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ABSTRACT In this paper, the target node localization problems based on hybrid RSS-AOA measurements
in both noncooperative and cooperative three-dimensional (3-D) wireless sensor networks (WSNs) are
discussed. By using novel error approximate expressions for both received signal strength (RSS) and angle-
of-arrival (AOA)measurementmodels, new estimators based on the least squares (LS) criterion are proposed.
These estimators can be transformed into mixed semi-definite programming (SDP) and second-order cone
programming (SOCP) problems by applying convex relaxation techniques. In addition, the closed-form
Cramer-Rao lower bound (CRLB) of the estimator on hybrid measurements in cooperative WSNs is also
derived. Theoretical analysis and simulation results show that the Root Mean Square Error (RMSE) of the
proposed hybrid RSS-AOA estimators is lower than that of the discussed estimators in both noncooperative
and cooperative cases.

INDEX TERMS Received signal strength (RSS), angle-of-arrival (AOA), mixed semi-definite and
second-order cone programming (SD/SOCP), wireless localization.

I. INTRODUCTION
Wireless sensor network is a distributed sensor network,
which is generally composed of a large number of sensors.
These sensors are distributed throughout the surveillance area
to collaboratively sense, acquire, process, and transmit the
perceived object information. In order to maintain low imple-
mentation costs, only a small number of sensors called anchor
nodes are equipped with global positioning system (GPS)
devices, other sensors called target nodes collect the loca-
tion information of known anchor nodes and determine their
locations by some localization schemes [1], [2]. In practical
applications, the data collected is meaningless if the cor-
responding location information is unavailable. Therefore,
how to estimate the target node locations is one of the key
technologies in WSNs.

Localization schemes rely on different types of
measurements. These measurements mainly include

The associate editor coordinating the review of this article and approving
it for publication was Thanh Ngoc Dinh.

time-of-arrival (TOA) [3], [4], time-difference-of-arrival
(TDOA) [5], [6], received signal strength (RSS) [7]–[12], and
angle-of-arrival (AOA) [13], [14].

Target localization estimators based on a single kind of
measurement have two main advantages due to their low
complexity and cost [15], however, there exists great room
for the estimation accuracy improvement, hybrid processing
from the combined measurement systems has been proposed
to improve the performance.

In [16], a target node localization problem based on RSS
measurements was addressed by semi-definite relaxation
techniques. In [17], by applying the unscented transformation
(UT), the authors transformed the RSS-based target node
localization problem into a weighted least squares problem
(WLS), which can be solved by the bisection method. How-
ever, the methods mentioned above provide low estimation
accuracy. To reduce the localization error, hybrid systems
that use distance and angle measurements were presented
in [18], where a linear least squares (LLS) estimator and
an optimization-based estimator were proposed to estimate
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the location of the target node. These methods proposed
in [16]–[18] were derived only in noncooperative WSNs.
In general, the noncooperative localization method has two
disadvantages: 1) only one target node can be identified at a
time, and 2) only the information transmitted by anchor nodes
within the communication range can be utilized, which limits
the application of algorithms in large-scale WSNs. In coop-
erative approaches, each sensor is required more power
transmission and has a great dependence on the network
structure [2]. However, cooperative approaches can deter-
mine multiple target nodes simultaneously, therefore, attract
more attention recently. Note that cooperative localization is
a challenging problem, because the measurements between
the target nodes are used for location estimation [19]. In [20],
the RSS-based cooperative target localization estimator was
proposed, which can only provide a good initial point and
further improvement can be achieved by using the maxi-
mum likelihood (ML) method. In [21], the RSS-based coop-
erative localization method was derived which employs
relative error estimation, and the method has remarkable
performance. The method proposed in [13] is based on
hybrid AOA-TDOA measurements, and a new benchmark
defined in this method can be used to predict the thresh-
old effect, simulation results demonstrate the exceptional
performance of the estimator, but it requires a very com-
plex process of time synchronization, which is a costly task.
In [22], the authors addressed the target localization prob-
lem based on hybrid RSS-AOA measurements, which does
not require a time synchronization process, and the RMSE
of the estimator is much lower than that of the RSS-based
estimator [23], however, the method ignores the weights of
the noise terms, thus the performance still has room for
improvement.

In this paper, we investigate the RSS-AOA based target
localization problems in both noncooperative and cooperative
3-D WSNs. New estimators based on the LS criterion are
derived for noncooperative and cooperative scenarios, then,
by applying appropriate semi-definite relaxation techniques
and second-order cone relaxation techniques, the estimators
can be transformed into corresponding convex problems,
respectively. Compared with AOA-TDOA based estimators,
the proposed estimator in cooperative WSNs reduces the
implementation costs and is suitable for large-scale networks.
Furthermore, the proposed estimator significantly outper-
forms the RSS-based estimators.

