations given by the last improved AE model are used
as the input vector for softmax classifier. Figure 4 shows
layer-by-layer construction process of the improved deep
auto-encoder model with three improved AEs, in which
Feature 1, 11, 1II are learned from Improved AE 1, 2, 3,
respectively. More details about the construction of deep
auto-encoders can be seen in [16].

Improved deep transfer auto-encoder combines improved
deep auto-encoder and the idea of parameter transfer. The
specific process is described as follows. (1) Train an improved
deep auto-encoder (contains softmax classifier) denoted as
Deep model ® using the training samples in the source
domain. (2) The excellent performance of the trained Deep
model ® is tested by the testing samples in the source
domain. (3) Design another improved deep auto-encoder
model denoted as Deep model (T with the completely same
structure as Deep model . (4) Transfer the existing param-
eter knowledge of Deep model ® to initialize Deep model
M je., we = wD, u® =y, (5) Fine-tune Deep
model (¥ using small training samples from target domain
to adapt to the characteristics of the remaining testing data.
By now, the construction of improved deep auto-encoder
has been successfully implemented, which can be used for
transfer diagnosis of gearbox faults under variable working
conditions, and the flowchart is given in Figure 5.

IV. CASE STUDY
CASE 1: TRANSFER DIAGNOSIS BETWEEN DIFFERENT
WORKING CONDITIONS
A. EXPERIMENTAL GEARBOX DATA DESCRIPTION
In this case study, gearbox fault data provided by PHM 2009
Data Challenge is used to test the feasibility of the proposed
approach [40]. Four spur gears are installed into the gearbox
for simulating different health conditions, shown in Figure 6.
Vibration data are collected at 66.67 kHz sampling frequency
under five kinds of shaft speeds (30, 35, 40, 45 and 50Hz) and
two kinds of loadings (High and Low). Some abbreviation
rules are used for simplicity, i.e., 30L means the data form
working condition with 30Hz (1800rpm) shaft speed and low
loading, SOH means 50Hz (3000rpm) and high loading.

The vibration data from the input shaft is used in this case
study. The source domain dataset is created by the collected
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FIGURE 5. The framework of the proposed approach.

FIGURE 6. Gearbox fault test rig provided by PHM 2009 Data Challenge.

vibration data under 30L, and the target domain data is from
50H. Eight gearbox health conditions are created under differ-
ent working conditions, including one normal condition and
seven types of combined faults conditions, listed in Table I.
Each health condition from source domain has 145 samples
consists of 120 training samples, while each target domain
data only contains 10 training (Fine-tune) samples. Each
sample refers to a signal segment including 6000 sampling
points with 70% (4200 points) overlap. The details about the
source domain and target domain can be seen in Table II.

115372

Eight kinds of Data samples (After removing the mean) are
plotted in Figure 7. It can be found that there seems to be
little similarity between the data samples from source domain
and target domain, meaning that obvious changes of working
conditions will lead to serious distribution discrepancy.

B. COMPARISONS WITH OTHER DEEP LEARNING
METHODS WITHOUT TRANSFER STRATEGY

In order to verify the superiority of transfer learning strategy,
some existing deep learning techniques are used for com-
parisons, including basic DAE (deep auto-encoder with Sig-
moid), DBN (deep belief network) and CNN (convolutional
neural network). The following two things should be noted:

> The proposed method is firstly trained by 120 training
samples from source domain, and then fine-tuned by
10 training sample from target domain. After that, it is
used for analyzing the rest 20 testing samples.

> For all the comparative methods, the training and testing
samples are both from target domain (without parameter
transfer). The numbers of training samples are 10, 40 and
100, respectively, while the numbers of testing samples
are always set as 20.

A total of 10 repeated validations are carried out to exam-
ine the accuracy and stability meanwhile. For each method,
the input is the normalized form of the raw vibration data
(6000-dimensional). It can be seen from Table III that the
average testing accuracy given by the proposed method is
93.06% (1489/1600). The average accuracies of the nine
comparative methods are 41.81%, 74.06%, 82.44%, 42.31%,
70.19%, 80.25%, 39.13%, 71.25%, and 89.31%, respectively,
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TABLE 1. Descriptions of eight types of gearbox health conditions.