The contributions of this paper are summarized as
follows

1) We formulate novel estimators via the first-order
Taylor expansion which tightly approximate the maximum-
likelihood estimators for both noncooperative and coopera-
tive cases.

2) We use convex relaxation techniques to trans-
form the developed estimators into mixed SD/SOCP
problems.

3) We derive the closed-form CRLB of the estimator on
hybrid measurements in cooperative WSNs.

II. NONCOOPERATIVE LOCALIZATION
In this section, we discuss the target localization problem
in 3-D noncooperative scenarios. We consider a WSN which
consists of N anchor nodes and one target node, and the
locations of the anchor nodes, denoted as a1, a2, . . ., aN ∈ R3,
are known, while the location of the target node, denoted as
x ∈ R3, is unknown.
For ease of understanding, the link between the target node

and the ith anchor node in a noncooperative scenario is shown
in Fig. 1.

FIGURE 1. The link between the target node and the i th anchor node in a
noncooperative scenario.

The RSS measurement model can be denoted
by [22], [24], [25]

Li=L0 + 10γ log10

(
‖x−ai‖
d0

)
+ni, i=1, . . . ,N (1)

where L0 denotes the reference path loss value at the
reference distance d0, γ denotes the path loss exponent
(PLE), Li denotes the path loss from the target node to the ith
anchor node, and ni represents the log-normal shadowing
term, following the zero-mean Gaussian distribution with
variance σ 2

ni , i.e., ni ∼ N (0, σ 2
ni ).

For ease of expression, we shall denote the unknown tar-
get node coordinates as x = [x1, x2, x3]T and the known
coordinates of the ith anchor node as ai = [ai1, ai2, ai3]T ,
the azimuth angle measurement φi and elevation angle mea-
surement αi are related to the locations of the target node and
the ith anchor node, modeled as [13], [18]

φi= arctan
(
x2 − ai2
x1 − ai1

)
+mi, i = 1, . . . ,N (2)

αi= arccos
(
x3 − ai3
‖x− ai‖

)
+vi, i = 1, . . . ,N (3)

where mi and vi are, respectively, the zero-mean Gaussian
noises with variances of σ 2

mi and σ 2
vi , modeled as mi ∼

N (0, σ 2
mi ), vi ∼ N (0, σ 2

vi ).
Equipped with additional hardware, the unknown target

node can send calibration information to the anchor nodes,
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which can be used to estimate the transmit power (reference
path loss value) [2], [23]. So we assume the transmit power
is known in this paper.

Swapping the positions of variables L0 and Li in equa-
tion (1), dividing both sides by 10γ , and then taking the power
of 10, we obtain

10
−Li
10γ ‖x− ai‖=10

−L0
10γ d010

−
ni
10γ , i = 1, . . . ,N (4)

The right side of equation (4) in high signal to noise
ratio can be approximated by applying the first-order Taylor
expansion as follows

10−
ni
10γ ≈ 1−

ln(10)
10γ

ni, i = 1, . . . ,N (5)

Substituting (5) into (4), we have

λi‖x− ai‖≈µd0 − µd0
ln(10)
10γ

ni, i = 1, . . . ,N (6)

where λi = 10
−Li
10γ , µ = 10

−L0
10γ .

Moving the second item on the right side of equa-
tion (6) to the left side, squaring both sides and omitting the
second-order noise term, we have

ni≈
β−1(µ2d20 − λ

2
i ‖x− ai‖

2)

2λiµ‖x− ai‖
, i = 1, . . . ,N (7)

where β = d0
ln(10)
10γ .

Similarly, equation (2) can be approximately expressed as

ξi ≈ cTi (x− ai), i = 1, . . . ,N (8)

where ci = [− sinφi, cosφi, 0]T , ξi refers to a weighted noise
term, i.e., ξi = (cosφi(x1 − ai1)+ sinφi(x2 − ai2))mi.
Moving vi to the left side of equation (3), taking cosine on

both sides, and then applying the first-order Taylor expansion,
we have

vi ≈
kT (x− ai)− cosαi‖x− ai‖

sinαi‖x− ai‖
, i = 1, . . . ,N (9)

where k = [0, 0, 1]T .
According to LS criterion, the objective function can be

obtained as follows

min
x

N∑
i=1

[
β−1(µ2d20 − λ

2
i ‖x− ai‖

2)

2λiµ‖x− ai‖

]2

+

N∑
i=1

[
cTi (x− ai)

]2

+

N∑
i=1

[
kT (x− ai)− cosαi‖x− ai‖

sinαi‖x− ai‖

]2
(10)

Introducing auxiliary variables fi, we have

min
x,f

N∑
i=1

[
β−1(µ2d20 − λ

2
i ‖x− ai‖

2)

2λiµ‖x− ai‖

]2
+ ‖f ‖2

+

N∑
i=1

[
kT (x− ai)− cosαi‖x− ai‖

sinαi‖x− ai‖

]2
s.t. fi = cTi (x− ai), i = 1, . . . ,N (11)

Problem (11) can be expressed equivalently in the epigraph
form

min
x,e,f ,g,t

N∑
i=1

ei + t +
N∑
i=1

gi

s.t.
[
β−1(µ2d20 − λ

2
i ‖x− ai‖

2)

2λiµ‖x− ai‖

]2
≤ ei[

kT (x− ai)− cosαi‖x− ai‖
sinαi‖x− ai‖

]2
≤ gi

fi = cTi (x− ai), i = 1, . . . ,N

‖f ‖2 ≤ t (12)

Inequality constraints in (12) can be converted to
second-order cones

min
x,e,f ,g,t

N∑
i=1

ei + t +
N∑
i=1

gi

s.t.

∥∥∥∥[ β−1(µ2d20 − λ
2
i ‖x− ai‖

2)
λ2i µ

2
‖x− ai‖2 − ei

]∥∥∥∥
≤ λ2i µ

2
‖x− ai‖2 + ei∥∥∥∥[ 2(kT (x− ai)− cosαi‖x− ai‖)
sin2 αi‖x− ai‖2 − gi

]∥∥∥∥
≤ sin2 αi‖x− ai‖2 + gi
fi = cTi (x− ai), i = 1, . . . ,N∥∥∥∥[ f

t − 1/4

]∥∥∥∥ ≤ t + 1/4 (13)

We introduce auxiliary variables hi = ‖x−ai‖2, ri = ‖x−
ai‖, then problem (13) can be rewritten as the following form

min
x,e,f ,g
h,r,t

N∑
i=1

ei + t +
N∑
i=1

gi

s.t.

∥∥∥∥[ β−1(µ2d20 − λ
2
i hi)

λ2i µ
2hi−ei

]∥∥∥∥ ≤ λ2i µ2 hi + ei

hi =
[
aTi −1

] [I3 x
xT xT x

] [
ai
−1

]
∥∥∥∥[ 2(kT (x− ai)− cosαiri)

sin2 αihi−gi

]∥∥∥∥ ≤ sin2 αihi + gi

ri = ‖x− ai‖

fi = cTi (x− ai), i = 1, . . . ,N∥∥∥∥[ f
t − 1/4

]∥∥∥∥ ≤ t + 1/4 (14)

In order to turn the problem (14) into a convex problem,
we define z = xT x, then relax z = xT x and ri = ‖x− ai‖ to
z ≥ xT x and ri ≥ ‖x− ai‖ respectively [26], resulting in the
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following convex estimator

min
x,e,f ,g
h,r,t,z

N∑
i=1

ei + t +
N∑
i=1

gi

s.t.

∥∥∥∥[ β−1(µ2d20 − λ
2
i hi)

λ2i µ
2hi−ei

]∥∥∥∥ ≤ λ2i µ2 hi + ei

hi =
[
aTi −1

] [I3 x
xT z

] [
ai
−1

]
∥∥∥∥[ 2(kT (x− ai)− cosαiri)

sin2 αihi−gi

]∥∥∥∥ ≤ sin2 αihi + gi

ri ≥ ‖x− ai‖

fi = cTi (x− ai), i = 1, . . . ,N∥∥∥∥[ f
t − 1/4

]∥∥∥∥ ≤ t + 1/4[
I3 x
xT z

]
� 0 (15)

The proposed estimator in (15) denoted as ‘‘SDP/SOCP1’’
can be efficiently solved by CVX [27]. Standard semi-
definite/second-order cone programming problem (SD/
SOCP) solvers like SeDuMi [28] and SDPT3 [29] can be used
to solve the convex optimization problem in MATLAB.

III. COOPERATIVE LOCALIZATION
In this section, we discuss the target localization problem in
3-D cooperative scenarios. Consider a WSN which consists
of N anchor nodes andM target nodes, where the locations of
the anchor nodes are denoted as a1, a2, . . ., aN ∈ R3, while
the locations of the target nodes are denoted as x1, x2, . . .,
xM ∈ R3.