Health conditions _ Gear Bearing Shaft

of gearbox 32T 48T 80T IS :IS ID :1IS 08 :IS Input Output
Condition 1 Good Good Good Good Good Good Good Good
Condition 2 Chipped Eccentric Good Good Good Good Good Good
Condition 3 Good Eccentric Good Good Good Good Good Good
Condition 4 Good Eccentric Broken Ball Good Good Good Good
Condition 5 Chipped Eccentric Broken Inner Ball Outer Good Good
Condition 6 Good Good Broken Inner Ball Outer Imbalance Good
Condition 7 Good Good Good Inner Good Good Good Sheared
Condition 8 Good Good Good Good Ball Outer Imbalance Good

Remarks: IS=Input Shaft; ID=Idler Shaft; OS=Output Shaft; :IS=Input Side.

TABLE 2. Details about the source domain dataset and target domain dataset.

Transfer datasets Rotating speed Loading Health condition of gearbox Total size of samples Total size of training samples
Source domain dataset  1800rpm (30Hz) Low Condition 1- Condition 8 1160 (120+25)*8 960 (120*8)
Target domain dataset ~ 3000rpm (50Hz) High Condition 1- Condition 8 240 (10+20)*8 80 (10*8)
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FIGURE 7. The vibration waveforms of the data samples from the eight gearbox health conditions: Source domain (black) and target domain

(blue).(1-8 mean condition 1-condition 8.

which are lower than the proposed method. Besides, the stan-
dard deviation given by the proposed approach is 0.6215, and
it is smaller than all the comparative approaches, meaning
that the proposed approach holds better stability. Through
the comparison results, the following two conclusions can
be drawn. (1) The diagnosis performance of deep learning
techniques depends heavily on sample size, without large
amounts of training samples, deep learning techniques usu-
ally fail to show satisfactory results. (2) The proposed method
is more effective than other deep learning techniques with-
out transfer learning strategy. The main reason is that train
a good deep neural network from scratch is difficult and
time-consuming because lots of weights and biases are ran-
domly initialized. In the proposed method, the number of
adjusted parameters can be greatly reduced and reasonable
initialization can be achieved through transferring parameters
of model pre-trained by the source domain data to the target
model. To enable the target model to further adapt to the
characteristics of the testing samples in the target domain,
small target training samples are then used to fine-tune the
well pre-trained model.

The specific structure of the proposed method are 6000-
2000-800-150-8, meaning that 2000, 800 and 150 nodes
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TABLE 3. Diagnosis results of different methods.

Diagnosis Number of source ~ Number of target ~ Diagnosis results
methods training samples training samples

Proposed 120 10 93.06% * 0.6215
Basic DAE 0 10 41.81% = 22172
Basic DAE 0 40 74.06% * 1.5574
Basic DAE 0 100 82.44% + 1.0391
Basic DBN 0 10 42.31% *+ 2.3308
Basic DBN 0 40 70.19% =+ 1.8087
Basic DBN 0 100 80.25% =+ 1.3455
Basic CNN 0 10 39.13% £ 2.0453
Basic CNN 0 40 71.25% £ 1.2905
Basic CNN 0 100 89.31% =+ 0.8019

Diagnosis results: Average testing accuracy * standard deviation.

exist in the first, second and third hidden layers, respec-
tively, which is determined by experimentation with a sim-
ple idea similar to [16]. The iteration numbers in the
pre-trained process and fine-tuning process are 60 and 25,
respectively. parameters r,u,A, o are 4, 0.08, 0.002 and
0.5, respectively. Most of these parameters are decided
through experimentations. The structure of basic DAE is also
6000-2000-800-150-8, iteration numbers in the pre-trained
process and fine-tuning process are both set as 100,
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FIGURE 8. Statistical diagnosis results of different deep transfer models.

TABLE 4. The comparison results among different deep transfer models.

Deep transfer models Average accuracy Standard
deviation
Deep transfer model 1 93.06% (1489/1600) 0.6215
Deep transfer model 2 91.19% (1459/1600) 0.8565
Deep transfer model 3 85.38% (1366/1600) 0.8937
Deep transfer model 4 85.81% (1373/1600) 0.9340
Deep transfer model 5 84.19% (1347/1600) 0.9794
Deep transfer model 6 87.94% (1407/1600) 1.1044
Deep transfer model 7 86.00% (1376/1600) 0.8437
Deep transfer model 8 86.63% (1386/1600) 1.0291
Deep transfer model 9 85.13% (1362/1600) 1.0121
Deep transfer model 10 88.19% (1411/1600) 1.1950
Deep transfer model 11 84.69% (1355/1600) 0.8961
Deep transfer model 12 87.31% (1397/1600) 0.7823

parameters r,u,A are selected as 4, 0.08 and 0.002, respec-
tively. The structure of basic DBN is 6000-2000-800-150-8,
learning rate, iteration number and momentum are set as 0.15,
100 and 0.85, respectively. The structure of basic CNN called
LeNet-5 consists of an input layer, two convolutional layers,
two pooling layers and an output layer [41]. No further skills
are used for improving the basic DAE, DBN and CNN.