FIGURE 2. The i th target node, the j th anchor node, and the kth target
node link in a cooperative scenario.

Fig. 2 shows the ith target node, the jth anchor node, and
the kth target node link in a cooperative scenario.

The target/anchor and target/target path loss models are
given by [22], [30], [31]

LAij = L0 + 10γ log10

(
‖xi − aj‖

d0

)
+nij, (i, j) ∈ A

(16a)

LBik = L0 + 10γ log10

(
‖xi − xk‖

d0

)
+nik , (i, k) ∈ B

(16b)

where LAij and LBik are, respectively, the path loss from the ith
target node to the jth anchor node, the path loss from the ith
target node to the kth target node, L0 denotes the reference
path loss value at the reference distance d0, γ denotes the
PLE, nij and nik represent the log-normal shadowing effect,
following the identically independent distributed Gaussian
distribution, nij ∼ N (0, σ 2

nij ), nik ∼ N (0, σ 2
nik ). The sets

consisting of the target/anchor and target/target connections
index pairs within the effective communication range are
denoted as A = {(i, j)|‖xi − aj‖ ≤ R, i = 1, 2, . . . ,M , j =
1, 2, . . . ,N }, B = {(i, k)|‖xi − xk‖ ≤ R, i, k =

1, 2, . . . ,M , i 6= k}, respectively. For simplicity and without
loss of generality, we assume that the target/target path loss
measurements are symmetric, and that all sensors have iden-
tical reference path loss value L0 and communication rangeR.

As shown in Fig. 2, the azimuth angle and elevation angle
measurements are modeled respectively as follows

φAij = arctan
(
xi2 − aj2
xi1 − aj1

)
+ mij, (i, j) ∈ A (17a)

φBik = arctan
(
xi2 − xk2
xi1 − xk1

)
+ mik , (i, k) ∈ B (17b)

αAij = arccos
(
xi3 − aj3
‖xi − aj‖

)
+ vij, (i, j) ∈ A (18a)

αBik = arccos
(
xi3 − xk3
‖xi − xk‖

)
+ vik , (i, k) ∈ B (18b)

where mij, mik and vij, vik represent the measurement errors
of the azimuth angle and elevation angle, respectively, mod-
eled as zero-mean Gaussian random variables, i.e., mij ∼
N (0, σ 2

mij ), mik ∼ N (0, σ 2
mik ) and vij ∼ N (0, σ 2

vij ), vik ∼
N (0, σ 2

vik ). φ
A
ij , α

A
ij respectively represent the azimuth angle

and elevation angle between the ith target and the jth anchor,
φBik ,α

B
ik respectively represent the azimuth angle and elevation

angle between the ith target and the kth target.
For ease of presentation, here we define x =

[xT1 , x
T
2 , . . . , x

T
M ]T .

Moving L0 to the left side of equation (16), dividing both
sides by 10γ , and then taking the power of 10 gives

10
L0−L

A
ij

10γ ‖xi − aj‖ = d010
−

nij
10γ , (i, j) ∈ A (19a)

10
L0−L

B
ik

10γ ‖xi − xk‖ = d010
−

nik
10γ , (i, k) ∈ B (19b)

Similar to the method in Section II, the right side of equa-
tion (19) can be approximated by applying the first-order
Taylor expansion as follows

10−
nij
10γ ≈ 1−

ln(10)
10γ

nij, (i, j) ∈ A (20a)

10−
nik
10γ ≈ 1−

ln(10)
10γ

nik , (i, k) ∈ B (20b)
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Substituting (20) into (19), we have

bAij ‖xi − aj‖ ≈ d0 + ξ1ij , (i, j) ∈ A (21a)

bBik‖xi − xk‖ ≈ d0 + ξ1ik , (i, k) ∈ B (21b)

where bAij = 10
L0−L

A
ij

10γ , bBik = 10
L0−L

B
ik

10γ , ξ1ij = −d0
ln(10)
10γ nij,

ξ1ik = −d0
ln(10)
10γ nik .

Moving ξ1ij , ξ
1
ik to the left side of equation (21), squaring

both sides and omitting the second-order noise term, we have

ξ1ij ≈
bA
−1

ij (bA
2

ij ‖xi − aj‖
2
− d20 )

2‖xi − aj‖
, (i, j) ∈ A (22a)

ξ1ik ≈
bB
−1

ik (bB
2

ik ‖xi − xk‖
2
− d20 )

2‖xi − xk‖
, (i, k) ∈ B (22b)

Similarly, (17) can be approximately expressed as

ξ2ij ≈ cTij (xi − aj), (i, j) ∈ A (23a)

ξ2ik ≈ cTik (xi − xk ), (i, k) ∈ B (23b)

with cij = [− sinφAij , cosφ
A
ij , 0]

T , cik = [− sinφBik ,
cosφBik , 0]

T , ξ2ij and ξ
2
ik are weighted noise terms.

As for (18), taking cosine on both sides, and then applying
the first-order Taylor expansion, we have

kT (xi − aj)≈‖xi − aj‖ cosαAij +ξ
3
ij , (i, j) ∈ A (24a)

kT (xi − xk )≈‖xi − xk‖ cosαBik+ξ
3
ik , (i, k) ∈ B (24b)

where k = [0, 0, 1]T , ξ3ij and ξ
3
ik are weighted noise terms.

According to the squared range criterion (SR) [32], in the
following derivation, we apply the least squares methodology
to the squared range measurements

cos2(αAij )‖xi−aj‖
2
≈ kT (xi−aj)(xi−aj)T k, (i, j) ∈ A

(25a)

cos2(αBik )‖xi−xk‖
2
≈ kT (xi−xk )(xi−xk )T k, (i, k) ∈ B

(25b)

Based on (22), (23), and (25), we obtain the following LS
estimator

min
x

∑
(i,j)∈A

[bA−1ij (bA
2

ij ‖xi − aj‖
2
− d20 )

2‖xi − aj‖

]2

+

∑
(i,j)∈A

[
cTij (xi − aj)

]2
+

∑
(i,j)∈A

[
cos2(αAij )‖xi − aj‖

2

− kT (xi − aj)(xi − aj)T k
]2

+

∑
(i,k)∈B

[
bB
−1

ik (bB
2

ik ‖xi − xk‖
2
− d20 )

2‖xi − xk‖

]2

+

∑
(i,k)∈B

[
cTik (xi − xk )

]2
+

∑
(i,k)∈B

[
cos2(αBik )‖xi − xk‖

2

− kT (xi − xk )(xi − xk )T k
]2

(26)

Introducing auxiliary variables f , f̂ , g, ĝ, problem (26) can
be written equivalently as follows

min
x,f ,f̂ ,g,ĝ

∑
(i,j)∈A

[bA−1ij (bA
2

ij ‖E
T
i x− aj‖

2
− d20 )

2‖ETi x− aj‖

]2
+

∑
(i,j)∈A

f 2ij +
∑

(i,j)∈A
g2ij

+

∑
(i,k)∈B

[
bB
−1

ik (bB
2

ik ‖E
T
i x− E

T
k x‖

2
− d20 )

2‖ETi x− E
T
k x‖

]2
+

∑
(i,k)∈B

f̂ 2ik +
∑

(i,k)∈B
ĝ2ik

s.t. gij = cos2(αAij )‖E
T
i x− aj‖

2

− kT (ETi x− aj)(E
T
i x− aj)

T k
fij = cTij (E

T
i x− aj), (i, j) ∈ A

ĝik = cos2(αBik )‖E
T
i x− E

T
k x‖

2

− kT (ETi x− E
T
k x)(E

T
i x− E

T
k x)

T k

f̂ik = cTik (E
T
i x− E

T
k x), (i, k) ∈ B (27)

where Ei = ei
⊗

I3, ei denotes the ith column of the
M -dimensional identity matrix, and

⊗
denotes Kronecker

product.
By stacking the variables f , f̂ , g, ĝ into a vector z, and

introducing the slack variables e, ê, t , we have

min
x,e,ê,z,t

∑
(i,j)∈A

eij +
∑

(i,k)∈B
êik + t

s.t.
[bA−1ij (bA

2

ij ‖E
T
i x− aj‖

2
− d20 )

2‖ETi x− aj‖

]2
≤ eij, (i, j) ∈ A[

bB
−1

ik (bB
2

ik ‖E
T
i x− E

T
k x‖

2
− d20 )

2‖ETi x− E
T
k x‖

]2
≤ êik , (i, k)∈B

‖z‖2 ≤ t (28)

Inequality constraints in (28) can be converted to
second-order cones, and according to trace(xxT ) = xT x,
we have

min
X,x,z,t
e,ê,R,R̂

∑
(i,j)∈A

eij +
∑

(i,k)∈B
êik + t

s.t. Rij = trace(ETi XEi)− 2aTj E
T
i x+ ‖aj‖

2∥∥∥∥∥
[
bA
−1

ij (bA
2

ij Rij − d
2
0 )