C. COMPARISONS WITH OTHER DEEP
TRANSFER MODELS
To the verify the superiority of the proposed deep transfer
model (DAE: Multi-W & CM°d) nine kinds of DAE transfer
models and two kinds of DBN transfer models are used for
comparison, including transfer model 2 (DAE: Multi-W &
CT?), transfer model 3 (DAE: Sigmoid & CT™), transfer
model 4 (DAE: Tanh & CT), transfer model 5 (DAE: ReLU
& CT?) transfer model 6 (DAE: Morlet & CT2), transfer
model 7 (DAE: Sigmoid & cMody transfer model 8 (DAE:
Tanh & CM°9) transfer model 9 (DAE: ReLU & CMod),
transfer model 10 (DAE: Morlet & CM°9), transfer model 11
(Basic DBN) and transfer model 12 (Gaussian DBN) [42].
The statistical results of 10 wvalidations are given in
Figure 8 and Table IV. The average accuracy on the testing
samples of the proposed approach is 93.06% (1489/1600),
which is higher than other 11 kinds of deep transfer models.
For the third validation as example, the confusion matrix is
shown in Figure 9. Thus, the proposed deep transfer model
has higher accuracy and better stability than other deep trans-
fer models faced with the same transfer diagnosis task.

The good performance of the proposed deep transfer model
mainly benefits from the replaced multi-wavelet activation
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FIGURE 10. The reconstruction error curves of different deep transfer
models in pre-trained process.

function and modified cost function. The superiority of the
modified cost function can be repeated proved by comparing
deep transfer models 1 & 2, deep transfer models 7 & 8, and
deep transfer models 9 & 10, because these three pairs are
all designed with the same activation function while different
cost functions. The feasibility of multi-wavelet activation
function can be tested through comparing deep transfer mod-
els 1, 7, 8, 9 and 10, because they are constructed with the
modified cost function while different activation functions.
Take the third validation as an example, Figure 10 is the
reconstruction error curves of these models in pre-trained
process. It can be observed that the reconstruction error given
by deep transfer model 1 is smaller and provides faster con-
vergence than others.

D. CONSIDERATION FOR TIME-DELAY

As mentioned before, each sample refers to a signal segment
including 6000 sampling points, and two consecutive sam-
ples have 70% (4200 points) overlap, meaning that the first
sample is [1, 6000] (from the 1st data points to the 6000th
data points), the second is [1801, 7200], and so on. In order
to fully test the proposed method, the time-delay problem
of time-series data is considered. The following two things
should be noted:
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FIGURE 11. The diagnosis results of the proposed method under different
time-delay parameters.

> For source samples, the first sample still is [1, 6000],
the second is [1801, 7200], and so on. Each condition
has 145 samples consists of 120 training samples.

> For target samples, the first sample is [14-n, 6000+n],
the second is [1801+4n, 7200+n], and so on. The
time-delay parameter n ranges from 50 to 3000. Each
condition has 10 samples for fine-tuning and 20 samples
for testing.

Figure 11 shows the diagnosis results (average accuracy)
of the proposed method under different time-delay param-
eters (50 to 3000). From Figure 12, it can be seen that the
average testing accuracy of the proposed method become
smaller (from 93% to 86%) with increase of time-delay
degrees. The reason is that there exist distribution differ-
ences between training samples and testing samples, and
time-delay problem will lead to larger differences. However,
even time-delay parameter reach to 3000, the result given by
the proposed method is still higher than 86%, because small
training samples in the target domain are used to fine-tune the
pre-trained model to adapt to the characteristics of the rest
testing samples.