Rij − eij

]∥∥∥∥∥≤Rij + eij, (i, j)∈A

R̂ik = trace(ETi XEi)− 2trace(ETi XEk )

+ trace(ETk XEk )
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∥∥∥∥∥
[
bB
−1

ik (bB
2

ik R̂ik − d
2
0 )

R̂ik − êik

]∥∥∥∥∥≤ R̂ik + êik , (i, k)∈B∥∥∥∥[ z
t − 1/4

]∥∥∥∥ ≤ t + 1/4

X = xxT (29)

By relaxing X = xxT to X � xxT , and applying Schur
complement [26] to transform the constraint into the form
of linear matrix inequality (LMI), we obtain a convex prob-
lem (30)

min
X,x,z,t
e,ê,R,R̂

∑
(i,j)∈A

eij +
∑

(i,k)∈B
êik + t

s.t. Rij = trace(ETi XEi)− 2aTj E
T
i x+ ‖aj‖

2∥∥∥∥∥
[
bA
−1

ij (bA
2

ij Rij − d
2
0 )

Rij − eij

]∥∥∥∥∥ ≤ Rij + eij, (i, j) ∈ A

R̂ik = trace(ETi XEi)− 2trace(ETi XEk )

+ trace(ETk XEk )∥∥∥∥∥
[
bB
−1

ik (bB
2

ik R̂ik − d
2
0 )

R̂ik − êik

]∥∥∥∥∥ ≤ R̂ik + êik , (i, k) ∈ B∥∥∥∥[ z
t − 1/4

]∥∥∥∥ ≤ t + 1/4[
X x
xT 1

]
� 0 (30)

The proposed estimator in (30) is a mixed semi-
definite/second-order cone programming problem, which is
referred to as ‘‘SDP/SOCP2’’ in the following sections.

IV. COMPLEXITY ANALYSIS
The trade-off between accuracy and complexity is one of
the criteria on the applicability of the algorithm. We assume
that there is a communication link between any node in the
network to analyze the worst-case complexity, i.e., the total
number of links in the network is L = |A| + |B|, where
|A| = MN , |B| = M (M−1)/2. Complexity can be expressed
as a function of L,M ,N . In noncooperative scenarios,M = 1.
The results in [33] are applied to analyze the worst-case
complexities of the methods considered in this paper

O
(
√
µ

(
m

Nsd∑
i=1

nsd
3

i + m
2
Nsd∑
i=1

nsd
2

i

+ m2
Nsoc∑
i=1

nsoci +
Nsoc∑
i=1

nsoc
2

i + m3
))

(31)

where m is the number of equality constraints, Nsoc, Nsd
are respectively the number of second-order cone constraints
and semi-definite cone constraints, nsoci , nsdi are respectively
the dimensions of the ith second-order cone and the ith
semi-definite cone, µ =

∑Nsd
i=1 n

sd
i + 2Nsoc is the so-called

barrier parameter.
Table 1, Table 2 respectively show the complexities of the

algorithms considered in this paper for noncooperative and

TABLE 1. Summary of the considered methods for noncooperative
scenarios.

TABLE 2. Summary of the considered methods for cooperative scenarios.

cooperative localization scenarios. Assuming that K = 30
is the maximum number of steps in the bisection procedure
applied in [34].

The above two tables show that the complexities of the
algorithms mainly depend on the scale of the wireless sensor
network. Observing Table 1, since the bisection procedure is
adopted, the GTRS method is slightly more complex than the
WLSmethod, but the subsequent simulation results show that
the estimation accuracy of GTRS is better than that of WLS
under various settings. Although the SDP/SOCP1 method
has the highest complexity among the considered methods,
it has the best performance. Table 2 shows the algorithms
using hybrid measurements are slightly more complex than
the algorithms using a single kind of measurement, but can
greatly reduce the estimation error.

V. CRAMER-RAO LOWER BOUND ANALYSIS
The CRLB is generally used as a benchmark to verify the
performance of the localization algorithms. Although the
CRLB for a single kind of measurement is widely discussed,
there is no report about the CRLB on hybrid measurements in
the cooperative case, which will be discussed in this section.

In the cooperative scenarios, the CRLB for the ith compo-
nent of the estimated parameter x is given by

CRLB(x̂i) = [F−1]i,i (32)

whereF is the Fisher information matrix (FIM) [36], the ele-
ments in the FIM are defined as follows

[F]i,j = −E
[
∂2lnp(L|x)
∂[x]i∂[x]j

]
(33)

where L is the observation vector, and p(L|x) is the condi-
tional probability density function (pdf).

Accordingly, the CRLB for the estimate of the target posi-
tions x is formulated as

CRLB = trace([F−1(x)]) (34)
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We omit the closed-form formulas of the elements in F
here due to their complex expressions. The detailed derivation
and expression of each element in the FIM are given in
Appendix.

VI. SIMULATION RESULTS
In this section, we perform a series of simulations by setting
different scenarios to verify the performance of the proposed
algorithms. The CRLB on the RMSE of any unbiased estima-
tor is employed as a performance benchmark, and the RMSE
is used as the main performance indicator of localization
algorithms. To verify the benefits of fusing two measure-
ments, in the cooperative scenarios, the SDP/SOCP2 method
based on hybrid RSS-AOA measurements is compared with
the SDP-RSS method based on RSS measurements.

A. NONCOOPERATIVE LOCALIZATION
In the noncooperativeWSNs, the models (1), (2), (3) are used
to generate the RSS and AOAmeasurements. We assume that
both the target and the anchor nodes are randomly deployed in
a region of size 15×15×15m3 in eachMonte Carlo (Mc) run,
the reference distance d0 = 1m, the path loss L0 = 40dB,
and the PLE is fixed as γ = 2.5, similar to [20], the true PLE
for each link follows a uniform distribution with an interval
γ ∼ U[2.2,2.8]. The proposed method is implemented by
MATLAB package CVX using SeDuMi as the solver, for the

noncooperative scenarios, RMSE =
√∑Mc

i=1
‖xi−x̂i‖2

Mc , where
x̂i is the estimated location of the target in the ith Monte Carlo
run, Mc = 4000.

FIGURE 3. RMSE versus the number of anchor nodes N comparison.

Fig. 3 shows the RMSE versus the number of anchor
nodes N when σn = 6dB, σm = 5deg, σv = 5deg.
The figure shows that the estimation accuracy of the dis-
cussed algorithms is improved as the number of anchor nodes
increases due to more available information in the network.
Additionally, the SDP/SOCP1 method outperforms the other
discussed methods and is closer to the CRLB for each N .
We also observe that the margin between SDP/SOCP1 and
GTRS increases as N grows, which verifies the superior
performance of the proposed method.

FIGURE 4. RMSE versus σn(dB) comparison.

FIGURE 5. RMSE versus σm(deg) comparison.

Fig. 4 shows the RMSE versus σn(dB) when σm = σv =

5deg, N = 6. The figure shows that the estimation accuracy
of the SDP/SOCP1 method is slightly better than that of
the GTRS method as σn varies from 1 to 4dB, and when
σn = 5dB, our estimator has outstanding performance. The
effects of two other measurement noises on the RMSE of the
estimators under consideration are also studied. Fig. 5 shows
the RMSE versus σm(deg) when σn = 6dB, σv = 5deg,
N = 6. Observing that the SDP/SOCP1 method and the
GTRS method are more robust when the measurements dete-
riorate. Fig. 6 shows the RMSE versus σv(deg) when σn =
6dB, σm = 5deg, N = 6. Finding that the margin between
SDP/SOCP1 and GTRS is slowly increasing when σv varies
from 2 to 5deg. From the above three figures we know
that the performance of the discussed algorithms deteriorates
as the quality of the measurements decreases. Furthermore,
the SDP/SOCP1 method is less affected by the quality of the
AOAmeasurements and is more affected by the quality of the
RSS measurements. Additionally, the proposed method pro-
vides superior performance over the other discussed methods
and is closer to the CRLB in all noise cases.

B. COOPERATIVE LOCALIZATION
In the cooperativeWSNs, the models (16), (17), (18) are used
to generate the RSS and AOAmeasurements. We assume that

117774 VOLUME 7, 2019



Q. Qi et al.: RSS-AOA-Based Localization via Mixed Semi-Definite and Second-Order Cone Relaxation in 3-D WSNs

FIGURE 6. RMSE versus σv (deg) comparison.

both the anchor and the target nodes are randomly deployed
in a region of size 30×30×30m3 in each Monte Carlo (Mc)
run, the reference distance d0 = 1m, the reference path loss
L0 = 40dB, the communication distance R = 8m, and the
PLE is fixed as γ = 2.5, the true PLE for each link follows a
uniform distribution with an interval γ ∼ U[2.2,2.8], for the
cooperative scenarios, the RMSE is calculated by averaging
over all the estimated locations of the target nodes and noise

realizations, i.e., RMSE =

√
Mc∑
i=1

M∑
j=1

‖xij−x̂ij‖2

MMc , where x̂ij is the

estimated location of the jth target in the ithMonte Carlo (Mc)
run, Mc = 2000.