CASE 2: TRANSFER DIAGNOSIS FROM CONSTANT

SPEED TO VARIABLE SPEEDS

The transfer diagnosis task in CASE 1 actually belongs to
piecewise variable working conditions, however, in practical
engineering, dynamic working regimes are more common.
Thus, the feasibility of the proposed method for trans-
fer fault diagnosis from constant speed to variable speeds
is considered in CASE 2. The experimental device is
shown in Figure 12, mainly consists of motor, tested gear
(37 teeth) and bearing (SKF 6307). Four types of vibration
data from gear and bearing are collected with sampling fre-
quency of 8192 Hz, including tooth breakage, tooth breakage
& outer race fault, tooth breakage & inner race fault and tooth
breakage & ball fault.

Due to lack of engineering data, here, the collected vibra-
tion data under constant speed (600rpm) is treated as lab data,
and the data from variable speeds is simulated as industrial
on-site data. The details of variable speeds for four fault
conditions are shown in Figure 13. It can be seen that the
changing patterns of the rotating speeds are different.

Each fault condition in the source domain has 158 samples
consists of 140 training samples, while in target domain
each fault condition contains only 30 training (fine-tuning)
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samples and 40 testing samples. It should be noted that
for each fault condition, the 30 target training samples are
selected from three different positions (beginning, middle and
end) in the collected signal. Each sample consists of 1024 data
points with 50% overlap. Raw signals of the four fault con-
ditions in this case are plotted in Figure 14. From Figure 14,
it can be seen that target domain samples show strong non-
stationary characteristics due to fluctuation of the rotating
speeds during data acquisition process, leading to significant
differences from source domain.

In this case study, fast Fourier transform, a well-known
signal processing technique, is applied to acquire fre-
quency spectrum (512-dimensional) of each data sample,
so as to reduce the differences among different data sam-
ples caused by changeable speeds. Take three samples
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FIGURE 15. Frequency spectrums of three samples from different speeds.

TABLE 5. The comparison results in case 2.

Deep transfer models Average accuracy

Raw data Frequency spectrum
Deep transfer model 1 86.13% 90.56%
Deep transfer model 2 83.44% 88.81%
Deep transfer model 7 80.25% 85.31%
Deep transfer model 8 80.56% 85.50%
Deep transfer model 9 80.38% 85.13%
Deep transfer model 10 83.25% 86.44%

(Samples 1, 2, and 3) from Condition 2 (Tooth breakage &
Outer race fault) of target domain as examples, calculate the
correlation coefficients between Samples 1 & 2 and Sam-
ples 2 & 3, respectively, as shown in Figure 15. It can be seen
that their frequency spectrums hold more similarities than the
raw data.

A total of 10 repeated validations are carried out to com-
pare the diagnosis performance among deep transfer mod-
els 1, 2, 7, 8, 9 and 10, as listed in Table V. It can be seen
that: (1) the average testing accuracies of all the methods
based on frequency spectrum are higher than the raw data.
(2) The proposed method on frequency spectrum reaches to
90.56% (1449/1600, 1600=4%40x10), and it is higher than
the accuracies using the five comparative methods, which are
88.81%, 85.31%, 85.50%, 85.13% and 86.44%, respectively.
(3) Although the proposed method gives the best diagnosis
results, it cannot be compared with the CASE 1. In order
to further improve the accuracy, more advanced techniques
should be introduced, such as nuisance attribute projection
and order tracking. As a summary, with the help of multi-
wavelet, modified cost function and parameter transfer idea,
the diagnosis knowledge learned from constant speed work-
ing conditions can be transferred to variable speeds to some
degree.

V. CONCLUSIONS

In this paper, multi-wavelet activation function and modified
cost function are used to enhance the deep auto-encoder.
Based on improved deep auto-encoder and parameter
transfer, improved deep transfer auto-encoder is proposed to
diagnose gearbox faults under variable working conditions
with small training samples.
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Two sets of experimental vibration data of gearbox are
used to validate the superiority of the proposed approach. The
results demonstrate that the proposed method can accurately
diagnosis different faults of gearbox, even the working con-
ditions have significant changes, which is better than the
existing methods. Deep transfer learning is able to solve hard
tasks from largely different domains, which has big potential
to be applied in engineering practice. Despite this paper
preliminarily explores the applications of piecewise variable
working conditions and simple dynamic working regimes,
more complex and practical cases fails to be considered.
The authors will continue to study this meaningful issue by
analyzing more practical industrial on-site datasets and focus
on the real applications of deep transfer learning in the future.
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