FIGURE 7. RMSE versus the number of anchor nodes N comparison.

Fig. 7 shows the RMSE versus the number of anchor
nodes N when σn = 5dB, σm = σv = 4deg, M = 25.
It is observed that the performance of the discussed methods
is improved as N increases, and since the AOA measure-
ments and RSS measurements can provide more information,
the hybrid algorithms have excellent performance and are
close to the CRLB. Furthermore, adequate information in
the network decreases the performance margin between the
SDP/SOCP2 method and the SDP method, one can see that
the new method outperforms the existing method by roughly
0.02m when N = 8, however, when compared with the

FIGURE 8. The objective function of the ML estimator versus x1 and x2
coordinates.

SDP-RSS method, the new method has significant perfor-
mance, reducing the estimation error by roughly 3.6m when
N = 7, which confirms that the algorithms using hybrid
measurements have better performance than the algorithms
using a single kind of measurement.

In the following simulations, we compare the surface
shapes of objective function between maximum likelihood
(ML) [35] and proposed SDP/SOCP1 estimator.

A target node and four anchor nodes are randomly
deployed in a region of size 15 × 15 × 15 m3, σn = 3dB,
σm = σv = 3deg, γ = 2.5, L0 = 40dB, and d0 =
1m. In this example, we have three unknown parameters,
it is not possible to show a plot in four-dimensional space.
So Fig. 8 and Fig. 9 respectively show the surface shapes of
the ML estimator and the function in (10) versus x1 and x2
coordinates when x3 is fixed at the true value.

FIGURE 9. The objective function in (10) versus x1 and x2 coordinates.

Fig. 8 shows that the objective function of theML estimator
has many local minima and saddle points, it’s not easy to
find the optimal solution, while the objective function in (10),
shown in Fig.9, is much smoother than that of the ML estima-
tor and has a global minimum at [14.55, 3.64, 10.14]m which
is indicated by a red point (the target is located at [14.37, 3.61,
10.14]m). Simulations for the other two cases have similar
results.
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From these figures, we conclude that the objective function
of the ML estimator based on hybrid measurements has many
local optima, its globally optimal solution is very hard to
obtain. However, the advantage of our method is that the
convergence to the globally optimal solution is guaranteed.

VII. CONCLUSION
In this paper, we propose the target localization methods
based on hybrid RSS-AOAmeasurements in both noncooper-
ative and cooperative 3-D WSNs. According to LS criterion,
the target localization problems are expressed as the min-
imization problems, then we relax the original non-convex
problems into convex problems by using semi-definite relax-
ation and second-order cone relaxation techniques, the con-
vex problems can be effectively solved by the interior point
method. It can be observed from our simulation results that
the hybrid estimators can achieve higher estimation accu-
racy than the estimators based on a single kind of measure-
ment, and the results also depict that the proposed methods
exhibit exceeding performance in all considered scenarios
and robustness to inaccuracy PLE. However, we only address
the localization problems for the case of known transmit
power, our next work is to extend the methods to the unknown
transmit power case and derive the corresponding CRLB.

APPENDIX
Based on the information from Section V, the CRLB for the
estimated target positions is given in this section. To facil-
itate the derivation of the CRLB, here we redefine x =
[x1, x2, . . . , xM ] as a 3 × M matrix, and it is obvious that
F ∈ S3M . Due to the nature of symmetric matrix, we only
derive some elements of the FIM as follows

[F]i,i

=

∑
{j|(i,j)∈A}

(
10γ
ln(10)

)2 1
σ 2
nij

(xi1 − aj1)2

‖xi − aj‖4

+

∑
{j|(i,j)∈A}

1
σ 2
mij

(xi2 − aj2)2

‖x1:2,i − a1:2,j‖4

+

∑
{j|(i,j)∈A}

1
σ 2
vij

(xi1 − aj1)2(xi3 − aj3)2

‖x1:2,i − a1:2,j‖2‖xi − aj‖4

+

∑
{k|(i,k)∈B}

(
10γ
ln(10)

)2 1
σ 2
nik

(xi1 − xk1)2

‖xi − xk‖4

+

∑
{k|(i,k)∈B}

1
σ 2
mik

(xi2 − xk2)2

‖x1:2,i − x1:2,k‖4

+

∑
{k|(i,k)∈B}

1
σ 2
vik

(xi1 − xk1)2(xi3 − xk3)2
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[F]i,j

= −

(
10γ
ln(10)

)2 1
σ 2
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−
1
σ 2
mij
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−
1
σ 2
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×
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i = j = 1, . . . ,M , i < j
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